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Abstract. Information quality is crucial to any information fusion
system as combining unreliable or partially credible pieces of informa-
tion may lead to erroneous results. In this paper, Dempster-Shafer
theory of evidence is being used as a framework for representing and
combining uncertain pieces of information. We propose a method of
dynamic estimation of evidence discounting rates based on the credi-
bility of pieces of information. The credibility of a piece of information
Cre(In) is evaluated through a measure of consensus (corroboration
degree) between a set of belief functions, and this measure serves as
a basis for quantifying the credibility of the source (sensor or fusion
node) itself, Cre(Sk), used then as a discounting factor for all fur-
ther belief functions provided by Sk. The process is dynamic in the
sense that the credibility of the source is revisited in the light of new
incoming piece of information. The method proposed relies on a hy-
brid fusion topology in which the sensors are grouped according to the
feature they measure (similar and dissimilar sensors), allowing to se-
lect different kinds of measure for estimating the corroboration degrees.
Through simulations, we compare (a) the hybrid-combination using the
source credibility and the robust combination rule (RCR-L) account-
ing automatically for sensors’s credibility; (b) the hybrid-combination,
with different membership degrees and corroboration degrees used to
estimate the sources credibility. We show that the new hybrid topol-
ogy together with the credibility-based evidence discounting estimation
algorithm provide a faster identification of the observed object.
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1. Introduction

In information fusion systems, considering information quality is of crucial im-
portance [19]. For instance, granting equal weights to both reliable and unreli-
able sources may completely invalid the results of any information fusion process.
Modeling uncertainty with belief functions allows to account for only one aspect
of information quality, namely the uncertainty of the source regarding the piece of
information it emits. However, other higher-order aspects of information quality
need to be considered, in particular the reliability of the source that provides the
information as well as the credibility of the piece of information. In [1,2,16], three
main independent features have been identified to characterize the information
evaluation: (1) the source’s reliability, Rel(Sk); (2) the number of independent
sources that support a piece of information; and (3) the conflict factor of a piece
of information with some other ones.

According to the NATO Standardization Agency, the reliability of a source
relies on an evaluation of its past use. Thus, estimating the reliability of a source
requires a training sequence where the information provided by the source can be
compared to the ground truth. Then, the more correct pieces of information are
provided, the more reliable the source is. The credibility of a piece of information
relies on the relation between the other pieces of information provided by other
independent sources of information, that if the pieces of information are either
concuring or conflicting. Then, the more stored pieces of information confirming
the given piece of information, the more credible this piece of information.

Both reliability of the source and credibility of the information influence the
trust we should have about the piece of information. In [26], a degree of trust-
worthiness is defined denoting “the degree to which information from a source is
perceived as conforming to a fact and therefore worthy of trust or belief”. Two
main factors influence thus the degree of trustworthiness and justify the discount-
ing of a belief function before combination: (1) either the source is known to be
not fully reliable; (2) or the information provided by the source is not fully credible.
In both cases, the information should not be taken for granted and weakening it
is reasonable, “discounting at higher rates those belief functions one particularly
distrusts and whose influence one wants to reduce” as argued by Shafer [20]. The
degree of trustworthiness t of a piece of information should be used to inversely
discount the corresponding belief function such that a fully trusted information
will not be discounted (t = 1) and a fully untrusted information will be discarded
(t = 0). The question remaining is how to compute the discounting rate to be
applied to a given belief function.

Discounting belief functions relatively to the reliability degrees of the source
providing it is quite natural [15,21]. However, prior knowledge of sources’s relia-
bility is required and unfortunately often missing in practice. Unlike reliability,
credibility can be estimated without any reference to ground truth and requires
then no training sequence. Rather, an estimation of a credibility degree for a
given piece of information can be based on a degree of agreement between pieces
of information. For instance in [26], a degree of trustworthiness is computed as
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a “measurement of corroboration derived by assessing the level of conformity to
existing beliefs”. The idea has been originally put forward by Yager [25] who
states that “[a] characteristic of credibility qualification is that in some cases the
credibility assigned to a piece of evidence can be a function of its compatibility
with other, higher priority evidence”. Approaches for discounting rates estimation
based on consensus between several belief functions have been proposed in [4,9,14].
A measure of “relative reliability” is computed based on a membership degree of a
source Sk to the others in a given set S = {S1, . . . , SK}: if the piece of information
provided by Sk is “close” to the ones provided by the S \Sk, then Sk is consid-
ered as “reliable”. If the piece of information from Sk is “far” from the others,
then the source is “unreliable”. Referring to the discussion above and regarding
the distinction between the reliability and credibility concepts, it seems that the
“relative reliability” in the above-mentioned works is simply the credibility of the
source of information.

