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SEMIDEFINITE PROGRAMMING BASED
ALGORITHMS FOR THE SPARSEST CUT PROBLEM ∗

Luis A.A. Meira
1

and Flávio K. Miyazawa
2

Abstract. In this paper we analyze a known relaxation for the Spars-
est Cut problem based on positive semidefinite constraints, and we
present a branch and bound algorithm and heuristics based on this re-
laxation. The relaxed formulation and the algorithms were tested on
small and moderate sized instances. It leads to values very close to
the optimum solution values. The exact algorithm could obtain solu-
tions for small and moderate sized instances, and the best heuristics
obtained optimum or near optimum solutions for all tested instances.
The semidefinite relaxation gives a lower bound C

W
and each heuristic

produces a cut S with a ratio cS
wS

, where either cS is at most a factor of

C or wS is at least a factor of W . We solved the semidefinite relaxation
using a semi-infinite cut generation with a commercial linear program-
ming package adapted to the sparsest cut problem. We showed that
the proposed strategy leads to a better performance compared to the
use of a known semidefinite programming solver.
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1. Introduction

Since the publication of the approximation algorithm for the Max-Cut problem
by Goemans and Williamson [8], the use of semidefinite programming has increased
and it turns out to be an important technique to obtain good relaxations and
algorithms for combinatorial optimization problems [8,9,21].
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The Sparsest Cut problem has applications in image segmentation [19], the
metric labeling problem [3], and a natural application in graph conductance. It
is a known NP-hard problem. We analyze the relaxation of the Sparsest Cut
Problem formulation presented by Arora et al. [2] and we propose four heuristics
and an exact branch and bound algorithm for the Sparsest Cut problem, based on
semidefinite programming relaxation.

These algorithms were tested on a set of random instances and, in all tests,
optimum or near optimum solutions were produced.

Although we could not present approximation factors to the heuristics, we
proved good characteristics for each one of them. We note that, assuming the
Unique Games Conjecture of Khot [5], it is NP-hard to approximate the Sparsest
Cut problem within any constant factor. We proved the existence of a bounded so-
lution for the Sparsest Cut problem when the expectation of both parts of the ratio
are bounded. Considering that it is not always true that E[X/Y ] = E[X ]/E[Y ],
this result has a general utility. See more details in Section 4.1. It is possible to
apply this strategy to other problems with a ratio in the objective function.

The first approximation algorithm for the Sparsest Cut problem has an O(log n)
factor due to Leighton and Rao [15] in 1988. Recently, the interest in the Sparsest
Cut Problem has increased. Arora et al. [2] present an O(

√
log n)-approximation

algorithm based on a semidefinite program for the special case when all edge costs
are in {0, 1} and vertex weights are 1. For the general case, Chawla et al. [4]
present an O(log3/4 n)-approximation algorithm. The best known approximation
algorithm is an O(

√
log n log log n)-approximation algorithm due to Arora et al. [1].

Devanur et al. [6] present a Θ(log log n) integrality gap instance for the consid-
ered semidefinite programming relaxation. In [18], Shmoys presents a survey on
approximation algorithms for cut problems and their application to divide-and-
conquer.

Semidefinite programming leads to good formulations for many optimization
problems, but its use in practice is still limited due to the computational time con-
sumed by the existing solvers. Moreover, there are no good warm start techniques
for re-optimization. These drawbacks become clear after some computational tests
performed with a semidefinite programming package based on the interior point
method, see Section 6. To tackle these drawbacks, we used a cutting plane ap-
proach to solve semidefinite programs via a linear programming solver. In such
approach, we take advantage of the mature state of the integer linear program-
ming solvers and the use of fast warm start step after branching constraints or the
addition of cutting planes.

The resolution of semidefinite programs by cutting plane methods has already
been used by other authors. Krishnan and Mitchell [11–13] report the use of
semi-infinite linear programming formulations to solve max-cut and min-bisection
problems. Sherali and Fraticelli [17] explored connections between semidefinite
programming and the Reformulation-Linearization technique in semi-infinite linear
programming formulations.

To our knowledge, this is the first paper to present an exact algorithm for the
Sparsest Cut Problem based on semidefinite programming.



SEMIDEFINITE ALGORITHMS FOR THE SPARSEST CUT 77

Figure 1. The objective of the Sparsest Cut problem is to find
a small balanced cut.

2. Problem definition

Given a graph G = (V, E), a cost function c : E → R
+, a weight function

w : V → R
+, and a set S ⊂ V , S �= ∅, we denote by δ(S) the set of edges

with exactly one extremity in S, C(S) the sum
∑

e∈δ(S) ce, W(S) the product
w(S)w(V \ S), where w(C) :=

∑
v∈C wv, and ρ(S) the value C(S)/W(S). The

Sparsest Cut problem can be defined as follows:
Sparsest Cut problem (SC): Given a graph G = (V, E), costs
ce ∈ R

+ for each edge e ∈ E, and weights wv ∈ R
+ for each vertex

v ∈ V , find a cut S ⊂ V, S �= ∅, that minimizes ρ(S). See Figure 1.
In the unweighted version, which we denote by USC Problem, we have ce = 1

for each e ∈ E, and wv = 1 for each v ∈ V .
The Sparsest Cut problem is a natural formulation to discover bottlenecks in

a road network. Suppose we have a city with two dense regions connected by few
roads. In this case, it is possible that many cars go from one region to the other,
and if the connecting roads do not have good flow capacity, or if there is a problem
in one of the roads, they are prone to traffic jam. In the literature, there are many
other problems that consider (vertex) partitions of a graph into two sets, as the
Max Cut and Min Cut problems. The (unweighted) Max Cut problem looks for a
partition of the graph into two sets, but connected with the maximum number of
edges. The (unweighted) Min Cut problem looks for a partition of the graph into
two sets connected by the minimum number of edges. In this problem, a minimum
cut can divide the graph into two very unbalanced sets, and may not have any
relation with bottlenecks. The weighted version of these problems consider weights
in the edges and do not have any weight in the vertices. In Figure 2 we present a
piece of map, where a solution for the Sparsest Cut problem is given by the closed
curve. A straightforward application of the Sparsest Cut problem is to find regions
where traffic jams may occur.

Another problem that is strongly related to the Sparsest Cut problem is the
Quotient Cut problem, which can be defined as follows.
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Figure 2. The Sparsest Cut problem is the natural formulation
to discover bottlenecks in a graph.

Min Quotient Cut problem: Given a graph G = (V, E),
costs ce ∈ R

+ for each edge e ∈ E, and weights wv ∈ R
+ for

each vertex v ∈ V , find a cut S ⊂ V, S �= ∅, that minimizes
C(S)

/
min{w(S), w(V \ S)}.

In [2], the Min Quotient Cut is also referred to as Sparsest Cut. In terms of
approximability, an α-approximation algorithm for the Sparsest Cut (resp. Quo-
tient Cut) problem is a 2α-approximation algorithm for the Quotient Cut (resp.
Sparsest Cut) problem.

