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Abstract. Various topics related to reverse logistics have been dis-
cussed over the years. Most of them have assumed that facilities are
kept open once they are established, and no returned products or re-
covery parts are stocked in intermediate recycling stations. However,
firms may have the right to repeatedly open or close their facilities ac-
cording to their economic benefits if they can acquire their facilities by
lease. It also turns out that intermediate recycling stations like collec-
tion centers and disassembly centers usually stock returned products or
parts in their facilities. By simultaneously relaxing these two assump-
tions, this study explores a logistics system with multiple items, each
of which consists of some components among a variety of spare parts.
The purpose is to maximize the total logistics costs by establishing a
production schedule and reverse logistics framework over finite time
periods for a logistics system. The mathematical model established in
this study is a constrained linear integer programming problem. A ge-
netic based algorithm is developed with the help of linear programming
to find solutions to this problem. Limited computational experiments
show that the proposed approach can produce better feasible solutions
than the well-known CPLEX 10.0 software.
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1. Introduction

With progress in science and technology, many new products have been devel-
oped and have become our cherished possessions. These products play important
roles for people since they make people’s lives more convenient. For all their im-
portance, some of these products are quickly discarded when the latest models
become available. For example, fashionable devices such as cell phones, personal
digital assistants (PDAs) and computers are discarded when new versions become
available. The incorporation of new products usually leads to the disposal of older
products. However, some of the products discarded are still in good condition and
their parts may be reusable. If these recyclable items are not put to good use,
they will quickly lead to the accumulation of waste and bring about considerable
negative impacts on the environment. To minimize the negative impact of waste,
the concept of reuse has become a trend today.

Putting the concept of reuse into practice, many firms have incorporated reverse
logistics systems into their manufacturing systems. This study deals with a multi-
commodity inventory problem in which a firm can obtain its materials/components
from outsourcing and its reverse system. Usually, reverse logistics systems involve
the manufacturer, distribution center, customer, collector, asset recovery and re-
cycler. In this study, the reverse logistics system focuses on scenario of product
return, asset recovery, distributions, inventory and use. The product return in-
volves the collection, product mixing and transfer of returned products at collec-
tion points, the asset recovery of returned products through disassembly, repair
and refurbishing at disassembly centers, and remanufacturing by the manufacturer.
Holding products or materials incurs inventory holding costs while handling re-
turned products incurs not only inventory holding costs but also processing costs
such as collections, refurbishments and repairs, transportation costs of transfer-
ring returned products from collection centers to disassembly centers, as well as
the transportation cost of transferring refurbished parts from disassembly centers
to the manufacturer.

To minimize logistics costs, enterprisers have to carefully determine production
planning, facility location and distribution planning. In this study, the production
planning problem is concerned with how many components should be purchased
and how many products should be produced in each planning period. The facility
location problem is concerned with where and when to set the facilities. The
distribution planning problem is concerned with what amount of items should be
shipped between facilities for each period of time.

Over the years, a number of studies have dealt with production planning prob-
lems. Readers are referred to the textbook by Silver et al. [28] and the recent survey
paper by Jans and Degraeve [8]. In addition, Sodhi and Reimers’ [29] study of
production planning problem considered product recovery. The facility location
and distribution planning problems studied here can be found in logistics or supply
chain works. Roughly, the designs of facilities in logistics systems can be divided
into static and dynamic structures. In the former structure, no change is incurred
throughout the whole planning periods once a facility is established or opened. In
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the latter structure, closing or reopening of facilities is allowed during planning
periods. A variety of relevant studies have discussed static structure. Among
them, studies by Melachrinoudis et al. [19], Fleischmann et al. [6], Jayaraman
et al. [9], Lieckens and Vandaele [17], Lu and Bostel [18], Salema et al. [27], Lee
and Dong [16], Kusumastuti et al. [14].

