RAIRO-Oper. Res. 45 (2011) 1-16 RAIRO Operations Research
DOI: 10.1051/r0/2011100 WWW.rairo-ro.org

GREEDY ALGORITHMS FOR OPTIMAL COMPUTING
OF MATRIX CHAIN PRODUCTS INVOLVING SQUARE
DENSE AND TRIANGULAR MATRICES

FAouzI BEN CHARRADA!, SANA Ezouvaour!
AND ZAHER MAHJOUB!

Abstract. This paper addresses a combinatorial optimization prob-
lem (COP), namely a variant of the (standard) matrix chain product
(MCP) problem where the matrices are square and either dense (i.e.
full) or lower/upper triangular. Given a matrix chain of length n, we
first present a dynamic programming algorithm (DPA) adapted from
the well known standard algorithm and having the same O(n®) com-
plexity. We then design and analyse two optimal O(n) greedy algo-
rithms leading in general to different optimal solutions i.e. chain paren-
thesizations. Afterwards, we establish a comparison between these two
algorithms based on the parallel computing of the matrix chain product
through intra and inter-subchains coarse grain parallelism. Finally, an
experimental study illustrates the theoretical parallel performances of
the designed algorithms.

Keywords. Combinatorial optimization, dynamic programming, gree-
dy algorithm, matrix chain product, parallel computing.

Mathematics Subject Classification. 65K05, 90C27, 90C39,
90C59.

Received November 16, 2009. Accepted December 14, 2010.

1 University of Tunis El Manar, Faculty of Sciences of Tunis, Campus Universitaire 2092
Manar II, Tunis, Tunisia; f.charrada@gnet.tn; zwawi_sana@yahoo.fr;
zaher .mahjoub@fst.rnu.tn

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAT 2011

http://dx.doi.org/10.1051/ro/2011100
http://www.rairo-ro.org
http://www.edpsciences.org

2 F. BEN CHARRADA ET AL.

1. INTRODUCTION

Let A and B be two sparse square matrices of size p. It is well known that
the number of operations (including additions and multiplications), denoted NOP,
required to compute the product matrix C = AB and the structure of this latter
(i.e. distribution of its non zero elements) depend on both the densities (i.e.
ratios of non zero elements) and the structures of A and/or B [12,15,16]. If we
consider square dense (i.e. full) and lower/upper triangular matrices in which we
are interested in this paper, we can summarize as given in Table 1, the trivial
results as far as the structure of matrix C and the required NOP for computing
it are concerned. We precise that in the remainder, D will denote a dense matrix
and L (resp. U) will denote a lower (resp. an upper) triangular matrix.

Notice that when p is large, the above NOP formulae may be simplified by
keeping only cubic terms. From Table 1, we can make the following remarks.

e The product matrix C is an L (resp. a U) matrix only when both A and B
are L (resp. U) matrices, otherwise it is a D matrix. Furthermore, matrices
A and B play symmetric roles i.e. given the structures of A and B, the
structures of C = AB and C' = BA are identical as well as the required
NOP’s for computing C or C’.

e The NOP required by a DD (resp. an LL or a UU) product is the highest
(resp. lowest). More precisely, for large p, we have the following relations:

NOP.DD = 2*NOP_DU = 2*NOP_DL = 3*NOP_LU = 6*NOP_LL = 6*NOP_UU

Now, given n square matrices Aj,..., A, of size p, the variant of the ma-
trix chain product (MCP) problem we address here is a combinatorial optimiza-
tion problem (COP) consisting in optimally computing the product matrix A =
Ap... A, ... A,, where A; may be either dense or upper/lower triangular. Indeed,
the total number of operations required to compute A greatly depends on the
product sequence i.e. the order in which the matrices are multiplied. Assume
for instance that A; is dense and both As,..., A, are upper (or lower) trian-
gular. The Left-Right Parenthesization (LRP) i.e. (A1A43)As)...)A, requires
(n — 1)p3 + O(np?) operations whereas the (optimal) Right-Left Parenthesization
(RLP) i.e. Aq(...(An—2(A,_1A,) only requires ((n+1)/3)p>+ O(np?) operations
i.e. about 3 times less. Therefore, the point we address is to determine an optimal
parenthesization (OP) corresponding to the minimum number of operations to
compute A = A1 A, ... A,. The combinatorial property of our problem is due to
the fact that, for a chain of n matrices, we may exhibit an exponential number of
parenthesizations equal to the Catalan number which increases in (4" /n3/2) [3].

We recall that the (standard) well known MCP problem considers a chain in-
volving dense rectangular matrices. As far as this problem is concerned, an op-
timal O(n?) dynamic programming algorithm (DPA) due to Godbole, is known
since 1973 [7]. In 1984, Hu and Shing [9] proposed an optimal O(n logn) algorithm
based on polygon partitioning, a problem proved to be equivalent to the MCP one.
Particular instances that may be solved in O(n) time are discussed in [6]. O(n)

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 3

| | *) * | |)
— — y

FIGURE 1. Product of sparse square matrices.

TABLE 1. Structure of product matrix C = AB and required NOP.