The underlying key concept for this kind of approach is the quantification of the
interactions of two pieces of information, in particular the “closeness” between be-
lief functions. In [4,9], computation is based on a similarity measure deduced from
a distance between the pieces of information. Often used to quantify interaction
between belief functions, Demspter’s conflict factor does not reflect adequately
the dissimilarity between two pieces information [12,14] as the internal conflict
(or auto-conflict) is in general not null for a belief function. Indeed, Dempster’s
conflict rather represents a covariance measure [10]. Distances measures on the
other hand may also incorrectly represent the disagreement between two belief
functions.

We propose in this paper a method of dynamic estimation of evidence discount-
ing rates based on the credibility of pieces of information. The credibility of a
piece of information Cre(In) is evaluated through a measure of consensus between
a set of belief functions, and this measure serves as a basis for quantifying the
credibility of the source (sensor or fusion node) itself, Cre(Sk), used then as a
discounting factor for all further belief functions provided by Sk. The process is
dynamic in the sense that the credibility of the source is revisited in the light of
new incoming pieces of information.

The method proposed relies on a hybrid fusion topology introduced in [7] in
which the sources of information (sensors) are grouped according to the feature
they measure. For instance, all sensors reporting information about the attribute
Color are gathered in a group. This topology allows a greater flexibility in the
choice of the measures of consensus (or agreement) between belief functions.

The paper is organized as follows: Section 2 presents background information
on Dempster-Shafer evidence theory (DST). Section 3 shows the algorithm for
discounting rate estimation and also different choices of interaction measures to be
used either within a group of similar sensors or between groups of sensors. Section 4
presents the hybrid fusion topology together with the algorithm of discounting
rate estimation. Section 5 provides simulation results on a vehicle identification
scenario and compare the behavior of the proposed algorithm to other ones. We
conclude in Section 6 on possible extensions of this work.



288 M.C. FLOREA ET AL.

2. Background

Let Θ be the frame of discernment, containing N exclusive and exhaustive
hypotheses, and let denote by 2Θ its power set, containing all the subsets of Θ.
A Basic Probability Assignment (BPA) is a mapping m : 2Θ → [0, 1] that must
satisfy the following conditions: (1) m(∅) = 0 and (2)

∑
A⊆Θ m(A) = 1, where

0 ≤ m(A) ≤ 1, ∀A ∈ 2Θ. m(A) is called the mass of A and represents the degree
of belief strictly assigned to A. A subset A with a non-null mass is called a focal
element of m. Let F designate the set of focal elements of m. A vacuous BPA
has the frame of discernment itself as only focal element, i.e. m0(Θ) = 1. Θ is
sometimes abusively called the ignorance.

A belief function Bel can be defined from m, ∀A ⊆ Θ as:

Bel(A) =
∑
B⊆A

m(B). (1)

The pignistic probability is defined ∀A ⊆ Θ as:

BetP(A) =
∑
B⊆Θ

m(B)
|A ∩ B|
|B| , ∀A ⊆ Θ. (2)

BetP defines a probability distribution over Θ.

2.1. Some combination rules

Dempster’s combination rule of two BPAs m1 and m2 is defined as the normal-
ized conjunctive combination as:

m∩(A) =
1
K

∑
B∩C=A

m1(B)m2(C), ∀A ⊆ Θ (3)

where K = m12(∅) is the weight of conflict (or simply conflict) between m1 and
m2 and is equal to the mass of the empty set after the conjunctive combination
and before any normalization step. If K is close to 0, the BPAs are not in conflict,
while if K is close to 1, the BPAs are in conflict.

A class of Robust Combination Rules (RCR) has been introduced in [8] as
adaptive combination rules for automatically account for the relative reliability
of the sources. Within this class, the RCR with logarithmic weightings, called
RCR-L, has been shown to perform the best in most of the situations (see [8] for
details) and will be used for comparison in Section 5. The combination of two
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BPAs m1 and m2 by the RCR-L is defined for all A ⊆ Θ by:

mRCR−L(A) =
log[(1 + x)K(K + x)1−K/x]

log[(1 + x)/x]
m∪(A)

+
log[(1 + x)/(K + x)]

log[(1 + x)/x]
m∩(A), A �= ∅

mRCR−L(∅) = 0 (4)

where m∪(A) =
∑

B∪C=A m1(B)m2(C) is the disjunctive combination rule, and
x is a real value between 0 and 1 representing the distribution of the conflict K.
In the following, we will use this rule to automatically account for the credibility
of the pieces of information: If the conflict is low (high), the piece of information
is credible (non-credible).