Melachrinoudis et al. [19] developed a multiple period mixed integer program-
ming model for a landfill facility problem. In their model, a facility can be opened
at the beginning of any period while it cannot be closed once it has been opened.
Lieckens and Vandaele [17] investigated a single product reverse logistics network
in which the surplus of the supply of returned goods over demand is discarded.
This problem was formulated as a mixed integer nonlinear program and a genetic
algorithm was developed to deal with the problem. Lee and Dong [16] developed a
deterministic programming model to deal with an integrated network with forward
and reverse logistics. Their integrated network includes a single manufacturer and
multiple hybrid processing facilities. Kusumastuti et al. [14] discussed a repair
network for a computer manufacturer. The objective of this study is to determine
the optimal locations of local sub-hubs and regional distribution centers, as well
as the allocations of components among them, in order to minimize the total cost
when the locations of service providers, original equipment manufacturers and the
third-party repair vendors are known.

In addition to static models, a number of studies have also discussed dynamic
structure. These include studies by Canel et al. [2], Chau [3], Ko et al. [12], Min
et al. [23], Dias et al. [4], Ko and Evans [11], Hinojosa et al. [7], Min and Ko [22],
etc.

The facility location problems are categorized as NP-hard problems [10,11]. Due
to the computational complexity, finding an optimal solution in polynomial time
for these problems are intractable. Thus, many heuristic approaches have been
developed, which deal with variant location problems, including forward logistics
problems [2,4,7,12,20], reverse logistics problems [14,19,22,23,25,31], and problems
integrated with them [11,16]. Chau [3] used the genetic algorithm to deal with a
construction facility allocation problem. A two stage solution approach was used
to deal with the problem. The linear program was used in the first stage and
a genetic algorithm was used in the second stage. Min et al. [23] employed the
genetic algorithm approach to deal with a reverse logistics system with one cen-
tralized return center and multiple collection points. In their model, the firm can
repeatedly open or close its collection points. Ko and Evans [11] proposed a ge-
netic based heuristic to deal with a dynamic integrated distribution network. The
integrated distribution network simultaneously contains a forward and a reverse
logistics. In the forward flow, manufacturers produce products and sell them to
customers through third party logistics providers. In the reverse flow, returned
products are inspected and separated at repair centers and the collected products
are shipped to manufacturers. In their study, facility opening and closing decisions
are dynamic.

Hinojosa et al. [7] dealt with a facility location problem in which outsourcing
and holding of inventory over consecutive time periods are allowed. Min and
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Ko [22] employed a genetic based algorithm to deal with a reverse logistics design
problem. The purpose of their study is to find the optimal location, number, and
size of repair facilities under capacity limits and service requirements. In addition,
Spengler et al. [30] dealt with a production planning problem that considered
reverse logistics. Prahinski and Kocabasoglu [26] provided a literature review on
reverse supply chains and suggested 10 research propositions.

To recapture the economic value of their products, many firms are encouraged
to engage in product recovery. Some of these firms recover their products from
collection sites, and then disassemble them totally or partially at disassembly sites.
The recovered components are reused in new products, sold in secondary markets
or recycled for other purposes. Langella [15] developed a heuristic to deal with a
demand-driven disassembly planning problem for items with common component
design. Their study did not consider facility location decisions. Melo et al. [20]
dealt with a multi-commodity supply chain network with dynamic location and
relocation of facilities. In their work, reverse logistics was not considered.

Problems associated with a logistics chain may arise during the distribution,
production planning, or inventory stage. There have been several studies in the
literature about the distribution and production planning stages. However, most
studies on reverse logistics have begun with the assumption of transference of
all recycled items to a next intermediate recycling stage. This assumption im-
plies that there are no recycled items in stock in intermediate recycling stations
such as collection centers and treatment centers. In fact, as far as an enterprise
is concerned, intermediate recycling stations may have recycled items in stock.
Therefore, inventory costs at intermediate recycling stations should be taken into
consideration.