B\A| D L U
D D D D
2p? p® +p? p® +p?
L D L D
P+ | p*/3+ Bp*+2p)/3 | 20°/3+ (3p° +p)/3
U D D U
p*+ 0% | 20°/3+ (3p* +p)/3 | p*/3+ (3p* +2p)/3

time algorithms for finding sub-OP’s are also known in the literature [2,8,14]. So
far, the case of sparse matrices has received, to our knowledge, little attention.
We may particularly cite [12] where the extension of the MCP problem to sparse
square matrices is briefly mentioned. For this purpose, the authors first introduced
a formula for the number of multiplications required to compute the product of two
sparse square matrices, namely dydap® [15], where d; and dy are the two matrices
densities and p their size, the density being the ratio of non zero elements. Before
going further, let us analyse the above formula which is basic for the remainder.
Consider for instance a chain of three sparse rectangular matrices A1, Ao, A3 whose
dimensions are denoted (p;—1,p;): i = 1, 2, 3. Assume that A; has n; non zeros,
thus d; = n;/(pi—1p:). If we want to determine the minimum number of operations
(including additions and multiplications) and an OP for computing A = A; A3 As,
we first have to study the product Aj2 = A;As. Here, two main points arise,
namely the determination of (i) the (minimum) number of operations to compute
Aj2 and (ii) the structure of Aj3 namely the distribution and number of its non
zeros, denoted nio, and its density dio = ni2/(pop2). In fact, (i) as well as (ii)
requires knowing the structures of both A; and As. Indeed, particular distribu-
tions of non zeros in a couple of very sparse matrices may lead to a dense product
matrix. To be convinced, assume for sake of simplicity, that both A; and A, are
square i.e. p; =p (i =0, 1, 2), and that the whole elements of A; (resp. A3) are
zeros except those of columns (resp. rows) 1 and p (see Fig. 1). Thus we have
ny = ng = 2p, d = do = 2/p and didap® = 4p. Tt is easy to remark that Ao is
dense and 2p? multiplications (or additions) are required to compute it. Notice,
however, that As; = Az A; has four non zero elements and only 4p multiplications
(or additions) are required to compute it.

Hence, stating according to [12,15] that djdsp® = 4p multiplications (and the
same number of additions) are required here for computing A5 is wrong (though

4 F. BEN CHARRADA ET AL.

true for computing As1). Obviously, the formula is not always true and may lead
to a non OP when solving the considered MCP problem.

Now, going back to the case we address, consider for example a chain of three
square matrices Ay, Ag, A3 of size p where A; (resp. As) is an L matrix (resp. a
U matrix) and Aj is a D matrix. According to the above formula, the Left-Right
Parenthesization i.e. (A;Az)As would be wrongly considered as an OP whereas
the Right-Left one i.e. A1(A2Aj3) is the true OP. This is due to the fact that A; Ay
is a dense matrix, thus its density is equal to 1 and not 1/4 (=d1ds).

To conclude, we think that the sparse MCP problem cannot be correctly ad-
dressed without solving the two-point problem mentioned above. For this rea-
son, we restrict our study here to the case of square dense and triangular matri-
ces for which the associated two-point problem is trivial as previously seen (see
Tab. 1). Studying this MCP variant, denoted SDT-MCP, is obviously easier than
the general sparse MCP problem where randomly structured sparse matrices are
considered.

The remainder of the paper is organized as follows. In Section 2 we present an
optimal dynamic programming algorithm (DPA) of O(n?®) complexity. Section 3
is devoted first to the description of two optimal O(n) greedy algorithms, leading
in general to different optimal solutions namely chain parenthesizations. We then
present a comparative study between the two algorithms whose aim is to choose
the more suitable solution for computing in parallel the matrix chain product
through intra and inter-subchains parallelism. Then follows an experimental study
illustrating the theoretical coarse grain parallel performances of the two greedy
algorithms. We finally conclude our work in Section 4 and detail some perspectives.

2. THE DYNAMIC PROGRAMMING ALGORITHM (DPA)

We first recall the well known optimization formula for the standard MCP prob-
lem. Consider a chain of n matrices Ay, Ag, ..., A, where (pi—1, p;), i =1...n,
are the dimensions of A;. Let A;; = A;A;11...A; and m(i, j) the minimum num-
ber of operations, denoted MNO, to compute A;;. We have the following [3,7,9]:

min(i, j) = Z_<Ikn<i§_171(m(i, k) +m(k+1,5) + f(pi—1, Pk, Dj)) (2.1)

where m(i, k) (resp. m(k+1, j)) is the minimum number of operations to compute
Aik = AiAi-i-l .. .Ak (resp. Ak+17j = Ak+1Ak+2 ce AJ) and f(pi—hpk;pj) is the
number of operations required to compute A;; = A;pAg41,5. The classical opti-
mization formula restricts operations to only multiplications i.e. f(pi—1,px,p;) =
pi—1pkp; Whereas the total number involving both multiplications and additions is
2pi—1pip;. We prefer using, for sake of consistency, the latter expression as given
for square matrices in Table 1.