When we do not trust a particular BPA to a certain degree (of trustworthiness)
t ∈ [0, 1], a discounting rate can be applied to the BPA resulting in for all A ⊆ Θ:

m∗(A) = tm(A), A �= Θ

m∗(Θ) = 1 − t + tm(Θ) (5)

t can represent either a degree of reliability associated to the corresponding source
of information (t = 1, meaning that the source is fully reliable), or a degree
of credibility of the BPA itself when comparing it to others. When t = 1, the
mass function remains unchanged while when t = 0, the mass function becomes
the vacuous BPA m0(Θ) = 1. The discounted BPA can be combined through
Dempster’s rule.

2.2. Distances and inner-products

Let us introduce by m = [m(A1) . . . m(A2N−1)]′ the vector notation of a BPA.
W is a 2N−1×2N−1 square matrix whose elements W (A, B) quantify the interac-
tions between the focal elements of m1 and m2. W (A, B) is either a similarity or
a dissimilarity measure. In [10], two main kinds of measures for quantifying the
interaction between belief functions have been identified:

(1) Inner-products of the form

σ(m1, m2) = m1
′Wm2 (6)

where mi is the vector notation of the BPA mi and m′ is the transpose of
m. Inner-products measure a kind of covariance between m1 and m2, the
variance being the norm of m. Dempster’s weight of conflict K is of this
kind.
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Table 1. Some dissimilarity measures between belief functions.

Distance name [Ref.] d(m1, m2) Comments

Tessem [22] dT maxA⊆Θ

∣∣BetP1(A)−BetP2(A)
∣∣

Jousselme [11] dBPA

√
1

2
(m1−m2)

′D(m1−m2) D(A, B) =
|A ∩ B|
|A ∪ B|

Euclidean [17] dE

√∑
A⊆Θ

[
m1(A)−m2(A)

]2

Euclidean (Bel) [3] d
(Bel)
E

√∑
A⊆Θ

[
Bel1(A)−Bel2(A)

]2

Bhattacharyya [17] dB

[
1−∑A⊆Θ

√
m1(A)m2(A)

]p

p ∈ R
∗+

Diaz [5] dDi

√
1

2
(m1−m2)

′F (S, R)(m1−m2) R = |A∪B|
|Θ|

Cosine [23] σcos

∑
A⊆Θ

m1(A)m2(A)

√√√√(∑
A⊆Θ

m2
1(A)

)(∑
A⊆Θ

m2
2(A)

)

(2) Distances of the form

d(m1, m2) = (m1 − m2)′W(m1 − m2) (7)

d is the quadratic form associated to the bilinear form σ and measures
then the variance of the difference between m1 and m2.

The main difference between distances d and inner-products σ is that while the
property d(m, m) = 0 always holds, in general σ(m, m) = 0 does not hold. Table 1
summarizes some distances traditionally used.

3. Credibility-based estimation of discounting rate

3.1. Membership degrees

Let M = {m1, . . . , mM} be a set of BPAs. We call membership degree MD
of a particular BPA, any measure that quantifies how close the specific BPA is
to the rest of the group. The higher MD(m), the more it belongs to M . In [7],
some techniques to compute the membership degree of a BPA to a group of BPAs
are reviewed1. These measures proposed by Deng et al. [4], Martin et al. [14], Xu
et al. [24] and Florea et al. [7] are all based on a distance measure between BPAs.
The idea is that the farthest a BPAs from the other, the lower its membership to

1These measures have been given different names that we gather under the term “membership
degree” in this paper.
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Table 2. Membership degrees based on a distance measure d.

Measure name [Ref.] Formula Comments

Absolute reliability R(mi) =
R′(mi)

max
1≤j≤N

R′(mj)
R′(mi) =

Sup(mi)∑
1≤j≤N Sup(mj )

[9] Sup(mi) =
∑

1≤j≤N,i�=j s(mi, mj)

s = 1 − d, similarity measure,
d in Table 1

Relative α(mi) =
[
1 − Confλ(mi)

]1/λ
Conf(mi) = d(mi, m

i
⊕)

reliability mi
⊕ =

⊕
j,i�=j mj

[14] λ > 0

Above ATR(mi) =
|A(mi, τ )|

M − 1 A(mi, τ ) = {mj |s(mi, mj) ≥ τ},
Threshold i �= j
Ratio [7] τ ∈]0, 1[

No-Conflict NCR(mi) =
|B(mi)|

M B(mi) = {mj |s(mi, mj) = 1}
Ratio [7]

Reliability (Xu et al.’s modified method) [7,24]

the group, and hence the lower the credibility of the source that has provided it.
Table 2 summarizes these measures.

Although a distance measure can be used in some cases to quantify the “conflict”
between BPAs, it may not be adequate in other cases as a high distance between
two BPAs may be due to the natural complementarity of sources rather than to a
real conflict, as it will be detailed in the rest of this section.