Reverse logistics systems with common components (e.g. [15]) and multi-comm-
odity forward logistics systems with dynamic location and relocation of facilities

(e.g. [20]) have been discussed. However, no work has been done on reverse logistics
systems which are simultaneously compose of multi-product and multi-component,
dynamic location and relocation of facilities, and inventory at intermediate recy-
cling stations. Since this problem cannot be ignored, it is worthwhile to study
a logistics system that is multi-product and multi-component with a dynamic re-
verse facility location. This study deals with a multi-product and multi-component
with dynamic reverse facility location problem in relation to the outsourcing, in-
ventory, and production planning stages. The decisions include (1) the production
decision, (2) the component purchasing decision, (3) the dynamic facility location
decision, (4) the returned products’ distribution decision, and (5) the reusable
components’ distribution decision. The mathematical model established in this
study is a constrained linear mixed integer planning model.

The facility location problems are categorized as NP-hard problems. This study
allows analysis not only of dynamic facility location but also of outsourcing, in-
ventory, and production planning. The additional allowance increases the com-
putational complexity. Thus, the investigated problem also belongs to the class
of NP-hard problems and cannot necessarily be solved optimally using either the
traditional optimization method or any existing commercial optimization software
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Figure 1. Location problem of a manufacturing system.

in polynomial time. This study develops a hybrid genetic algorithm to find feasible
solutions to the mathematical model. The rest of this paper is organized as follows:
Section 2 outlines all assumptions made and formulates the supply chain problem
a constrained integer linear programming model. Section 3 then presents the so-
lution methodology. Section 4 tests the performance of the proposed heuristic,
using numerical examples to compare with the well-known commercial software,
CPLEX 10.0. Conclusions are finally drawn in Section 5.

2. Model assumptions and description

The main differences of this model as compared to existing location models is
that it simultaneously allows for production planning, multiple commodities and
components, stocks in intermediate recycling stations and dynamic facility loca-
tions. The network structure of this model is depicted in Figure 1. The network
consists of one manufacturer, N market regions, C potential collection-cites and
D potential treatment cites. In the forward flow, the manufacturer produces J
types of commodities and sells them to N market regions. These commodities are
composed of some components among M types of components. The number of
component-m required by commodity-j is njm. The manufacturer can get each
type of component by outsourcing or from its reverse logistics system. Demand
for commodity-j in market region-n in period t is assumed to be a constant value
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of djnt and all demands must be satisfied. In the reverse flow, the reverse logistics
system starts with returned products from customers to collection-centers. The re-
turned products from market region-n to candidate collection-site c are separated
into returnable and un-returnable products. The fractions of the returnable and
un-returnable returned products from market region-n to candidate collection-site
c are assumed to be a constant value of rc

n and a constant value of bc
n, respectively.

Symbols drc
jt and dbc

jt are respectively used to represent the amounts of return-
able and un-returnable products collected from all market regions to collection-
site c. Since both drc

jt and dbc
jt are integers, we make a simple assumption that

drc
jt and dbc

jt are given by
∑N

n=1�djntr
c
n� and

∑N
n=1�djntb

c
n�, respectively. The

disposal cost for commodity j at collection center c is τc
j per unit. To get com-

ponents from returned products, the firm should ship the returnable commodities
to treatment-centers for clearing, disassembling and refurbishing. All returnable
commodities shipped to treatment-centers are transformed into reusable compo-
nents. These components are viewed as new components and can be stocked in
treatment-centers or shipped to the manufacturer to produce products.

In addition, we make the following assumptions. The locations of the collection-
centers should be selected from C potential sites and the locations of the treatment-
centers should be selected from D potential sites. For managerial purposes, it is
assumed that a collection center is a dedicated facility to a treatment-center only.
That is, the opening of a collection center only can be assigned to one treatment-
center. No inventory is allowed in hand when a facility is closed. Inventory costs
are based on an average inventory basis. Moreover, we assume that there are
constraints on production and stock capacities. The production limit per period
for commodity-j at manufacturer is prodF