From (2.1), it is easy to derive the optimization formula when the n matrices
are square of size p and either D, L or U. For this purpose, let s;; be the structure

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 5

of Aj, (i.e. either D, L or U), sg41,; the structure of Ag41 ; and s, ; the structure
of A;j. Hence, we get the following:

min(i, j) = i<rlgl<i§1_1(m(i, k) +m(k+1,75) 4+ c(Siks Skt1,5))- (2.2)

Here, c(sik, Sk+1,5) is the number of operations required for computing A;; =
AiAgi1,j (see Tab. 1).

Notice that the structure of matrix A;;, denoted s; ; which depends on both
sit and Si41,; (see Tab. 1), has to be saved for the remainder. Thus, the derived
DPA may be formally written as follows.

DOI=2n / 1% loop, 1 is the subchain length/
DOi=1,n—1+1 /2% loop, iis the number of subchains of length 1/
j=i+1-1

/3% loop: k=i,5—1/
min(i, j) = min (m(i, k) +m(k +1,5) + c(sik, Sk+1,5))
i<k<j—1
save the “cut” index k where the minimum is reached
save the structure s; ; of the product matrix A;;
ENDDO
ENDDO

As the DPA involves three nested loops, it obviously has an O(n?) complexity.
We will see below that better algorithms may de designed.

Remark. Is it possible to derive, as done by Hu and Shing for the standard MCP
problem [8,9], an O(nlogn) algorithm based on polygon partitioning? The answer
is in fact negative as proven below. As a matter of fact, Hu and Shing proved the
following lemma resulting from the equivalence between the MCP and the polygon
partitioning (PP) problems.

Lemma_HS. The minimum numbers of operations to evaluate the (n+1) follow-
ing matrix chain products are identical: A1As... Ap_2Ap_1A4n, App1A1... Ap_o
Ap_1,...,AsAs ... Ay Any1 where A; has dimensions (p;—1,pi): i =1...n+1 and

Pn+1 = Po-
In other words, let So = pg,p1...,pn be a sequence of n+1 positive integers
and S1,...,S5, be the n sequences deduced from Sy par cyclic permutations. The

minimum numbers of operations to compute the matrix chain products whose
dimensions correspond to any sequence S; (i = 0...n) are identical.

Applied to our SDT-MCP problem of a chain involving square dense and trian-
gular matrices, the above lemma reduces to the following. “The minimum num-
bers of operations to evaluate the n following matrix chain products are identi-
cal: A1A2 ce An—QAn—lAn; AnAl “ee An—2An—17 ce ,A2A3 ce AnAl where A,L' is a
square den-se or lower /upper triangular matrix”.

It is easy to remark that this lemma is in general no longer true. Indeed, consider
for instance a chain of three matrices Ay, Ay, Az of size p where A; and Az are L

6 F. BEN CHARRADA ET AL.

matrices and Ay is a U one. An OP for computing A; As A3 = LUL is (41 A42)A3
(or A;(A243)) and the MNO is (5/3)p? + O(p?), whereas the (unique) OP for
computing A3A;As = LLU is (A34;)A; and the MNO is p® + O(p?). Notice,
however, that the (unique) OP for computing As A3 A; = ULL is As(AsA;) and
the MNO is p® + O(p?) i.e. the same as for A3A4; Ay = LLU.

As lemma_HS does no longer hold, a direct consequence is that the SDT-MCP
and the Polygon Partitioning problems are not equivalent. Hence, an O(nlogn)
algorithm based on polygon partitioning cannot be derived for the SDT-MCP
problem.

3. OPTIMAL GREEDY ALGORITHMS

3.1. FIRST ALGORITHM DESCRIPTION

A two-fold idea is behind the (first) greedy algorithm (GA) we designed, the
rationale being the choice of the more adequate couple of matrices to first process.
It consists in first combining similar matrices (D with D, L with L, U with U).
This permits to obtain a so called compressed chain. This latter is then processed
in such a way that avoids, whenever it is possible, increasing the number of D
matrices (a new D matrix is created when combining an L one with a U one, see
Tab. 1). Consider for instance a DLU chain. It is obvious that an OP is the Left-
Right Parenthesization (LRP) i.e. (DL)U and the MNO is 2p3+O(p?), whereas the
Right-Left Parenthesization (RLP) i.e. D(LU) creates a new D matrix and costs
(8/3)p>+0(p?). However, if we consider an LUL chain, the (LU)L parenthesization
as well as the L(UL) one will unavoidably create a new D matrix. We detail below
the greedy algorithm (GA) wich involves two phases. An alternative algorithm
will be presented afterwards.

i) Phase 1: Compression phase Compute the product of every subchain
involving matrices of same structure (D with D, L with L, U with U),
according to either the LRP (—) or the RLP («—). Let C. be the ob-
tained compressed chain. Remark that in C. any two successive matrices
are necessarily of different structures.

ii) Phase 2: Two cases have to be considered.

e Case 1. C. involves no D matrix: compute C. according to either the
LRP (—) or the RLP (+—). Remark here that only one new D
matrix will be created.

e Case 2. C. involves at least one D matrix. Clearly C. may be written
as follows:

C. = C,DC, (3.1)

where C; involves no D matrix but Co may involve. Three subcases
may be considered here.