3.2. Redundant and complementary information

Four fundamental aspects are identified in [13] for multisensor integration and
fusion: redundancy, complementarity, timeliness, and cost of the information. The
redundancy and complementarity of sensors allow to obtain more precise informa-
tion by accessing to features not available to individual sensors. Redundant pieces
of information are obtained by sensors perceiving the same features in the en-
vironment whereas complementary pieces of information are obtained by sensors
perceiving different features.

Hereafter, sensors whose reports concern the same features will be called similar
and sensors providing information about different features will be called dissimi-
lar. Thus, similar sensors provide redundant information while dissimilar sensors
provide complementary information.

3.3. Example of a vehicle identification scenario

We consider the problem of vehicle (car) identification with a set of sensors.
The list of possibly observable cars is provided in the information table of Table 3
together with their corresponding 4 features in F = {Model, Color, Class, Country
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Table 3. Information table.

# Model Color Class Country
θ1 BMW red sedan Germany
θ2 Honda red sedan France
θ3 Honda black SUV Ontario
θ4 Dodge white sedan Quebec
θ5 Dodge red coupé Florida
θ6 Toyota blue coupé Ontario
θ7 Toyota blue sedan Quebec
θ8 Porsche black SUV Quebec
θ9 Porsche red sport Germany
θ10 Audi gray sedan France

Table 4. Feature domains.

Feature fi Domain Fi

1 Model {BMW, Honda, Dodge, Toyota, Porsche, Audi}
2 Color {Red, Blue, Black, White, Gray}
3 Class {Sedan, SUV, Coupé, Sport}
4 Country {Germany, France, Ontario, Quebec, Florida}

(or state/province)}. The corresponding frame of discernment is Θ = {θ1, θ2, . . . ,
θ10}. Each feature fi has its own domain Fi detailed in Table 4.

Let S = {S1, . . . , S9} be a set of 9 sensors reporting information about (1)
feature f1 (model) that are S1, S2, (2) feature f2 (color) that are S3, S4, S5, (3)
feature f3 (class) that are S6, S7 and (4) feature f4 (country) that are S8, S9. For
instance, S1 and S2 are similar sensors, while S1 and S4 are dissimilar sensors.

Each piece of information In is modeled by a dichotomous BPA such that

mn(An) = 0.8 mn(An) = 0.1 mn(Θ) = 0.1 (8)

where An is the set of objects of Θ whose feature is specified by In. Table 5 lists
examples of pieces of information together with their corresponding main focal
element An. The set S of sensors provides a set M = {m1, m2, . . . , mM} of BPAs.
We denote by M (Sk) the set of BPAs from M generated by Sk

2. Also, Sk(mi) is
the sensor associated to the BPA mi.

I1 and I5 are examples of redundant pieces of information while I2 and I3 are
examples of complementary pieces of information. We intend to quantify the cred-
ibility of a given sensor based on the membership degree (or consensus degree) of
its reported BPAs to a given group of BPAs. This involves thus the characteriza-
tion of the interaction between the BPAs. In the two cases above, dissimilarities
between the corresponding BPAs can arise but we argue that it should not be

2Note that the number of BPAs does not necessarily match the number of sensors.
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Table 5. Pieces of information In and associated main focal el-
ement An.

In An

1 The car is a BMW {θ1}
2 The car is red {θ1, θ2, θ5, θ9}
3 The car is from Quebec {θ4, θ7, θ8}
4 The car is a sedan {θ1, θ2, θ4, θ7, θ10}
5 The car is a Dodge {θ4, θ5}
6 The car is blue {θ6, θ7}
7 The car is dark {θ3, θ6, θ7, θ8, θ10}

Table 6. Examples of distance and covariance measures between
redundant and complementary pieces of information.

Redundant Complementary
Agreeing Conflicting Agreeing Conflicting
m6, m6 m2, m6 m1, m2 m2, m3

σ σW 0.16 0.64 0 0.64
σcos 1 0.0152 0.0152 0.0152
dT 0 0.7667 0.5833 0.75

d dJ 0 0.7611 0.6916 0.7492
dDi 0 0.7728 0.7060 0.7584

interpreted in the same way. Indeed, the fact that I1 and I5 are distinct reveals
a conflict between the two sources as their intersection is null in their common
domain (a car cannot be both a BMW and a Toyota). However, the dissimilarity
between I2 and I3 is natural as both pieces of information concern different fea-
tures (complementary information). Thus in this latter case, the sources should
not be identified as being in conflict.

In order to characterize adequately the dissimilarity between two BPAs we select
different measures for the two classes of sensors (either similar or dissimilar).