j , the warehousing limit for commodity-j
at manufacturer is capF

j , the warehousing limitation for commodity-j at collection-
center c is capc

j and the warehousing limitation for component-m at treatment-
center d is capd

m.
The manufacturer aims to minimize total logistics costs over T planning peri-

ods by determining the reverse logistics structure, production planning, and the
distribution amounts between facilities. The logistics costs are composed of the
fixed operation and start-up cost for all collection centers, CSC, the total fixed
operation and start-up cost for all treatment-centers, CSD, the operation and dis-
posal costs incurred at all collection-centers, COC, the operation costs incurred
at all treatment-centers, COD, the cost of shipping returned commodities from
collection-centers to treatment-centers, CTcd, the cost of shipping components
from treatment-centers to the manufacturer, CTdF , the commodity inventory cost
at the manufacturer, HF , and the component inventory cost at the manufacturer,
HP , the returned-commodity inventory cost for all collection-centers, HC, the
component inventory costs for all treatment-centers, HD and outsourcing costs
CO.

The decision process is addressed as follows. At the beginning of the each period,
the decisions made by the manufacturer include (1) the production decision, which
specifies the producing amount of each product, (2) the purchasing decision, which
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specifies the purchasing amount of each component from external suppliers, (3) the
facility location decision, which determines whether to open/close closed/opened
collection-centers, and determines whether to open/close closed/opened treatment-
centers, (4) the returned products’ distribution decision, which specifies the deliv-
ery amount of each returnable product between collection-centers and treatment-
centers, and (5) the reusable components’ distribution decision, which specifies the
delivery amount of the reusable components between the treatment-centers and
the manufacturer.

In addition to the notation denoted previously. We denote additional notation
and summarize the notation denoted previously as follows.

Notation:
C: total number of potential collection-centers,

D: total number of potential treatment-centers,

N : total number of market regions,

J : total number of commodity types,

M : total number of component types,

T : total number of planning periods,

djnt: the demand amount of commodity-j at market region-n in period t,

drc
jt: the amount of commodity-j returned to collection-center c in period t,

cc: the fixed operating cost per period for collection-center c,

cd: the fixed operating cost per period for treatment-center d,

vc: the start-up cost incurred by opening or reopening a collection-center at
candidate collection-site c,

vd: the start-up cost incurred by opening or reopening a treatment-center at
candidate treatment-site d,

gc
j : the variable cost incurred by the collection of one unit of product-j by

collection-center c,

gd
j : the variable cost incurred by the treatment of one unit of returned product-

j by treatment-center d,

τc
j : unit disposed cost for returned commodity-j at collection-center c,

cm: the unit outsourcing cost of component-m,

hF
j : the unit inventory holding cost per period for commodity-j at manufac-

turer,

hp
m: the unit inventory holding cost per period for component-m at manufac-

turer,

hc
j : the unit inventory holding cost per period for returned commodity-j at

collection-center c,
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hd
m: the unit inventory holding cost per period for component-m at treatment-

center d,

zd
cj: the shipping cost per unit of commodity-j per unit length from collection-

center c to treatment-center d,

zF
dm: the shipping cost per unit of component-m per unit length from treatment-

center d to manufacturer,

wd
c : the distance between collection-center c and treatment-center d,

wF
d : the distance between treatment-center d and the manufacturer,

njm: the amount of component-m used by producing one unit of commodity-j.
prodF

j : production capacity per period for commodity-j,

capF
j : stock capacity for commodity-j at manufacturer,

capc
j : stock limitation for commodity-j at collection-center c,

capd
m : stock limitation for component m at treatment-center d,

B: a very large number.
The decision variables of the problem are denoted as follows.

xc
t : 1 if collection-center c is opened or reopened during period t, 0 otherwise,

x̃c
t : a start up variable, 1 if collection-center c is reopened in period t, 0

otherwise,
sd

t : 1 if treatment-center d is opened or reopened during period t, 0 otherwise,
s̃d

t : a start up variable, 1 if treatment-center d is reopened in period t, 0
otherwise,

ud
ct: 1 if both collection-center c and treatment-center d are opened and coll-

ection-center c is assigned to treatment-center d in period t, 0 otherwise,
Y d

cjt: the quantity of commodity j that is shipped from collection-center c to
treatment-center d at in period t,

Y F
dmt: the quantity of component-m that is shipped from treatment-center d to

manufacturer in period t,
QF

jt: the quantity of commodity-j produced by the manufacturer in period t,
Omt: the quantity of component-m purchased from outside suppliers at the

beginning of period t.