— C1 = ¢: compute DCy according to the LRP (—).

— Co = ¢: compute C;D according to the RLP («—).

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 7

— C1 # ¢ and Cy # ¢: compute C1D according to the RLP («—).
Then, the result being a D matrix, compute DCy according
to the LRP (—). Another way consists in first computing
DC, according to the LRP. Then, the result being a D matrix,
compute C;D according to the RLP.

Notice that in Phase 1, combining successive D matrices is not necessary and may
be postponed to Phase 2 (see remark on Ex. 3.1 given below). Notice in addition
that Phase 1 vanishes when the original chain is already compressed i.e. is such
that any two successive matrices are of different structures.

3.2. OPTIMALITY OF THE GREEDY ALGORITHM (GA)

As already precised, the main ideas that are behind the GA are (i) performing
products of matrices of similar structures, thus requiring the lowest costs if we
restrict to L and U matrices (see remarks on Tab. 1); and (ii) avoiding the creation
of a new D matrix (if possible). We precise that for sake of notation simplicity,
we will use below the simplified NOP formulae taken from Table 1 (i.e. restricted
to cubic terms). The optimality proof is based on the following two lemmas.

Lemma 3.1. In an OP, successive L matrices (resp. U matrices) are necessarily
combined together.

Proof. Assume, without loss of generality, that the chain to process may be writ-
ten as follows: C = C;LLCy where either C; or C; may be empty. The negation
of Lemma 3.1 states that an OP for C is necessarily one among the three follow-
ing: ((C1L)L)Cs, C1(L(LC2)) and (C1L)(LC2). We may assume now again, without
loss of generality, that Cy is empty and C; reduces to one matrix. Hence, two cases
may be considered.

e Case 1. C; is a D matrix thus C = DLL and (DL)L costs 2p* whereas
D(LL) only costs (4/3)p>.
e Case 2. C; is a U matrix thus C = ULL and (UL)L costs (5/3)p® whereas
U(LL) only costs p®.
Therefore the negation of Lemma 3.1 leads to a non OP. It is easy to notice that
assuming C; empty and Co non empty leads to the same result. O

Lemma 3.2. If the chain C to process is such that any two successive matrices
are of different structures, then an OP consists in proceeding as follows.

e (i) If C involves no D matrixz, then the RLP («—) as well as the LRP
(—) are optimal.

o (i1) If C involves at least one D matriz, then an OP consists in never
combining an L matriz with a U one but in combining a D matriz with
either an L, a U or a D matriz.

Proof. Let us first notice that cases (i) and (ii) are closely related. Indeed, in
(i), any OP will necessarily begin by combining a U matrix with an L one, thus
creating a D matrix. The new chain is then processed according to (ii). Let us

8 F. BEN CHARRADA ET AL.

now assume, without loss of generality, that C = C;LUCy where either C; or Cs
may be empty. The negation of (ii) states that an OP for C is necessarily either
(C1(LU))Cy or C1((LU)Cz). Here, we may also assume, without loss of generality,
that Cy is empty and C; reduces to one matrix, namely a D one. Thus only one
case has to be considered i.e. C = D(LU) which costs (8/3)p? whereas (DL)U only
costs 2p®. Hence, the negation of Lemma 3.2 leads to a non OP. Clearly, assuming
C1 = ¢ and Cy # ¢ leads to the same result. O

3.3. COMPLEXITY ANALYSIS

e Phase 1 may be achieved in one or two steps where each step requires scan-
ning the original chain. In the first step, the subchains involving matrices
of same structure are detected. The second step consists in extracting
the subchains and constructing the compressed chain. Remark that the
second step is needless if the original chain is already compressed, thus
may be merged with the first step if we choose to process the subchains as
soon as they are detected. In all cases, obviously a linear time i.e. O(n)
is required.

e Phase 2 consists, once the first occurence of a D matrix is detected, in
scanning and computing the left subchain, then processing the right one.
Clearly, this may be done in linear time i.e. O(n). Therefore GA requires
an O(n) time.

Remark. The high O(n?) complexity of the Dynamic Programming algorithm
seen in Section 2 is due to the fact that it constructs an OP not only for the input
n-chain but for any sub-chain of length 2...n —1 as well (namely n — k+ 1 chains
of length k, for k = 2...n) i.e. O(n?) OP’s. In the opposite side, the Greedy
algorithm constructs only one OP i.e. for only the n-chain. Constructing as many
OP’s as does the DPA would need in this case an O(n?) time.

Tlustrative examples are given below (for sake of simplicity, the MNO is re-
stricted to cubic terms).