3.4. Choice of the measure

We agree that the interaction between for example m1 and m2 (dissimilar sen-
sors) on the one hand and between m2 and m6 (similar sensors) on the other hand
is not of the same nature and as such, should be quantified in different ways. The
question is then “what measure should be used to quantify the interaction between
two BPAs corresponding to either redundant or complementary information?”.

Let us consider the examples of Table 6 where several cases have been consid-
ered: (1) redundant and agreeing pieces of information; (2) redundant but conflict-
ing pieces of information; (3) complementary and agreeing pieces of information;
and (4) complementary but conflicting pieces of information.
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We note that although m6 and m6 are obviously agreeing3, σD is not equal
to 0. On the other hand, the distances are obviously all null. While m1 and m2

are agreeing, σD(m1, m2) = 0 but their distances are not null which is natural
since the sensors report about different features. In this case, the distance has no
sense, and σD is more suitable for computing the membership degree.

The cosine measure σcos has been introduced for comparison: Although it is of
the same nature than σD, it is useless here since the interaction between the focal
elements of the respective BPAs are not taken into account. The three distances
selected provide equivalent results and the choice of one of them requires obviously
a deeper study.

In light of this example, we argue that the interaction between BPAs for quan-
tifying membership degree to a group should be based on:

• A distance measure if the sensors are similar (e.g. the target is red and
the target is blue). One of the distance measures proposed for example
in [5,11,14,18,22] can be used.

• A covariance measure if the sensors are dissimilar (e.g. the target is red
and the target is a Dodge). Dempster’s conflict σD is a good candidate.

3.5. Credibility as a corroboration degree

For a given sensor Sk and from the membership degrees associated to the pieces
of information it generates, we propose to define the credibility estimation as a
corroboration degree Corr and introduce two definitions:

(1) as the ratio between the number of corroborative BPAs inside Sk(M ) and
the number of BPAs generated by Sk:

Corr1(Sk) =
|Ak|

|Sk(M )| (9)

where Ak = {mi|MD(mi) ≥ β, mi ∈ Sk(M )};
(2) as the ratio between the overall membership degree and the number of

BPAs generated by Sk:

Corr2(Sk) =

∑
mi∈Sk(M )

MD(mi)

|Sk(M )| · (10)

The overall algorithm for credibility estimation is depicted in Figure 1. After
similar sensors have been gathered, the membership degrees are computed for
each BPA within each cluster. The credibility of each sensor is then deduced as a
corroboration degree of the BPAs within a cluster. Based on the credibility degree,
the corresponding BPAs of the sensor are either discarded or discounted.

3This case illustrates the case where the same BPA is reported by different sensors.
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S1

SK

m1

m2

mM

mM-1

MD(m1)

MD(m2)

MD(mM-1)

MD(mM)

S1(M)

Corr(S1)

Corr(SK)

Membership
degree

Corroboration
degree

0

1

Figure 1. Sensor’s credibility estimation based on membership degrees.

4. Information sources topology

If the use of multiple sensors has been acknowledged to increase the capabili-
ties of fusion systems, the need for developing methods to integrate and combine
the pieces of information from these sensors becomes more and more challenging.
Indeed, the diversity of information provided by several types of sensors requires
special care when combining the different pieces of information. As introduced
in the previous section, dealing with redundant or complementary information
may involve different processing regarding the fusion process in general, and the
credibility estimation in particular.

4.1. Fusion topology

To adequately account for the similarity or dissimilarities between sensors, we
proposed in [7] a hybrid sensor fusion (HSF) topology depicted in Figure 2. In this
HSF topology4, groups of similar sensors are first built as a SSF (similar sensor
fusion) node in which pieces of information from similar sensors will be combined.
The combination results of the SSF nodes are further combined at a central DSF
(dissimilar sensor fusion) node. Such a topology allows some flexibility in the
selection of the combination rules to be used either at the different SSF nodes
or at the DSF node, as the rule can differ from one node to another one. Our
particular interest in this paper, is to have an estimation method of the credibility
of the sensors and nodes based on different choices of dissimilarity or conflict
measures.

4Note that an equivalent topology has been proposed in a parallel work in [1], for the evalu-
ation of the information extracted from reports written in natural language.
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Figure 2. Information sources topology.

4.2. Algorithm for credibility estimation

The algorithm for credibility estimation is depicted in the flowchart of Figure 3.

Step (1): At the Sensors-level, consider the credibilities of all Sensors (in the
interval [0, 1] or unknown). At the DSF-Level, we consider the credibilities
of all SSF nodes (in the interval [0, 1] or unknown).
Move FORWARD from the Sensors-level to the SSF-level.

Step (2): At each SSF node, compute the corroboration degrees Corr of the
sensors of the node, based on the BPAs obtained from each sensor (which
are not discounted by the credibilities of the sensors). The corroboration
degrees must be independent from the credibilities of the sensors, since
they only measure the compatibility between the measures of sensors.
Move BACKWARD from the SSF-level to the Sensors-level.