To develop the formulation for our model, we will first develop the inventory
functions. Let IF

jt , Ip
mt, Ic

jt and Id
mt be the amount of commodity-j held in stock

by the manufacturer at the end of period t, the amount of component-m held
in stock by the manufacturer at the end of period t, the amount of returned
commodity-j held by collection-center c at the end of period t, and the amount
of component-m held by treatment-center d at the end of period t, respectively.
Note that the initial inventory plus the goods input minus the goods output is
equal to the ending inventory. Using the conditions of IF

j0 = 0, Ip
m0 = 0, Ic

j0 = 0
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and Id
m0 = 0, and similar approaches used by Brahimi et al. [1], Eksioglu [5] and

Jans and Degraeve [8], we can express the inventories as follows.

IF
jt =

t∑
k=1

QF
jk −

N∑
n=1

t∑
k=1

djnk, ∀ j, t, (2.1)

IF
mt =

D∑
d=1

t∑
k=1

Y F
dmk −

J∑
j=1

t∑
k=1

QF
jknjm +

t∑
k=1

Omk, ∀ m, t, (2.2)

Ic
jt =

t∑
k=1

drc
jkxc

k −
D∑

d=1

t∑
k=1

Y d
cjk, ∀ c, j, t, (2.3)

Id
mt =

C∑
c=1

J∑
j=1

t∑
k=1

Y d
cjknjm −

t∑
k=1

Y F
dmk, ∀ d, m, t. (2.4)

Then, the formulation of the problem can be formulated as Problem P1.
Problem P1.

Min : CSC + CSD + COC + COD + CTcd + CTdF + HF + HP

+HC + HD + CO (2.5)

where

CSC =
C∑

c=1

T∑
t=1

ccxc
t +

C∑
c=1

T∑
t=1

vcx̃c
t , (2.6)

CSD =
D∑

d=1

T∑
t=1

cdsc
t +

D∑
d=1

T∑
t=1

vds̃d
t , (2.7)

COC =
C∑

c=1

T∑
t=1

xc
t

J∑
j=1

(
(drc

jt + dbc
jt)g

c
j + dbc

jtτ
c
j

)
, (2.8)

COD =
C∑

c=1

D∑
d=1

J∑
j=1

T∑
t=1

Y d
cjtg

d
j , (2.9)
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CTcd =
C∑

c=1

D∑
d=1

J∑
j=1

T∑
t=1

wd
cY d

cjtz
d
cj, (2.10)

CTdF =
D∑

d=1

M∑
m=1

T∑
t=1

wF
d Y F

dmtz
F
dm, (2.11)

HF =
J∑

j=1

T∑
t=1

0.5(IF
jt + IF

j,t−1)h
F
j

=
J∑

j=1

T∑
t=1

(T − t + 0.5)QF
jth

F
j −

J∑
j=1

N∑
n=1

T∑
t=1

(T − t + 0.5)djnth
F
j , (2.12)

HP =
M∑

m=1

T∑
t=1

0.5(Ip
mt + Ip

m,t−1)h
p
m

=
D∑

d=1

M∑
m=1

T∑
t=1

(T − t + 0.5)Y F
dmth

p
m +

M∑
m=1

T∑
t=1

(T − t + 0.5)Omth
F
m

−
J∑

j=1

M∑
m=1

T∑
t=1

(T − t + 0.5)QF
jtnjmhp

m, (2.13)

HC =
C∑

c=1

J∑
j=1

T∑
t=1

0.5(Ic
jt + Ic

j,t−1)h
c
j

=
C∑

c=1

J∑
j=1

T∑
t=1

(T − t + 0.5)drc
jtx

c
th

c
j

−
C∑

c=1

D∑
d=1

J∑
j=1

T∑
t=1

(T − t + 0.5)Y d
cjth

c
j , (2.14)