The following lemma can be deduced from the work of Leighton and Rao [15].
Because the proof is not straightforward, we present it here.

Lemma 2.1. An α-approximation algorithm for the Sparsest Cut (resp. Quotient
Cut) problem is a 2α-approximation algorithm for the Quotient Cut (resp. Sparsest
Cut) problem.
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Proof. Let A1 be an α-approximation algorithm and I an instance for the Sparsest
Cut problem. Let S be the cut produced by the algorithm A1(I). Without loss of
generality, assume that w(S) ≤ w(V )/2 and w(V \ S) ≥ w(V )/2. Because A1 is
an α-approximation algorithm, we have

C(S)
w(S)w(V \ S)

≤ α
C(S′)

w(S′)w(V \ S′)
, ∀S′ ⊂ V, S′ �= ∅.

That is,

C(S)
w(S)

≤ α
C(S′)w(V \ S)
w(S′)w(V \ S′)

, ∀S′ ⊂ V, S′ �= ∅

≤ α
C(S′)

min{w(S′), w(V \ S′)}
w(V )

max{w(S′), w(V \ S′)} , ∀S′ ⊂ V, S′ �= ∅

≤ 2α
C(S′)

min{w(S′), w(V \ S′)} , ∀S′ ⊂ V, S′ �= ∅, (2.1)

where inequality (2.1) is valid because w(V ) ≤ 2 max{w(S′), w(V \ S′)}.
Now, suppose that A2 is an α-approximation algorithm and I an instance for

the Quotient Cut problem. Let S be the cut produced by A2(I). Without loss of
generality, we suppose that w(S) ≤ w(V )/2 and w(V \ S) ≥ w(V )/2. Thus

C(S)
w(S)

=
C(S)

min{w(S), w(V \ S)} (2.2)

≤ α
C(S′)

min{w(S′), w(V \ S′)} , ∀S′ ⊂ V, S′ �= ∅.

That is,

C(S)
w(S)w(V \ S)

≤ α
C(S′)

min{w(S′), w(V \ S′)} w(V \ S)
, ∀S′ ⊂ V, S′ �= ∅

= α
C(S′)

w(S′)w(V \ S′)
max{w(S′), w(V \ S′)}

w(V \ S)
, ∀S′ ⊂ V, S′ �= ∅

(2.3)

≤ 2α
C(S′)

w(S′)w(V \ S′)
, ∀S′ ⊂ V, S′ �= ∅. (2.4)

Equality (2.3) is obtained multiplying the previous fraction by max{w(S′),w(V \S′)}
max{w(S′),w(V \S′)} ·

Inequality (2.4) is valid because max{w(S′), w(V \ S′)} ≤ w(V ) ≤ 2w(V \ S). �
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3. Semidefinite programming formulation and relaxation

We first present a formulation, using real variables, and then its relaxation,
where each real variable is relaxed to an n-dimensional vector. Given an instance
(G, c, w) for the Sparsest Cut problem, the formulation uses a variable ri, for each
i ∈ VG, that can assume value either r or −r, where r ∈ R

+, indicating if the
vertex is in one side or the other of the cut.

For each vertex i ∈ VG, the fact that ri has a value r or −r allows us to scale ri

in a way that the denominator of the objective function ratio becomes 1 without
changing the objective function. Note that |ri − rj |2 is 4r2 if the edge (i, j) is
chosen in the ratio, zero otherwise.

ρF = min
∑

i<j,(i,j)∈E

cij |ri − rj |2

s.t.∑
i<j

wiwj |ri − rj |2 = 1, (F )

ri ∈ {r,−r}, ∀i ∈ V,

r ≥ 0,
ri, r ∈ R, ∀i ∈ V.

Lemma 3.1. F is a formulation for the Sparsest Cut problem.

Proof. Let I be an instance for the Sparsest Cut problem, O∗ ⊂ V be an optimum
solution to I and ρF be the value of the objective function of F solved with instance
I. Now, we will prove that a solution for one problem leads to a solution for the
other, with the same value.

Given a cut S, let r = 1√
4|S||V \S|

, ri = r for each i ∈ S and ri = −r for

each i ∈ V \ S. The obtained attribution is feasible to F and has cost ρ(S) for
unweighted graphs. This is valid for any set S, including O∗. In the weighted
version, the same conclusion is valid for r = 1√

4W(S)W(V \S)
·

To conclude that F is a formulation it is sufficient to show that any solution
has an associated cut with the same cost. If V = (v, r) is a solution to F , we may
obtain an associated cut SV = {i : ri = −r}. As V is feasible, r = 1√

4|SV ||V \SV |
(in the weighted version r = 1√

4W(SV)W(V \SV)
) and ρF (V) values ρ(SV). �

For the rest of this paper, we consider n = |V |. If we relax ri to an n-dimensional
vector vi in R

n, we have a relaxation, which we denote by R̂. This is a relaxation,
because, if all coordinates of vi are equal to zero except the first, for each n-
dimensional vector vi, we have the formulation (F ). To write the relaxation R̂ as
a semidefinite program, we observe that, for a, b ∈ R

n with inner product a · b, we
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have

‖a‖ =
√

a2
1 + a2

2 + . . . + a2
n,

a · b = ‖a‖ ‖b‖ cosθ = a1b1 + a2b2 + . . . + anbn,

a− b = (a1 − b1, a2 − b2, . . . , an − bn).

Thus,

‖vi − vj‖2 = (vi − vj) · (vi − vj) = vi · vi − 2vi · vj + vj · vj . (3.5)

We can strengthen the formulation F adding the following triangle inequalities:

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2, ∀i, j, k ∈ V.

Although there are O(n3) triangle inequalities, their insertions improved the
convergency time of the exact Branch and Bound (B&B) and ensured good prop-
erties to the heuristics.

For instance, a graph with 60 vertices has more than 200 000 triangle inequali-
ties.

For further information about semidefinite programming, see [9,10,14]. In the
following we present the (weighted) relaxation R̂ and its corresponding semidefinite
program R, where vi is the n-dimensional vector associated with an arbitrary
vertex i ∈ VG and X � 0 means that X is positive semidefinite. A symmetric
positive semidefinite matrix X = (xij) can be decomposed into a matrix V such
that X = VT · V , using a Cholesky decomposition algorithm. If we denote by vi

the i-th row of matrix V , we have xij = vi · vj .

(R̂) (R)
minimize

∑
i<j

cij‖vi − vj‖2 minimize
∑
i<j

cij(xii + xjj − 2xij)

such that such that

‖vi − vj‖2 ≤ ‖vi − vk‖2 xik + xkj − xij ≤ xkk ∀i, j, k ∈ V,

+‖vk − vj‖2 ∀i, j, k ∈ V,

∑
i<j

wiwj‖vi − vj‖2 = 1,
∑
i<j

wiwj(xii + xjj − 2xij) = 1,

‖vi‖ = ‖v0‖ ∀i ∈ V, xii = x00 ∀i ∈ V,

vi ∈ R
n. X � 0.