Step (3): Based on the credibilities of the sensors and their corroboration
degrees, compute a revisited credibility for all sensors, such that

Cre(Sk) =
1
2

[
Cre(Sk) + Corr(Sk)

]
.

If the credibilities of the senors are unknown, then the credibilities are set
to be equal to the corroboration degrees:

Cre(Sk) = Corr(Sk).

Move FORWARD from the Sensors-level to the SSF-level.
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Cre(Si) = 1, ∀i, 1 ≤ i ≤ Ns

Cre(SSFj) = 1, ∀j, 1 ≤ j ≤ NSSF

j = 1

Cre(SSFj)
>

τdsf

NO

YES

Corr(Si)
Already Computed ? YES

NO

Evaluate the membership degree of each BPA (mk)
at the SSFj node : MD(mk)

Revisit the credibility of sensors Si

associated to the SSFj node (∀Si → SSFj ) :
IfCorr(Si) > τssf thenCorr(Si) = 1− Corr(Si)
IfCorr(Si) ≤ τSSF thenCorr(Si) = 1

Evaluate the credibility of sensors Si

associated to the SSFj node (∀Si → SSFj ) :
Cre(Si) = Corr(Si)

Combine the BPAs from the credible sensors at the SSFj node
Mj =

⊕
mk→Si

Si→SSFj

Cre(Si)>τSSF

mk

SSF Level

j = NSSF ? NO j = j + 1

YES

Evaluate the membership degree of each BPAMj

associated to a SSF node (SSFJ ) : MD(Mj)
Set the credibility of SSF nodes:
Cre(SSFj) = MD(Mj)

DSF Level

∀j, 1 ≤ j ≤ NSSF
Cre(SSFj) > τdsf ?

NO

YES

Combine the BPAs from the credible sensors at theDSF node
M =

⊕
Mj

Figure 3. Flowchart for credibility estimation and combination.

Step (4): At each SSF node, combine the BPAs provided by the sensors of
the SSF node, either with a hard discounting (combine only the BPAs from
credible sensors, i.e. above a given threshold) or with a soft discounting
(use the credibility degrees to discount all the BPAs before combination).
Move FORWARD from the SSF-level to the DSF-level.
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Step (5): Compute the membership degrees MD associated to the SSF
nodes. Revisit the credibilities of the SSF nodes, using the membership
degrees:

Cre(SSFi) =
1
2

[
Cre(SSFi) + MD(SSFi)

]
.

If the initial credibilities of the SSF nodes are unknown, then the credibil-
ities of the SSF nodes are set to be equal to their membership degrees

Cre(SSFi) = MD(SSFi).

Compare the credibilities of the SSF nodes to a given threshold and iden-
tify the incompatible SSF nodes (if any).
For each incompatible SSF node, move BACKWARD to the SSF-level.

Step (6): Revisit the corroboration degrees of the sensors of the SSF node.
A corroborative sensor of an incompatible SSF node becomes un-corroborative:

Corr(Sk) = 1 − Corr(Sk)

and an un-corroborative sensor of an incompatible SSF node become cor-
roborative

Corr(Sk) = 1.

Move BACKWARD to the Sensors-level and go to Step 3.

Credibility revisited

One major drawback of the consensus-based approaches for credibility estima-
tion, is that a source may be discarded although it is the only correct one among
a set of sources. The hybrid topology proposed offers the way to revise a decision
(identify a sensor as non-credible) and reverse it through the process described at
Steps 3 and 6 of the algorithm above.

The solution proposed here in order to revisit the corroboration degrees of the
sensors based on the credibility of the SSF nodes is based on the assumption that
at each SSF node there are at most 3 sensors. Thorough investigations should be
conducted in order to develop a new algorithm taking into account groups of more
than 3 sensors at each SSF node.

Corroboration degrees for sensors

At a given time step, a SSF node collects all the BPAs received until then,
and computes for each BPA a membership degree. However, each sensor feeding
the SSF node had provided one or more BPAs, each of them having a different
membership degree. From the set of MD associated to each sensor, a corroboration
degree can be computed in order to measure the credibility of the sensor. Once
the credibility of a sensor has been computed, all the BPAs previously provided
by it can be discounted accordingly or even discarded from the future combination
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Table 7. Statistical features of sensors.