Example 3.1. n = 10, C = LLDDDLUULD

e Phase 1: LLDDDLUULD = (LL)((DD)D)L(UU)LD = C.=LDLULD =
C. = C1DCa.

e Phase 2: LDLULD = ((((LD)L)U)L)D or L((((DL)U)L)D).

e OP’s: (((((LL)((DD)D))L)(UU))L)D, (LL)((((((DD)D)L)(UU))L)D);
MNO = (10 +2/3)p®.

e We have to add that GA generates the same OP when using either the
complete or the simplified NOP formulae (i.e. restricted to cubic terms)
as given in Table 1 (see Sect. 1).

e As to the Dynamic Programming algorithm (DPA, see Sect. 2), the gener-
ated OP in general depends on the formulae used for NOP. However, the
interesting feature is that the OP generated with one is also an OP for the

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 9

other. For the above chain, the OP generated by the complete (resp. sim-
plified) formulae is “(((((((LL)D)D)D)L)(UU))L)D” (resp. “(((((LL)(DD))
D)(UU))L)D”). Notice that in the first OP, the DPA first combines L
matrices together as well as U matrices, but not D matrices as their com-
bination is not necessary for optimality (see remark in Sect. 3.1 on Phase
1 of algorithm GA).

Example 3.2. n =10, C = DLLUDDULLD

e Phase 1: DLLUDDULLD = D(LL)U(DD)U(LL)D = C,=DLUDULD =
C. = DCy: C1=0.

e Phase 2: DLUDULD = (((((DL)U)D)U)L)D or D(L(U(D(U(LD)))))

* OP’s: (((D(LL)U)(DD)U) (L))D D((LL)(U((DD)(U((LL)D)))));

MNO = (10+2/3)p?
o Alternative OP’s: ((((((D(LL))U)D)D)U)(LL))D,
L)D))))))-

D((LL)(U(DD(U((L
e OP generated by the DPA (complete or simplified NOP formulae):
((((((DLL)U)D)D)U)(LL))D.

3.4. ALTERNATIVE GREEDY ALGORITHM (AGA)

We now present an alternative greedy algorithm (AGA) which also involves two
phases, the first being a compression one too. It may be described as follows.

(i) Phase 1. Compression phase (as previously decribed in Sect. 3.1) The
compressed chain C. may be written as follows:

C.=CDCD...C:D...Cr_1DC, (3.2)

where each subchain C;, i = 1...r, involves no D matrix i.e. only L and/or U
matrices.

(ii) Phase 2. Two cases have to be considered

o C. involves no D matrix (i.e. r =1): the LRP (—) as well as well as the
RLP («—) are optimal.
e (. involves at least one D matrix. Here four subcases may be considered.

(a) C1 = C, = ¢ i.e. C. = DCDCs ...DC,—1D: compute (DC;), i =
2...r — 1, according to the LRP (—). Then compute the resulting
chain involving (r — 1) D matrices according to either the LRP or the
RLP («—). Another symmetric alternative consists in first computing
(C;D), i =2...r — 1, according to the RLP, then computing the resulting
chain of (r — 1) D matrices according to either the LRP or the RLP.

(b) C1 = ¢ and C, # ¢ i.e. C. = DC3DCs... DC,: compute (DC;), i =
2...r, according to the LRP. Then compute the resulting chain involving
(r — 1) D matrices according to either the LRP or the RLP.

(¢)C1 #£¢pand Cr = ¢ ice. C. =C1DC3DCs ... DC,r—1D: compute (C;D),
t =1...r — 1, according to the RLP. Then compute the resulting chain
involving (r) D matrices according to either the LRP or the RLP.

10 F. BEN CHARRADA ET AL.

(d) C1 # ¢ and C, # ¢ i.e. C. = C1DCD...C—1DC,: compute (C;D),
t =1...r — 1, according to the RLP. Then compute the resulting chain
constituted by (r — 1) D matrices followed by C, according to the LRP.
Another alternative consists in computing (DC;), ¢ = 2...r, according
to the LRP, then computing the resulting chain involving C; followed by
(r — 1) D matrices according to the RLP.

Remark.

e Optimality: the optimality proof of AGA may be easily deduced from the
proof already seen for GA. Just remark that from expression (4):
we get C. =C1D...C,—1DC, = C. = C1D(C3D...C,_1DC,.) = C1DCo1 where
C21 = (CQD...CT71DCT); C21 = CQD(C3DCT,1DCT) = CQDCQQ where
Co2 = (C3D...C,—1DC,); etc. These successive transformations leading to
a series of expressions similar to (3.1) permit to see that we can follow a
similar proof argument as done for GA. We think it is useless to detail it
again.

e Complexity: Phase 1 requires as in AG an O(n) time. As to Phase 2,
it may be designed in two steps. The first one consists in detecting the
D matrices and the corresponding C; subchains. The second consists in
processing each subchain then combining the whole. This obviously may
be done in O(n) time. Therefore AGA requires as GA an O(n) time.

Ilustrative examples are presented below (the MNO is restricted to cubic terms).

Example 3.3 (Example 3.1 revisited). n = 10, C = LLDDDLUULD

e Phase 1: LLDDDLUULD = (LL)((DD)D)L(UU)LD = C. = LDLULD =
CC = C1DC2DS C3 = (;5

e Phase 2: LDLULD = (LD)(L(U(LD))).

e OP: ((LL)((DD)D))(L((UU)(LD))); MNO = (10+2/3)p°.

e Alternative OP’s: (((LL)(DD))(DL))((UU)(LD)),
((LL)(DD))((DL)((UU)(LD))).