We denote by R̂− (resp. R−) the relaxation R̂ (resp. R) without the constraints
‖vi‖ = ‖v0‖ (resp. xii = x00). For unweighted graphs, Arora et al. [2] prove an
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Figure 3. Translations in relaxations R̂− and R̂.

integrality gap of O(
√

log n) for the relaxation R̂−. Note that R̂− has only relative
distances between vectors in the objective function and in all constraints. This
implies that the objective function value does not change when all vectors vj , for
j ∈ V , are translated by the same displacement. An optimal solution to relaxation
R̂ can also be translated. See Figure 3.

Definition 3.2. An optimal solution X∗ of R− (resp. R) is said to be small if
the corresponding solution v of R̂− (resp. R̂) minimizes

∑
i∈V ‖vi‖.

To convert a non-small solution of R− to a small one with the same objective
value, it is sufficient to translate its barycenter to the origin. In the relaxation
R it is sufficient to translate the hyperplane of small dimension that contains all
vectors of the solution to the origin.

Given an instance I for the Sparsest Cut problem, we denote by R−(I) and
R(I) the relaxations R− and R defined with the corresponding values of I.

4. Heuristics for the Sparsest Cut problem

In this section we propose some heuristics for the Sparsest Cut Problem. These
heuristics receive as input parameter a feasible small solution X∗ = (x∗

ij) to the
relaxation R−(G, c, w) or R(G, c, w) and then apply some rounding strategy to
obtain a feasible solution.

In the following we present the heuristics H1 , H2 , H3 and H4 . The heuristics
H1 and H2 use an input value ξ(X∗, i, j) defined as ξ(X∗, i, j) = x∗

ij√
x∗

iix
∗
jj

=

cos(vi, vj). Note that the lower the value of ξ(X∗, i, j), the greater is the separation
of the vectors vi and vj . These algorithms choose a pair of vertices (s, t) such that
ξ(X∗, s, t) is minimum and randomly choose a real value in [−1, 1] to say if a vertex
is more close to s or not. Such pair (s, t) is chosen to minimize the probability of
empty cuts. Although, all heuristics may generate empty cuts.
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Heuristic H1 (G = (V, E), c, w, X∗)
1. Let s, t ∈ V such that ξ(X∗, s, t) is minimum.
2. S ← ∅.
3. For each u ∈ V do
4. select a random number α uniformly distributed in [−1, 1]
5. if ξ(X∗, s, u) ≥ α then
6. S ← S ∪ {u}.
7. Return(S).

Heuristic H2 (G = (V, E), c, w, X∗)
1. Let s, t ∈ V such that ξ(X∗, s, t) is minimum.
2. S ← ∅
3. Select a random number α uniformly distributed in [−1, 1].
4. For each u ∈ V do
5. if ξ(X∗, s, u) ≥ α
6. S ← S ∪ {u}.
7. Return(S).

Heuristic H3 (G = (V, E), c, w, X∗)
1. Let V = (vi) be the Cholesky decomposition of X∗ (X∗ = VTV).
2. S ← ∅
3. Select a random vector r ∈ R

n uniformly distributed in the unit sphere.
4. For each u ∈ V do
5. if vu · r ≥ 0
6. S ← S ∪ {u}.
7. Return(S).

Heuristic H4 (G = (V, E), c, w, X∗)
1. Let V = (vi) be the Cholesky decomposition of X∗ (X∗ = VTV).
2. Let A← ∅ and B ← ∅.
3. Select two vectors r1, r2 ∈ R

n uniformly distributed in the unit sphere.
4. For each u ∈ V do
5. if vu · r1 >= 0 and vu · r2 >= 0 then A← A ∪ {u}
6. if vu · r1 < 0 and vu · r2 < 0 then B ← B ∪ {u}.
7. Let G′ be the graph obtained from G contracting A and B to vertices a

and b, resp.
8. Let S′ be a minimum cut separating a and b in G′.
9. Let S be the set of vertices in G corresponding to S′.
10. Return(S).

4.1. Some properties of the heuristics

Lemma 4.1. Let P be a minimization problem with domain D and objective func-
tion f(S) = g(S)

h(S) , where g(S) > 0 and h(S) > 0 for each S ∈ D. Let A be a
randomized algorithm for P. Given an instance I of P and a solution S produced
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by A(I), denote by GS the random variable g(S) and HS the random variable h(S)
and let E = E[GS]

E[HS ] . Then, there exists a solution S′ with f(S′) ≤ E.
Proof. We have

E[GS ]
E[HS ]

= E ⇒ E[GS ]− EE[HS ] = 0. (4.6)

By the linearity of the expectation, we have

E[GS − EHS ] = 0.

This proves the existence of at least one solution Sgap such that

g(Sgap)− Eh(Sgap) ≤ 0.

That is, f(Sgap) ≤ E . �
Fact 4.2. Given a randomized algorithm A to problem USC, let CS and WS be
the random variables C(S) and W(S), resp., where S is the cut produced by A over
instance I. Let S∗ be an optimal cut of I, f∗ = ρ(S∗) and β ≥ 1 be such that
E[CS]
E[WS ] = βf∗. If Z is the random variable CS − βf∗WS then Pr[Z ≥ f∗ n

b ] ≤ p

for any p ∈ (0, 1) where n = |V | and b = p
(β−1)(1−p)n ·

Proof. The expectation E[Z] is equal to E[CS ] − f∗βE[WS ]. Substituting β we
obtain that E[Z] = 0. We also have that 1 · (n− 1) ≤WS ≤ n2.

Since f∗ is a lower bound for the value of any solution, we have CS

WS
≥ f∗ and

therefore,

Z = CS − βf∗WS

≥ − (β − 1) f∗WS

≥ − (β − 1) f∗n2.

For the sake of contradiction, suppose that Pr[Z ≥ f∗ n
b ] > p. In this case, we

obtain that

E[Z] ≥ − (β − 1) f∗n2Pr
[
Z < f∗n

b

]
+ f∗n

b
Pr

[
Z ≥ f∗n

b

]
> − (β − 1) f∗n2(1− p) + f∗n

b
p

= 0.