Node Attr. # Freq. Value Prob.
P (Sk) v P (v|Sk)

SSF1 Model S1 0.1 Honda 0.9
S2 0.05 Honda 0.7

SSF2 Color
S3 0.1 Red 0.9
S4 0.05 Red 0.9
S5 0.25 Blue 1

SSF3 Class S6 0.15 Sedan 0.9
S7 0.1 Random 0.25

SSF4 Country S8 0.05 France 0.8
S9 0.15 France 0.7

process, which allows to compute the BPA associated to the SSF node. At the DSF
node, to each SSF node has been associated one and only one BPA (at a given time
step - obtained from the combination at the SSF level). In order to evaluate the
credibility of the SSF nodes, a membership degree of each BPA can be computed.
Since there is only one BPA associated to each SSF node, no corroboration degree
is necessary.

5. Simulations

5.1. Settings

A set of 9 sensors described in Section 3.3 is used for this simulation. Table 7
shows the sensors and their associated SSF nodes, the frequency at which the
sensors are providing the measurements with the corresponding value, and their
associated probability. For example, Sensor S3 reports with a frequency of 10%
about the color of the observed object (P (S3)), and over 100 reports of S3, 90
say that the car is Red (P (Red|S3)). The BPAs are then built according to the
method described in Section 3.3.

We randomly generate a set of 200 BPAs following the specificities of Table 7.
Each sensor provides measurements at random time-stamps inside the interval
[1, 200]. We use the Hybrid Sensor Fusion topology and the algorithm of Figure
3 to combine the pieces of information and we set the initial credibility thresholds
for the SSF and DSF nodes to be τSSF = 0.75 and τDSF = 0.65 respectively. At
each node of the topology (SSF or DSF), we use either Dempster’s rule or the
RCR-L rule in order to combine the BPAs.

5.2. Results

Most of the sensors agree on the fact that the observed object is θ2. Sensor
S7 is completely unreliable since it provides random values and sensor S5 always
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Figure 4. Credibility of the SSF nodes.

provides the same erroneous piece of information. Since the frequencies of sensors
S6 and S7 are not so different and since sensor S6 provides pieces of information
in agreement (focused on a given value with a probability equal to 0.9) and S7

provides pieces of information in a complete random manner, the algorithm should
identify the sensor S7 as non-credible at the SSF node.

Figure 4 shows the credibility of each SSF node. First, the credibility of each
SSF node, computed as a compatibility measure (membership degree) between
nodes is presented. When the SSF2 node is identified as incompatible with the
rest of the nodes, the credibility of all its sensors is revisited in order to look for
compatibility at the DSF-level. Once the credibility of the sensors associated to
the SSF2 node is revisited, all the BPAs associated to the SSF2 node change, their
combination changes and thus, the compatibility of the SSF2 node with the other
SSF nodes changes too. Moreover, the compatibility of the other SSF nodes to
the group changes too.

Figure 5 shows the credibility of Sensors 4–6 during the entire combination
process. At each time step, the credibility of the sensor computed at the SSF
node and the revisited credibility of the sensor (after the compatibility of the SSF
nodes was processed at the DSF node) are both shown on the same graphic.

At the SSF2 node, Sensor S4 is identified as non-credible while Sensor S5 is
identified as credible. Meanwhile, when the SSF2 node is identified as non-credible
at the DSF node, the credibilities associated to all its sensors are revisited. And
thus, Sensor S4 becomes credible while Sensor S5 becomes non-credible. This
change produces also a change in all other SSF nodes, since they become more
credible than previously. Sensor S6 is identified as credible at the SSF3 node and
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Figure 5. Credibility of the Sensors.

remains credible since the SSF3 is detected to be credible and the credibility of its
sensors is not revisited.

We call “blind” combination process, the process by which the BPAs are com-
bined on the fly, without use of the HSF topology. Figure 6 compares the blind
combination process and the hybrid combination process using a hard decision
(only the BPAs from credible sources are combined). Both algorithms are used
with Dempster’s rule of combination and the RCR-L rule. The following parame-
ters are used:

• Deng et al.’s membership degree using the dBPA distance (at the SSF
nodes);

• Deng et al.’s membership degree using the conjunctive conflict (at the DSF
node);

• Corr1 corroboration degree;
• τssf = 0.75 and τdsf = 0.65.

The test-scenario provides pieces of information in agreement with the observed
object only about 55% of the time. Therefore, we expect an oscillating behavior
when the non-associative RCR-L rule is used in a blind combination process, since
it provides more credibility to the last pieces of information. We notice also that
in this case, the identification of singleton θ2 as the observed object cannot be
reached.

When comparing the hybrid topology used with Dempster’s rule of combina-
tion and the blind Dempster’s rule, the identification of singleton θ2 is realized
faster using the hybrid topology. When comparing the hybrid topology used with
the RCR-L combination rule and the blind RCR-L rule, an improvement of the
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Hard Decision).
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Figure 7. Hybrid Combination: Hard vs. Soft Decision.

identification of singleton θ2 is observed when using the hybrid topology. The os-
cillating values of the BetP(θ2) are attenuated. However, when comparing the
hybrid topology using Dempster’s rule of combination and the hybrid topology
using the RCR-L rule, the identification is faster and without any doubt, when
Dempster’s rule of combination is used.