Example 3.4 (Example 3.2 revisited). n =10, C = DLLUDDULLD

e Phase 1: DLLUDDULLD = D(LL)U(DD)U(LL)D = C.=DLUDULD =
CC = DCQDC3D Cl = gf)

e Phase 2: DLUDULD = (((DL)U)((DU)L))D or D((L(UD))(U(LD))).

e OP's: ((D(LL))U)((((DD)U)(LL))D), (D(LL))((U(DD))(U((LL)D)));
MNO = (10+2/3)p®.

e Alternative OP’s: ((D(LL))(UD))((DU)((LL)D)),
((D(LL))U)((DD)(U(LL)D)).

3.5. COMPARING THE TWO GREEDY ALGORITHMS AND PARALLELISM

Although the two greedy algorithms GA and AGA are both optimal, we can
however notice from the examples seen above, that the constructed OP’s are in
general different. We may ask about the interest of the second algorithm AGA
which seems more elaborate and less direct (in its second phase). In fact, it is easy

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 11

to remark that this latter is more adequate for computing the product matrix in
parallel as detailed in the following.

e Phase 1 (common to the two algorithms). Obviously, the subchains in-
volving matrices of same structure may be processed independently i.e.
in parallel. In addition to this inter-subchains parallelism (provided
that there are at least two subchains), each subchain involving at least
four matrices may be processed in parallel by using the so-called asso-
ciative fan-in algorithm [11]. This algorithm adopts a divide-and-conquer
strategy consisting in processing the matrices of the subchain couple by
couple. Thus intra-subchain parallelism may also be achieved. We
precise that computing in parallel a (sub)chain constituted by m matrices
of same structure) may be achieved in [log, m] steps instead of m — 1
when done serially [4].

e Phase 2. In the first algorithm GA, the compressed chain written under the
form C. = C1DC; is processed serially and cannot be processed in parallel
i.e. C1D is first computed according to the RLP («—), then the resulting
D matrix is combined with Cs according to the LRP (—). However,
in the second algorithm AGA, C. is written in a more suitable form for
parallel computing i.e. C. = C1DCsD...C,._1DC,. If we analyse the last
case (d) i.e. where C; # ¢ and C, # ¢ (see Sect. 3.4), obviously the
(r — 1) subchains C1D,..., C,—_1D may be processed independently i.e. in
parallel when r» > 3. Thus we have inter-subchains parallelism. Notice
that here each subchain is and must be processed serially according to
the RLP («—). On the other hand, processing these (r — 1) subchains
leads to a chain of (r — 1) D matrices that may be processed in parallel
when r > 3, by using the above mentioned associative fan-in algorithm.
Thus, we have intra-subchain parallelism. Remark that as far as the three
other cases (a), (b) and (c) of Phase 2 in AGA are concerned, a similar
argumentation permits to easily exhibit intra-subchain parallelism as well
as inter-subchains parallelism.

Let us add that an OP may be represented by a binary tree (BT) where each
node corresponds to the product of two matrices and is weighted by the number of
operations (NOP) required by this product [12]. If we adopt a level representation
of this BT [4] such that the root (corresponding to the final matrix product) is
at the bottom, we may define (i) the height (or depth) h which corresponds to
the number of levels, and (i) the width w which corresponds to the maximum
number of nodes per level. It is known that, in general, the larger the width and
the smaller the height, the higher the parallelism [4,13] as the nodes of each level
may be processed in parallel. Therefore, analysing the structures of the BT’s
representing the different optimal parenthesizations is important and permits to
extract the inherent parallelism.

On the other hand, given a BT, it is also known [4,13] that if we dispose of an
unlimited number of identical processors, the optimal (i.e. minimal) parallel time
to execute the BT tasks (corresponding to the nodes), i.e. compute the associated

12 F. BEN CHARRADA ET AL.

product matrix, is equal to the cost of a critical path (CCP) of the BT. We precise
that a critical path in a weighted graph is a path whose cost is maximal, the cost
being the sum of the weights of its nodes. It is also known [4] that w processors
(w being the width of the BT) are sufficient to execute the BT tasks in optimal
time.

An illustrative example is presented below (MNO is given according to the
simplified formulae).

Example 3.5. n =16, C = ULLDDDLUDUUUUDLD

e Phase 1: ULLDDDLUDUUUUDLD
= U(LL)((DD)D)LUD((UU)(UU))DLD = C. = ULDLUDUDLD
Both intra-chain parallelism and inter-chains parallelism may be achieved
i.e. LL // DD // UU // UU.
e Phase 2 of GA: C. = C;DC; = ULDLUDUDLD
~ ((((U(LD))L)U)D)U)D)L)D
No intra-chain parallelism nor inter-chains parallelism.
e OP: (((((((U((LL)((DD)D)))L)((UU)(UU)))D)U)D)L)D;
MNO = (17 +1/3)p?
For the associated binary tree, we have h = 11 and w = 4. The cost of a
critical path (CCP) is equal to (16+1/3)p3.
e Phase 2 of AGA: C. = C;DC:DC3DC4D = ULDLUDUDLD
= ((U(LD))(L(UD)))((UD)(LD))
Inter-chains parallelism may be achieved i.e. LD // UD // UD //LD...
« OP: ((U((LL)((DD)D)))(L(UD)))((((UU)(UU))D)(LD));
MNO = (17 +1/3)p?.