This contradiction finishes the proof. �
Lemma 4.3. Given a randomized polynomial time algorithm A to problem USC,
let CS and WS be the random variables C(S) and W(S), resp., where S is the
cut produced by A over instance I. Let S∗ be an optimal cut of I and β ≥ 1
be such that E[CS]

E[WS ] = βρ(S∗). Then it is also possible to obtain a cut S′ with
ρ(S′) ≤ (1 + ε)βρ(S∗) in polynomial time with high probability, for any ε > 0.
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Proof. Let f∗ = ρ(S∗). Consider a pair (p, b) that respects Fact 4.2 in such a way
that b = 2/ε for any ε > 0. With probability greater than 1− p, we have that

Z = CS − βf∗WS ≤ f∗n

b
·

Because 1×(n−1) ≤WS and n ≥ 2 we have n
b ≤ 2WS

b . That is, with probability
greater than 1− p, we have

CS − βf∗WS ≤ f∗n

b
≤ 2

f∗WS

b
·

Thus, with probability greater than 1− p,

CS

WS
≤

(
β +

2
b

)
f∗ = (β + ε) f∗

≤ (1 + ε)βρ(S∗), (4.7)

where inequality (4.7) is valid because β ≥ 1.

As b = 2/ε, we have p =
1

1 +
ε

2(β−1)

n

· If we get a solution S′ with minimum value

from n executions, the probability that inequality (4.7) is not satisfied for S′ is
less than or equal to pn ≤ e−

ε
2(β−1) , where e is the base of the natural logarithm.

Therefore, if β and ε are constants, the probability to obtain the desired cut is
greater than a positive constant. We let to the interested reader to produce an
algorithm that finds such a cut with high probability. �

Although we do not have the equality E[A/B] = E[A]/E[B] in general, lem-
mas 4.1 and 4.3 describe a way to contour this difficulty for the Unweighted Spars-
est Cut.

For the remaining of this section, we denote by X∗ = (x∗
ij) a small optimum

solution for R(G, c, w) and by s and t two vertices where ξ(X∗, s, t) is minimum.
Given a solution X∗ for relaxation R, we denote by Y ∗ the solution X∗ scaled by
a constant factor k such that Y ∗ = kX∗ and Y ∗

ii = 1 for each vertex i.
Given a feasible solution X for R, and V = (v) its corresponding solution for

R̂, denote by

C(X) =
1
4

∑
i<j

cij(xii + xjj − 2xij) =
1
4

∑
i<j

cij‖vi − vj‖2,

W(X) =
1
4

∑
i<j

wiwj(xii + xjj − 2xij) =
1
4

∑
i<j

wiwj‖vi − vj‖2,

and ρ(X) = C(X)/W(X).
Observe that C(Y ∗) =

∑
i<j cij

1−y∗
ij

2 , W(Y ∗) =
∑

i<j wiwj
1−y∗

ij

2 and y∗
ij =

cos(vi, vj) = y∗
ji.
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Lemma 4.4. The value ρ(Y ∗) is a lower bound for ρ(S), for any set S ⊂ V ,
S �= ∅.
Proof. Let X∗ be an optimum solution to R. As R is a relaxation of formula-
tion F , ρ(X∗) is a lower bound to the value of any optimum solution for the
Sparsest Cut Problem. We have C(Y ∗) = kC(X∗), andW(Y ∗) = kW(X∗). There-
fore, ρ(Y ∗) = ρ(X∗). �

To analyze the heuristics, we first consider that ξ(X∗, s, t) = −1. In this case,
all heuristics generate non-empty cuts. We further present some ways to keep the
same results when this condition is not true.

If each one of the four heuristics receives X∗ as an input parameter, then they
partially respect Lemma 4.1, but we could not obtain an approximation algorithm.
In what follows, we show the strength and the weakness of each heuristic.

First consider heuristics H1 and H2 . These heuristics are, in some way, sym-
metric. While the heuristic H1 guarantees that the expectation of W(S) is lower
bounded by a constant factor of W(Y ∗) (see Lem. 4.6), the heuristic H2 guaran-
tees that the expectation of C(S) is upper bounded by a constant factor of C(Y ∗)
(see Lem. 4.7).

It is also possible to obtain a feasible solution X∗ for which Lemma 4.1 does
not hold for heuristics H1 and H2 .

Fact 4.5. If a and b are real numbers such that |a| ≤ 1 and |b| ≤ 1, then 1−ab
2 ≥

1
2 min{ 1−a

2 + 1−b
2 , 1+a

2 + 1+b
2 }·

Proof. The proof is divided in two cases, depending on the signs of a and b.
Case 1: a and b have a same sign. Since (a − b)2 ≥ 0, we have that −ab ≥

− 1
2 (a2 + b2) and therefore

1− ab ≥ 1− a2 + b2
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Case 2: a and b have different signs: The proof of this case follows from the
fact that −ab ≥ 0 ≥ min{a+b

2 , −(a+b)
2 }, which gives us that

1− ab

2
≥ 1

2
min

{
1− a

2
+

1− b

2
,
1 + a

2
+

1 + b

2

}
· �

The following lemma shows that heuristic H1 produces a cut where E[W(S)]
is at least a factor of W(Y ∗).
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Lemma 4.6. If S is a solution produced by heuristic H1 and ξ(X∗, s, t) = −1,
then E[W(S)] ≥ W(Y ∗)

2 ·
Proof. For a vertex u �= s, the probability that edge us is in δ(S) is

1− ξ(X∗, u, s)
2

=

1− cos(vu, vs)
2

=
1− y∗

us

2
·

If u and v are vertices that are not equal to s then the probability that edge uv
is in δ(S) is the probability that (s, u) ∈ δ(S) and (s, v) �∈ δ(S) plus the probability
that (s, u) �∈ δ(S) and (s, v) ∈ δ(S). That is,

Pr[(u, v) ∈ δ(S)] =
1− y∗

us

2

(
1− 1− y∗

vs

2

)
+

(
1− 1− y∗

us

2

)
1− y∗

vs

2
=

1− y∗
usy

∗
vs

2

≥ 1
2

min
{

1− y∗
us

2
+

1− y∗
vs

2
,
1 + y∗

us

2
+

1 + y∗
vs

2

}
(4.8)

≥ 1
2

(
1− y∗

uv

2

)
· (4.9)

The inequality (4.8) is valid from Fact 4.5, and inequality (4.9) is valid from the
triangle inequality constraints of relaxation R. More precisely,

1− y∗
uv

2
≤ 1− y∗

us

2
+

1− y∗
vs

2
,

and

1− y∗
uv

2
≤ 1− y∗

ut

2
+

1− y∗
vt

2

=
1 + y∗

us

2
+

1 + y∗
vs

2
· (4.10)

In inequality (4.10) we use the fact that ξ(X∗, s, t) = −1. In this case, the angle
between s and t is π, and we have cos(vu, vs) = − cos(vu, vt).

The expectation of W(S) is

E[W(S)] =
∑
u<v

wuwvPr[uv ∈ δ(S)]

=
∑

u∈V \{s}
wuwsPr[us ∈ δ(S)] +

∑
u∈V \{s}

∑
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2
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u<v
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uv

2

=
W(Y ∗)

2
· �
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Figure 4. H1 may produce a cut S with unbounded value of C(S).