Figure 7 shows the impact of using a soft decision (by discounting the BPAs
from non-credible sensors before the combination process) or a hard-decision (by
filtering them from the combination process). The following parameters are used:

• Deng et al.’s membership degree using the dBPA distance (at the SSF
nodes);

• Deng et al.’s membership degree using the conjunctive conflict (at the DSF
node);
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Figure 8. Comparison of different membership degrees.

• Corr1 corroboration degree;
• τssf = 0.75 and τdsf = 0.65.

We notice only a small difference between the hard and soft decision when using
Dempster’s rule. Meanwhile, when the RCR-L rule is used at both SSF and DSF
nodes with the hybrid topology, the values of BetP(θ2) are oscillating for both
hard or soft decisions. However, the hybrid combination using soft decision can be
seen somewhere between the blind combination and the hybrid combination with
hard decision.

Figure 8 shows the impact of using different membership degrees at the SSF/DSF-
levels on the pignistic probability of singleton θ2. The following parameters are
used:

• hybrid Combination (with Hard Decision): Dempster’s rule of combination
at all SSF and DSF nodes;

• Corr1 corroboration degree;
• τssf = 0.75 and τdsf = 0.65.

Using Deng et al.’s membership degree at both SSF and DSF-levels allows to
identify faster the singleton θ2 as the observed object. The modified method of
Xu et al. and Martin et al. method are providing similar results.

Figure 9 shows the impact of the corroboration degree on the pignistic proba-
bility of singleton θ2. The different parameters used for this test are the following:

• Deng et al.’s membership degree using the dBPA distance (at the SSF
nodes);

• Deng et al.’s membership degree using the conjunctive conflict (at the DSF
node);

• Hybrid Combination (with Hard Decision): Dempster’s rule of combina-
tion at each SSF and DSF nodes;

• τssf = 0.75 and τdsf = 0.65.
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Figure 9. Comparison for different corroboration degrees.

Corr1 allows faster identification of singleton θ2 than Corr2. Moreover Corr2

is unstable and can lead to incorrect identification (see time-steps between 25
and 40).

Figure 10 shows the impact of the SSF threshold on the combination process
when Martin et al.’s membership degree is used at both the SSF nodes and the
DSF nodes. The scenario test was generated using the following parameters:

• hybrid combination (with Hard Decision): Dempster’s rule of combination
at each SSF and DSF nodes;

• Martin et al.’s membership degree with Dempster’s rule of combination,
dBPA and λ = 4;

• Corr1 corroboration degree;
• τdsf = 0.65.

When we use a higher threshold at the SSF nodes when Martin et al.’s membership
degree is used, the identification of Singleton θ2 is slower. However, this should
not be interpreted as the more the thresholds are low, faster the identification
will be. In fact, the thresholds τssf and τdsf should be adjusted to each different
membership degree. If both thresholds are too high, the sensors and the SSF nodes
will be considered as non-credible and then the BPAs associated to them will be
discounted or discarded from the combination process. If the SSF threshold is too
low, even the non-credible sensors will be considered credible and then the hybrid
combination process will become close to the blind combination process. If τssf is
high and τdsf is low, the hybrid topology will favor the sensors from the SSF nodes
which are in agreement. Even if in the previous simulations all the SSF nodes have
the same threshold (τssf ), a specific threshold could be defined for each particular
SSF node.

From the previous tests we conclude that Deng et al.’s membership degree
along with Dempster’s rule of combination at both SSF and DSF nodes is the
most appropriate configuration for our example.
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Figure 10. Comparison for Martin et al.’s membership degree
when different threshold are used.

6. Conclusions

In this paper, we proposed a method of dynamic estimation of evidence dis-
counting rates based on the credibility of pieces of information. We proposed a
hybrid fusion topology in which the sensors are grouped according to the feature
they measure (similar and dissimilar sensors), allowing to select different kinds
of measure for estimating the corroboration degrees. We showed that the new
hybrid topology together with the credibility-based evidence discounting estima-
tion algorithm provide a faster identification of the observed object. We compared
Dempster’s rule of combination and RCR-L rule at both SSF and DSF levels in the
hybrid topology. We have also compared several membership degrees to be used
at both SSF and DSF nodes and several corroboration degrees to evaluate source
credibility. Soft and hard decisions have been used with this hybrid topology in or-
der to discount or discard the BPAs from non-credible sources. New combination
rules at the different nodes as well as new dissimilarity measures will be explored
in the future.
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