For the associated binary tree, we have h = w = 6 and CCP = 9p? i.e. parallel
AGA is (16+1/3)/9 = 1.81 faster than parallel GA. Thus AGA leads to a higher
parallelism. The two binary trees are depicted in Figure 2 (dotted arcs correspond
to node entries and do not belong to the graph).

We have to mention that the above described parallelism may be called coarse-
grain parallelism (CGP) [10] where the grain size of computation corresponds to
the cost (amount of computation) of one matrix product i.e. the weight of a node
of the BT.

A higher parallelism may be obtained by using fine-grain parallelism
(FGP) [10] where the grain size may be the cost of computing either a column
block, a row block or a submatrix of each product matrix. Such procedure con-
sists in first splitting each node of the BT into a set of independent sub-nodes (i.e.
arc-free set) where the sub-nodes are of equal cost (in order to achieve load balanc-
ing) and may be processed independently i.e. in parallel. Notice that the number
of sub-nodes per level, induced by the grain size, may be fitted to the number
of available processors. However, the main drawback of FGP is that it generally
induces an overhead, particularly due to inter-processor communication delays [5].
Remark that sometimes fine-grain parallelism may be the unique possible choice.
Indeed, no coarse-grain parallelism can be exhibited if the width w of the binary
tree (BT) is equal to 1. In this case, the height h of the latter is equal to n —1 i.e.

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 13

h=11, w=4, CCP={16+L/3)p’ h=w=6, CCP=0p°
FIGURE 2. Binary trees and Parallelism in GA and AGA.

the BT is a ‘chain’ structured graph. Thus, the only alternative consists in using
fine-grain parallelism.
An illustrative example is given below.

Example 3.6. n =10, C = DLLLULULUL
e Phase 1: DLLLULULUL = D(LLL)ULULUL = C.=DLULULUL=DCj:
Ci=2¢
No intra-chain parallelism nor inter-chains parallelism.
e Phase 2: (identical in both AG and AGA):
C. =DLULULUL = (((((DL)U)L)U)L)U)L
No intra-chain parallelism nor inter-chains parallelism.
e OP: (((((D((LL)L))U)L)U)L)U)L; MNO = (7+2/3)p3.
The associated binary tree is a chain structured graph where h = 9 and w = 1.
Therefore no coarse-grain parallelism may be extracted.

3.6. EXPERIMENTATIONS

A series of experimentations (see Tab. 2 below) were achieved and permit to
illustrate the interest of AGA when compared with GA as far as the parallel com-
puting of the chain product is concerned. For sake of simplicity, both MNO (mini-
mal number of operations) and CCP (cost of a critical path, denoted CCP_GA for
algorithm GA and CCP_AGA for algorithm AGA, are given in terms of p? and
according to the simplified formulae (see Tab. 1).

On the other hand, in order to deepen our comparative performance analysis,
we give in addition to MNO, h (height of the binary tree), w (its width), CCP_GA,
CCP_AGA, the following speed-ups S; = MNO/CCP_GA, Sz = MNO/CCP_AGA
and S12 = CCP_GA/CCP_AGA. We precise that the processed chains were ran-
domly generated.

14 F. BEN CHARRADA ET AL.

TABLE 2. Structures of the BT’s and parallel performances of GA

and AGA.
GA AGA
n MNO h w CCP Sl h w CCP Sg 512
10| 9+2/3 713 9 1.07) 5 | 4 7 1.38 | 1.29
15 17 12| 3 | 1541/3 111 || 8 | 5 11 1.50 | 1.35
20| 26+2/3 | 13| 6 18 148 7 | 8 12 2.22 | 1.50
25| 3442/3 | 16| 5 24 144|110 | 6 18 1.93 | 1.33
30| 31+2/3 | 19| 10 23 1.36 || 10 | 12 14 2.24] 1.64
35| 3541/3 | 21| 7 | 2441/3|1.45| 15| 9 18 1.96 | 1.35
40 48 281 9 36 1.33] 11 | 13 18 2.67 | 2.00
45 48 29 1 12 38 1.26 || 12 | 16 21 2.29 | 1.81
50 | 604+1/3 | 36| 9 | 474+2/3 | 1.27 || 19 | 18 | 30+2/3 | 1.97 | 1.55
60 | 77+2/3 |43 | 14 59 132 18 | 21 34 2.28 | 1.74
65| 864+2/3 | 44|13 60 1.44 || 21 | 21 | 36+2/3 | 2.39 | 1.65
70 84 43 | 18 o7 1471 23| 23 37 2.27 | 1.54
75 86 421 20 55 1.56 || 20 | 24 33 2.61 | 1.67
80 | 102+2/3 | 55 | 15 73 1.41 || 22| 23 38 2.70 | 1.92
85 105 60 | 15 85 1.24 || 29 | 27 54 1.94 | 1.57
90 | 110+1/3 | 59 | 25 T 1.43 1 22 | 30 41 2.69 | 1.88
95 | 104+2/3 |62 | 20 79 1.3211 19 | 26 36 291|219