In what follows, we present a feasible solution X∗ where the expectation of
C(S) for the cut produced by heuristic H1 is unbounded. Consider the case where
(1− y∗

uv)/2 = 0, which means no contribution to C(Y ∗) and (1− y∗
us)/2 = 1/2. In

this case the probability that (u, v) is in δ(S) is 1/2, that implies a half contribution
to the expectation of C(S). Adding edge by edge, each edge could have a similar
behavior, and the expectation of C(S) will grow unbounded in relation to the value
of C(Y ∗). See Figure 4.

Now, we consider the heuristic H2 . In this case, we prove that E[C(S)] is at
most C(Y ∗), but we could not obtain a lower bound to E[W(S)].

Lemma 4.7. If S is a solution produced by heuristic H2 , then E[C(S)] ≤ C(Y ∗).

Proof. The probability that (u, s) ∈ δ(S) for u ∈ V \ {s} is given by

Pr[(u, s) ∈ δ(S)] =
1− ξ(X∗, u, s)

2
=

1− cos(vu, vs)
2

=
1− y∗

us

2
·

If u and v are vertices that are not equal to s then

Pr[(u, v) ∈ δ(S)] =
∣∣∣∣y∗

su − y∗
sv

2

∣∣∣∣ =
∣∣∣∣1− y∗

sv

2
− 1− y∗

su

2

∣∣∣∣ ,
that is exactly the probability to choose α between the values ξ(X∗, s, v) and
ξ(X∗, s, u). The triangle inequality constraint implies that

1− y∗
sv

2
− 1− y∗

su

2
≤ 1− y∗

uv

2
and

1− y∗
su

2
− 1− y∗

sv

2
≤ 1− y∗

uv

2
·

Therefore, we have

Pr[(u, v) ∈ δ(S)] =
∣∣∣∣1− y∗

su

2
− 1− y∗

sv

2

∣∣∣∣ ≤ 1− y∗
uv

2
, for all (u, v) ∈ V × V,

and
E[C(S)] =

∑
u<v

cuvPr[(u, v) ∈ δ(S)] ≤
∑
u<v

cuv
1− y∗

uv

2
= C(Y ∗). �
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Figure 5. H2 may produce a cut S with unbounded value of W(S).
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To obtain a solution X∗ where the expectation of W(S) is not lower bounded,

consider an edge (u, v), where y∗
uv = −1 (full contribution to W(Y ∗)), and y∗

us =
y∗

vs. In this case, we have Pr[(u, v) ∈ δ(S)] = 0. Symmetrically to H1 , adding
edge by edge, each edge may have a similar behavior, and the expectation ofW(S)
does not increase, becoming unbounded in relation to the value of W(Y ∗). See
Figure 5.

The heuristic H3 uses the hyperplane rounding strategy presented by Goemans
and Williamson [8] for the Max-Cut problem. They proved that the probability
that an edge (u, v) is cut by a random hyperplane is arccos(y∗

uv)/π. As can be
seen in Figure 6, this value is always greater than 0.878(1−y∗

uv)/2. Therefore, the
following lemma is straightforward.

Lemma 4.8. If S is a solution produced by heuristic H3 , then

E[W(S)] ≥ 0.878W(Y ∗).

The difficulty to obtain an upper bound to Pr[(u, v) ∈ δ(S)] = arccos(y∗
uv)

π comes
from the fact that arccos(y∗

uv)
π cannot be bounded by k

1−y∗
uv

2 for any constant k (see
Fig. 6).
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Analyzing the heuristic H4 , we found out some interesting properties. The
probability that (u, v) belongs to (A, B) is the probability that r1 and r2 separate
the edge (u, v), that is equal to (arccos(xuv)/π)2 times the probability that u ∈
A ∪B, which is 1/2. That is,

Pr[(u, v) ∈ (A, B)] =
(

arccos(xuv)
π

)2 1
2
·

We can observe that this probability is upper and lower bounded by constant
factors of the contribution in C(Y ∗) and W(Y ∗) (see Fig. 7). More precisely, we
have that E[C(A, B)] ≤ 1

2C(Y ∗) and E[W(A, B)] ≥ 0.2023W(Y ∗). Therefore, the
following lemma is valid.

Lemma 4.9. If S is a solution produced by heuristic H4 then

E[W(S)] ≥ 0.2023W(Y ∗).

Provided that the final cut S may have more edges than (A, B), we could not
prove an upper bound for E[C(S)] by a factor of C(Y ∗).

Now, consider the case when ξ(X∗, s, t) > −1. One way to deal with this
situation is to assure that one edge ij is separated. In Section 5 we show in details
how to do this separation. By solving the relaxation with this separation for an
arbitrary vertex i and all j ∈ V \ {i} and choosing the minimum, we can obtain a
lower bound that contains a pair of vertices with ξ(X∗, s, t) = −1. Another way to
deal with this situation is to discard empty cuts in the heuristics. In this case, C(S)
and W(S) will be multiplied by the same factor and therefore we can maintain
the same analysis, except for heuristic H1 that uses the fact ξ(X∗, s, t) = −1.
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5. A Branch and bound algorithm for the Sparsest Cut

problem

The idea used in the branch and bound algorithm, which we denote by B&B ,
for the Sparsest Cut problem is to use the relaxation R as a dual bound and the
heuristics as primal bounds. Although the relaxation presents high time complex-
ity, it leads to excellent lower bounds.

The first step consists of solving relaxation R, which leads to the first lower
bound. The second step consists of applying the four heuristics based on this
relaxation. Due to the fact that the heuristics are much faster than solving the
relaxation, each heuristic can be repeated several times without substantially in-
creasing overall time. During the execution, the B&B algorithm maintains the
best solution obtained and its value as the current upper bound.

Initially, an arbitrary vertex is chosen – say, vertex 0. At each iteration, the
algorithm chooses an active node from the B&B tree with the minimum value in
the objective function and perform a branching step if a gap is found between the
lower and upper bounds. The branching consists of setting the angle between vi

and v0 to be 0 or π. When the angle between each pair of vertices is in {0, π}, then
each vector vi, for all i ∈ V , is in {−v0, v0} and an integer solution is obtained.

Each node of the branch and bound tree is a semidefinite program Q obtained
from the formulation R with some integrality constraints. Let XQ be a solution of
the program Q. The “most fractional variable” of XQ, say ifrac(XQ), is a vertex f
so that the angle vf to v0 is closest to π/2. Therefore, the most fractional variables
in a node are the vertices f with | sin(vf , v0)| maximum. The angle between vi and
vj can be computed from ξ(X∗, i, j). The B&B algorithm maintains a max-heap
using | sin(vf , v0)| as the key function for the heap.

In each step, the algorithm removes a node Q from the max-heap, and obtains
its corresponding vertex f . If the value of a solution of the current node Q is
smaller than the current upper bound, it produces two new nodes Q′ and Q′′.
Node Q′ is obtained from node Q by setting the angle between v0 and vf to π,
which can be done by adding the constraint xf0 = −xff = −x00. Node Q′′ is
obtained from node Q by setting the angle between v0 and vf to 0, which can be
done by adding the constraint xf0 = xff = x00.

The branch and bound algorithm is faster than the brute force algorithm (gen-
erates all possible cuts) when it comes to find an optimal solution and allows us to
discover the integrality gap of R in graphs of the benchmark we have used. The
branch and bound algorithm is presented in Figure 8.

A common strategy used in many branch and bound algorithms to solve NP-
hard problems is to relax the integrality constraints in an ILP formulation and
insert additional constraints to tighten its relaxation. As semidefinite program-
ming is a generalization of linear programming, any linear program can also be
solved via semidefinite programming. The difference is due to the fact that linear
programming can be solved exactly and semidefinite programming can be solved
within a small error ε, in polynomial time complexity in the input size and in
log(1/ε).



92 L.A.A. MEIRA AND F.K. MIYAZAWA

Algorithm B&B(P ), where P = R(G, c, w)
1. Let H be a max-heap of semidefinite programs, where the key is given by

the function key(·)
2. XUB ← Heuristics(P )
3. H ← {P}.
4. While H �= ∅ do
5. Q← RemoveMax (H) and f ← ifrac(XQ).
6. if ρ(Q) < ρ(XUB ) then
7. Q′ ← Q ∪ {xf0 = −xff = −x00}
8. Q′′ ← Q ∪ {xf0 = xff = x00}
9. if ρ(Q′) < ρ(XUB ) then

10. if XQ′ is a feasible solution then XUB ← XQ′

11. else
12. X ′ ← Heuristics(Q′)

13. if ρ(X ′) < ρ(XUB ) then XUB ← X ′

14. H ← H∪ {Q′}.
15. if ρ(Q′′) < ρ(XUB ) perform the corresponding steps executed in
lines 10–14 for Q′′.
16. Return XUB .

Figure 8. Semidefinite based branch and bound algorithm.

The use of SDP models in combinatorial optimization problems is relatively
new if compared to LP. The decision to solve a problem via semidefinite program-
ming or linear programming involves some aspects. The state of the art of LP
solvers reached a point in which many robust, fast and stable implementations
are encountered, such as Cplex and Xpress-MP. These solvers also allow inte-
ger programming formulations and features as pre-processing and branch-and-cut
algorithms.

For the comparison between the time to solve SDP and LP relaxations in in-
stances of equivalent size, see Table 1 (column Av. CPU time) and Table 2 in
Section 6. The time to solve the associated linear program in these computa-
tional experiments was approximately 400 times faster than the one to solve the
corresponding semidefinite program for instances with n = 40 vertices.

An important advantage of the use of linear programming is the use of warm
start strategies to solve the relaxations associated with each node. Despite the
existence of theoretical works describing the possibility of a good initial point for
a family of problems with SDP programs [16], some solvers, such as Sdpa package
used in the experiments presented in this paper, have restrictions that do not allow
this optimization (see additional information in Sect. 6). It is well known that ILP
solvers may take advantage of the use of a previous basis to obtain a new solution
after a branching step.
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Table 1. Time to solve R with the Sdpa solver.

Type Size Number of Av. CPU
instances time (s)

20 400 155
A 30 95 6668

40 5 30564
20 400 108

B 30 146 4305
40 26 18718
20 400 137

C 30 95 6568
40 2 26660
20 400 166

D 30 93 6695
40 3 28980

Table 2. Results of relaxation RX with no semidefinite constraint.

Type Size Number of Average Max. Av. CPU
instances SDP gap (%) SDP gap (%) time (s)

20 400 0.3 6.0 0.55
A 30 300 1.0 10.0 7.05

40 20 3.0 13.0 71.6
20 400 0.0 0.0 0.41

B 30 300 0.0 0.0 4.33
40 20 0.0 0.0 28.62
20 400 0.1 5.0 0.50

C 30 300 0.2 9.0 5.6
40 20 0.0 1.0 39.35
20 400 0.3 6.0 0.52

D 30 300 1.0 8.0 7.00
40 20 3.0 10.0 63.42

On the other hand, semidefinite programming has some advantages. The use
of semidefinite constraints may generate better lower bounds that may reduce
the number of visited nodes. Moreover, given an SDP solution X∗, we can take
advantage of its geometric interpretation by obtaining a set V of vectors. This set
of vectors was used in the rounding strategies of heuristics H3 and H4 . Given
an SDP solution X∗, we can obtain a matrix V such as X∗ = VVT by using the
Cholesky decomposition of X∗.

For many linear programming formulations that use modulus, the relaxation
usually does not give useful information and the use of a branch and bound algo-
rithm based on a semidefinite program may be competitive.
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6. Computational results

In the first attempt, we used the Sdpa package [20] as an SDP solver. It is an
implementation of a primal-dual interior-point method for semidefinite program-
ming. Unfortunately, the warm start was not implemented in the Sdpa package,
and we had to recompute the semidefinite program in each node of the branch and
bound tree. Our effort to compute a good initial point in the branch and bound
procedure using the Sdpa was not successful.

The experiments described in this section were performed by following the same
approach used by Goemans and Williamson [8] for the Max-Cut problem. We
generated four types of instances: types A, B, C and D. In instances of type A,
each vertex has weight 1, and each edge is selected with probability 0.5 to receive
cost 1. If an edge is not selected, its cost is zero. In instances of type B, the vertex
weight is a random rational number uniformly distributed in [0, 50], and the edge
cost is also a rational number uniformly distributed in [0, 50]. In instances of type
C, each vertex has weight 1, and each edge is selected with probability 9/|V | to
receive cost 1. The edge cost is zero if the edge is not selected. While type A
instances correspond to dense graphs, type C instances correspond to sparse ones
because the expected vertex degree is 9. In the instances of type D, we arbitrarily
divided the set V in two disjoint sets, V1 and V2, where |V1| = |V2|. Each vertex
has weight 1. The edges with both extremities in V1 or with both extremities in
V2 are selected with probability 0.5 to receive cost 1. Edges linking vertices in V1

with vertices in V2 are selected with probability 0.25 to receive cost 1. All edges
that were not selected have cost zero.

We produced a set of instances containing 20, 30 and 40 vertices. For each
instance, we obtained an optimum relaxed solution using Sdpa on a Xeon 2.4 GHz
with 1024MB of RAM and Linux operational system. Table 1 presents the average
computational time, in seconds, to solve each group of instances.

In order to make further investigation in formulation R, we removed the semi-
definite constraint, obtaining a new relaxation, named RX := R \ {X � 0}, which
was solved with the Xpress-MP linear programming solver. It should be noticed
that program RX is a relaxation of the Sparsest Cut formulation. Thus an opti-
mum integer solution of RX may not be a feasible solution. These computational
results are presented in Table 2. The SDP gap (%) for an instance I is given by
( R(I)

RX(I) − 1)100. As we limited the computational time, the experiment with Sdpa

was not able to find a solution to all instances in Table 2. To compute the SDP
gap we used the solver described in the following subsection.