The analysis of Table 2 leads to the following remarks.

e The height (resp. width) of the binary tree (BT) corresponding to the
OP generated by AGA is always lower (resp. larger) than the height
(resp. width) of the BT associated to the OP generated by GA. Hence,
AGA exhibits a higher parallelism.

e The parallel speed-up of GA (S}) is in the range [1.07, 1.56].

e The parallel speed-up of AGA (S2) is in the range [1.38, 2.91].

e Parallel AGA is always faster (sometimes more than twice) than parallel
GA and the inter-algorithms speed-up Si2 is in the range [1.29, 2.19]. This
confirms the first point seen above.

Hence, AGA outperforms GA i.e. it is more suitable for parallel computing.

4. CONCLUSION

In this paper we studied a specific variant of the matrix chain product problem
where the chain involves square dense and lower/upper triangular matrices. We
designed, after adapting a Dynamic Programming algorithm of cubic complexity,
two optimal greedy algorithms of linear complexity. A comparison between the
two latter who generally permit to derive different optimal chain parenthesizations
(OP’s), raised the interest of computing the matrix chain product in parallel for
which the second greedy algorithm more efficient. This leads us to precise some

OPTIMAL ALGORITHMS FOR VARIANTS OF THE MCP PROBLEM 15

attracting perspectives we intend to study in the future. We may particularly cite
the following points.

e Given an OP and adopting a coarse grain parallelism, determine (i) the
minimum number of processors to compute the matrix chain product in
minimum parallel time i.e. equal to the cost of a critical path in the binary
tree (a hard problem [4,13]) and (ii) design an efficient scheduling when a
given number of processors is available.

e Given an OP and adopting a fine grain parallelism (particularly when no
coarse grain parallelism may be exhibited), choose an adequate grain size
fitted to the number of available processors and design an efficient paral-
lel algorithm achieving a good load balancing and where inter-processor
communication delays overhead is reduced.

e Achieve an experimental study on a target parallel computer.

Acknowledgements. Special thanks are addressed to Dr. A.R. Mahjoub and Dr. H. Hasni
for their valuable remarks.

REFERENCES

[1] A.K. Chandra, Computing matriz products in near-optimal time. IBM Research Report,

2

3

[15

[16

]
]

]

RC 5625 (1975).

F.Y. Chin, An O(n) algorithm for determining a near-optimal computation order of matrix
chain products. Commun. ACM 21 (1978) 544-549.

T.H. Cormen, C.E. Leicerson, R.L. Rivest and C. Stein, Introduction a I’Algorithmique.
Dunod (2002).

M. Cosnard and D. Trystram, Algorithmes et Architectures Paralléles. InterEditions (1993).
H. El-Rewini and M. Abd-El-Bar, Advanced Computer Architecture and Parallel Processing.
Wiley (2005).

S. Ezouaoui, F. Ben Charrada and Z. Mahjoub, O(n) instances of the matrix chain product
problem solved in linear time, in Proc. of ROADEF’09, Nancy, France (2009).

S.S. Godbole, An efficient computation of matrix chain products. IEEE Trans. Comput.
C-22 (1973) 864-866.

T.C. Hu and M.T. Shing, Computation of matrix chain products. Part I. STAM J. Comput.
11 (1982) 362-373.

T.C. Hu and M.T. Shing, Computation of matrix chain products. Part II. STAM J. Comput.
13 (1984) 229-251.

V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing —
Design and Analysis of Algorithms. The Benjamin/Cummings Pub. Co. (1994).

S. Lakshmivarahan and S.K. Dhall, Analysis and Design of Parallel Algorithms — Arithmetic
and Matriz problems. Mc Graw Hill (1990).

H. Lee, J. Kim, S.J. Hong and S. Lee, Processor allocation and task scheduling of matrix
chain products on parallel systems. IEEE Trans. Parallel Distrib. Syst. 14 (2003) 3-14.

Z. Mahjoub and F. Karoui-Sahtout, Maximal and optimal degrees of parallelism for a parallel
algorithm, in Proc. of Transputers’94, 10S Press (1994) 220-233.

N. Santoro, Chain multiplication of matrices of approximately or exactly the same size.
Commun. ACM 27 (1984) 152-156.

A. Schoor, Fast algorithms for sparse matrix multiplication. Inform. Process. Lett. 15 (1982)
87-89.

J. Takche, Complexities of special matrix multiplication problems. Comput. Math. Appl. 12
(1988) 977-989.

	Introduction
	The Dynamic Programming Algorithm (DPA)
	Optimal greedy algorithms
	First algorithm description
	Optimality of the Greedy Algorithm (GA)
	Complexity analysis
	Alternative Greedy Algorithm (AGA)
	Comparing the two greedy algorithms and parallelism
	Experimentations

	Conclusion
	References