The Xpress-MP solver obtained solutions to relaxation RX more than 200 times
faster than Sdpa obtained solutions to relaxation R. The quality of the solution
obtained for formulation RX was at most 13% worst and, on average, less than
3% worst.

Based on these results we propose, in the next section, a new and faster way to
solve the semidefinite programming formulation to the Sparsest Cut problem.
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6.1. A cutting plane based SDP solver for the Sparsest Cut problem

The poor time performance of Sdpa over Sparsest Cut formulation led us to
another approach to solve an SDP formulation. We present an algorithm that
solves the relaxation RX using a linear programming solver, adding violated SDP
constraints until the problem becomes positive semidefinite, within a small error.

The strategy is based on the algorithm proposed by Fraticelli in Section 3.3
of [7]. Given a symmetric matrix X , this algorithm returns 0 if X � 0. Otherwise,
the algorithm obtains a vector α, with ‖α‖ = 1, so that αT Xα < 0. We denote by
Fraticelli(X) the Fraticelli algorithm applied on a square symmetric matrix X .

Given a linear program P , we denote by LP(P ) an optimal solution of P . As
in [7], we relax the semidefinite constraint X � 0 to the symmetric constraint
X = XT , where XT is the transpose of X . The algorithm is described below:

Algorithm SDP Solver (max cx, Ax ≥ b, X � 0)

1. Relax the X � 0 constraint to X = XT

2. Let P be the linear program P = (max cx, Ax ≥ b, X = XT )

3. (x′, X ′)← LP(P )

4. α← Fraticelli(X ′)

5. While (α �= 0) do

6. add constraint αT X ′α ≥ 0 to P

7. (x′, X ′)← LP(P )

8. α← Fraticelli(X ′)

9. Return (x′, X ′).

When this algorithm is applied to simple instances, we detected a very slow
convergence, as the cut generated by the Fraticelli Algorithm was superficial.
We improved the algorithm convergence time by using deeper cuts as stated in
Lemma 6.1. The algorithm takes the result of the LP solver, say (x′, X ′), and
increases the diagonal values of X ′. When the constraint X � 0 is relaxed, the
semidefinite property is recovered faster when the algorithm uses deeper cuts.

Lemma 6.1. Consider an arbitrary λ ∈ R
+, a square symmetric matrix Xn×n,

and the matrix X̂, where x̂ij = xij if i �= j, and x̂ij = (1+λ)xij otherwise. If X̂ is
not positive semidefinite then there exists α ∈ R

n such that αT Xα < −λ
∑

i xiiα
2
i .

Proof. When X̂ is not positive semidefinite, there exists a vector α ∈ R
n such that

αT X̂α < 0. As αT X̂α = αT Xα+λ
∑

∀i xiiα
2
i , we have αT Xα < −λ

∑
i xiiα

2
i . �

From this lemma, one is able to infer that if X̂ �� 0, so X �� 0. When X̂ �
0 and λ is close to zero, we can assume that X � 0. Using this lemma, we
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choose λ as large as possible to obtain a vector α such that αT X̂α < 0 using the
Fraticelli algorithm. The original violated constraint is αT Xα < −λ

∑
i xiiα

2
i

and the deeper cut added is αT Xα ≥ 0. In the computational experiments, we
consider X positive semidefinite when X̂ is positive semidefinite and λ < 10−8.

The constraint −x00 ≤ xij ≤ x00 is an SDP valid inequality for the Sparsest
Cut and we decided to insert this constraint for each pair {i, j} in the beginning
of the algorithm.

Although there exists more robust methods solving semidefinite programs, the
proposed approach is very simple and allows to solve semidefinite programs with
the use of traditional LP solvers. Moreover, the use of linear programming in
a branch and bound method to solve semidefinite programs allows the use of a
same linear program, with few different constraints in each node of the branch
and bound tree. As many nodes have linear programs with few differences, it is
possible to use only one linear program for the whole branch and bound tree and
obtain solutions for one node modifying few constraints. We can also obtain a
solution for one node faster, taking advantage of a previous LP basis.

We considered two experiments: in the first, the algorithm inserts all triangle
inequalities in the beginning, whereas in the second only the violated triangle
inequalities are iteratively inserted in each node of the branch and bound tree. In
this case, the algorithm searches for violated triangle constraints. This approach
improves the time and use of memory, which allowed us to solve larger Sparsest
Cut Instances.

As the heuristics are probabilistic, each one was executed 50 times on the same
instance, returning the best obtained solution. Empty cuts were discarded.

For each instance and for each heuristic, except heuristic H2 , we also saved
a number k that is the iteration in which the respective heuristic found its best
solution. As there are at most |V | − 1 solutions that can be obtained by heuristic
H2 , all these solutions are generated. For the heuristics H1 and H3 we also
counted the empty cuts to compute the corresponding value of k. The time to
solve the heuristics without the time to solve the relaxation R is negligible (less
than 0.3% of the time to solve R).

In the Visited Nodes column in Tables 4 and 6, only non-leaf nodes were con-
sidered in the branch and bound tree. The integrality gap (%) for an instance I is
given by (B&B(I )

R(I) − 1)100 and the deviation factor (%) of a heuristic Hi is given

by ( Hi(I)
B&B(I ) − 1)100.

The results obtained with all triangle inequalities inserted in the beginning
are described in Tables 3 and 4. The results obtained with triangle inequalities
inserted only when necessary are described in Tables 5 and 6.

Adding triangle inequalities on demand gave us the possibility to solve larger
instances (sizes 50 and 60) because this approach is faster and presents a better
use of memory. The instances were solved in half of the time if compared to the
case when all triangle constraints are inserted in the beginning.
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Table 3. Result using Xpress-MP and all triangle inequalities
from the beginning.

T S Number integrality Average deviation Maximum deviation
y i of gap (%) factor (%) factor (%)
p z instances Av. Max H1 H2 H3 H4 H1 H2 H3 H4

20 400 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19
A 30 300 0.00 0.26 0.15 0.00 0.00 0.00 24.55 1.15 0.00 0.00

40 20 0.02 0.30 0.81 0.01 0.01 0.01 16.25 0.15 0.15 0.15

20 400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B 30 300 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 2.18 0.00

40 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 400 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 30 300 0.01 0.58 0.18 0.02 0.03 0.03 33.44 5.33 6.85 5.33

40 20 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 400 0.00 0.20 0.04 0.00 0.00 0.00 7.69 0.35 0.00 0.00
D 30 300 0.00 0.70 0.00 0.00 0.00 0.00 0.31 0.31 0.31 0.31

40 20 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Table 4. Result using Xpress-MP and all triangle inequalities
from the beginning.

T S Number Average Av. CPU Visited SDP
y i of k time (s) nodes cuts
p z instances H1 H3 H4 Heu B&B Av. Max Av. Max

20 400 1.1 1.1 2.2 1.2 1.4 1.0 1 6.5 215
A 30 300 1.5 1.2 2.3 27.2 36.8 1.0 2 17.5 665

40 20 2.8 1.4 2.0 654.8 1070.5 1.0 1 85.9 976

20 400 1.0 1.1 2.2 0.4 1.1 1.0 1 2.7 90
B 30 300 1.0 1.1 2.5 3.7 6.1 1.0 1 0.7 65

40 20 1.0 1.0 2.5 19.9 22.2 1.0 1 0.2 4

20 400 1.0 1.1 2.0 1.0 1.2 1.0 1 4.0 105
C 30 300 1.3 1.3 2.2 17.8 22.5 1.1 26 12.6 818

40 20 1.0 1.1 2.2 113.9 120.9 1.0 1 5.0 84

20 400 1.3 1.2 2.3 1.3 1.5 1.0 1 7.4 119
D 30 300 1.1 1.2 2.7 30.3 39.0 1.0 4 17.6 194

40 20 3.4 2.0 6.2 576.5 826.8 1.0 1 75.2 514

The new implementation using semi-infinite cuts and linear programming in
problems with up to 200 000 constraints was at least 80 times faster and at most
1500 times faster than using the Sdpa solver.

The relaxation R has a surprisingly good integrality gap. For almost all tests
the value obtained from the relaxation was equal to the value of an optimum
solution. The quality of the relaxation leads to good heuristics and the branch
and bound algorithm visited a small number of nodes in the branch and bound
tree.
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Table 5. Result using Xpress-MP and triangle inequalities on demand.

T S Number integrality Average deviation Maximum deviation
y i of gap(%) factor (%) factor (%)
p z instances Av. Max H1 H2 H3 H4 H1 H2 H3 H4

20 400 0.00 0.82 0.14 0.00 0.00 0.00 56.12 1.19 0.00 0.00
30 300 0.00 0.29 0.09 0.00 0.00 0.00 22.22 1.15 0.00 0.00

A 40 20 0.02 0.32 1.13 0.01 0.01 0.01 22.59 0.15 0.15 0.15
50 20 0.02 0.25 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00
60 20 0.04 0.44 0.57 0.05 0.05 0.03 6.60 0.95 0.95 0.63

20 400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B 40 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 400 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 300 0.01 0.58 0.16 0.00 0.01 0.01 30.72 1.42 1.42 1.42

C 40 20 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 20 0.32 5.18 3.93 0.00 0.00 1.08 62.85 0.00 0.00 17.31

20 400 0.00 0.20 0.02 0.00 0.00 0.00 3.43 0.81 0.00 0.00
30 300 0.00 0.70 0.00 0.00 0.00 0.00 0.31 0.31 0.31 1.02

D 40 20 0.01 0.07 0.18 0.00 0.00 0.00 3.65 0.00 0.01 0.01
50 20 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 20 0.01 0.03 0.00 0.00 0.00 0.05 0.00 0.00 0.00 1.05

The performance of the branch and bound algorithm depends basically on the
semidefinite programming solver. Naturally, the B&B algorithm with formulation
R may also become faster by using better solvers.

7. Conclusion

In this paper we analyze a known relaxation for the Sparsest Cut problem using
semidefinite programming and present an exact algorithm and heuristics based
on this formulation. The heuristics obtained solutions with values very close to
the optimum, and the exact algorithm can be executed on small and medium
sized instances. We present two lemmas, Lemmas 4.1 and 4.3, that deal with the
expectation of a ratio of random variables. Such expectation is not trivial and the
proposed technique can be used in other problems.

We implemented a new semidefinite programming solver based on linear pro-
gramming and cutting plane approach. This solver has a good performance and it
is very promising for SDP problems dominated by linear programming constraints
as well as for general SDP problems.

The performed tests showed that the use of semidefinite programming as a
generalization of linear programming is a promising modeling strategy to other
combinatorial optimization problems.
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Table 6. Result using Xpress-MP and triangle inequalities on demand.

T S Num Average Av. CPU Visited SDP Trig cuts
y i of k time (s) nodes cuts (×1000)
p z inst. H1 H3 H4 Heu B&B Av. Max Av. Max Av. Max

20 400 1.2 1.1 2.1 0.6 0.7 1.0 1 5.6 240 2.2 6.0
30 300 1.4 1.3 2.2 11.9 16.9 1.0 3 17.3 970 9.4 19.6

A 40 20 2.5 1.4 2.4 351.6 515.7 1.0 1 85.2 927 27.5.3 48.5
50 20 1.9 1.5 2.2 2560 6637 1.1 2 133.5 1076 61.9 103.0
60 20 2.6 2.8 4.5 15812 29055 1.1 2 285.9 2162 112.6 189.9

20 400 1.0 1.0 1.9 0.3 0.9 1.0 1 0.0 0 1.6 2.4
30 300 1.0 1.0 1.9 2.4 3.5 1.0 1 0.0 0 5.9 8.7

B 40 20 1.0 1.0 1.9 11.8 14.2 1.0 1 0.0 0 14.4 16.7
50 20 1.0 1.0 2.2 43.9 45.7 1.0 1 0.0 0 27.9 34.5
60 20 1.0 1.0 1.9 129.2 132.2 1.0 1 0.0 0 50.1 56.7

20 400 1.1 1.1 1.9 0.5 0.7 1.0 1 3.6 124 2.3 6018
30 300 1.3 1.2 2.5 11.3 14.1 1.1 21 7.9 449 12.4 23549

C 40 20 1.0 1.1 1.9 75.7 79.2 1.0 1 2.9 57 34.1 48797
50 20 1.0 1.0 1.6 315.2 334.5 1.0 1 0.0 0 74.6 92456
60 20 3.7 2.4 4.1 3893 5913 1.1 3 26.1 417 122.5 172.3

20 400 1.3 1.1 2.2 0.5 0.7 1.0 17 8.2 777 1.8 6.8
30 300 1.2 1.2 2.4 8.3 17.7 1.0 8 16.2 305 7.2 22.0

D 40 20 2.3 3.0 2.9 244.1 393.1 1.1 2 78.5 657 23.4 54.3
50 20 1.0 1.4 3.0 744.8 1038 1.0 1 43.7 247 50.9 108.7
60 20 1.3 1.8 4.5 2548 3687 1.0 1 66.4 291 95.1 195.5

8. Future works

One part of this work describes a way to solve semidefinite programs with more
than two hundred thousand constraints, applied to a specific problem, in less CPU
time, when compared with a well known semidefinite programming solver. As the
described method is general, it is also promising to use the presented approach
to solve general semidefinite programs and to compare with other solvers with
instances of public benchmarks.
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