HD =
D∑

d=1

M∑
m=1

T∑
t=1

0.5(Id
mt + Id

m,t−1)h
d
m

=
C∑

c=1

D∑
d=1

J∑
j=1

M∑
m=1

T∑
t=1

(T − t + 0.5)Y d
cjtnjmhd

m

−
D∑

d=1

M∑
m=1

T∑
t=1

(T − t + 0.5)Y F
dmth

d
m, (2.15)

CO =
M∑

m=1

T∑
t=1

Omtcm, (2.16)
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subject to the following constraints:

x̃c
t ≥ xc

t − xc
t−1, ∀ c, t, (2.17)

s̃d
t ≥ sd

t − sd
t−1, ∀ d, t, (2.18)

D∑
d=1

ud
ct = xc

t , ∀ c, t, (2.19)

C∑
c=1

ud
ct ≥ sd

t , ∀ d, t, (2.20)

ud
ct ≤ xc

t , ∀ c, d, t, (2.21)

ud
ct ≤ sd

t , ∀ c, d, t, (2.22)

Y d
cjt ≤ ud

ctB, ∀ c, d, j, t, (2.23)

Y d
cjt ≥ ud

ct, ∀ c, d, j, t, (2.24)

Y F
dmt ≤ sd

t B, ∀ m, d, t, (2.25)

Y F
dmt ≥ sd

t , ∀ m, d, t, (2.26)

t∑
k=1

drc
jkxc

k −
D∑

d=1

t∑
k=1

Y d
cjk ≤ xc

tB, ∀ c, j, t, (2.27)

C∑
c=1

J∑
j=1

t∑
k=1

Y d
cjknjm −

t∑
k=1

Y F
dmk ≤ sd

t B, ∀ d, m, t, (2.28)

QF
jt ≤ Prodj , ∀ j, t, (2.29)

t∑
k=1

QF
jk −

N∑
n=1

t∑
k=1

djnk ≤ capF
j , ∀ j, t, (2.30)

D∑
d=1

t∑
k=1

Y F
dmk −

J∑
j=1

t∑
k=1

QF
jknjm +

t∑
k=1

Omk ≤ capF
m, ∀ m, t, (2.31)

t∑
k=1

drc
jkxc

k −
D∑

d=1

t∑
k=1

Y d
cjk ≤ capc

j , ∀ c, j, t, (2.32)

C∑
c=1

J∑
j=1

t∑
k=1

Y d
cjkxnjm −

t∑
k=1

Y F
dmk ≤ capd

m, ∀ d, m, t, (2.33)
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t∑
k=1

QF
jk −

N∑
n=1

t∑
k=1

djnk ≥ 0, ∀ j, t, (2.34)

D∑
d=1

t∑
k=1

Y F
dmk −

J∑
j=1

t∑
k=1

QF
jknjm +

t∑
k=1

Omk ≥ 0, ∀ m, t, (2.35)

t∑
k=1

drc
jkxc

k −
D∑

d=1

t∑
k=1

Y d
cjk ≥ 0, ∀ c, j, t, (2.36)

C∑
c=1

J∑
j=1

t∑
k=1

Y d
cjkxnjm −

t∑
k=1

Y F
dmk ≥ 0, ∀ d, m, t, (2.37)

xc
0 = sd

0 = 0, ∀ c, d, (2.38)

xc
t , s

d
t , U

d
ct ∈ {0, 1}, ∀ c, d, t. (2.39)

In addition, the values of Omt, Y d
cjt and Y F

dmt are required to be non-negative
integers for all c, d, j, m and t. Note the value of 0.5 in HD represents the
situation that the inventory holding cost is based on average inventory level.

Equations 2.17 and 2.18 guaranties that start-up cost are incurred if and only if
a facility is opened or reopened. The reason is as follows. The possible combina-
tions of (xc

t , x
c
t−1) are (0,0), (0,1), (1,0) and (1,1). The value of x̃c

t should be one
for the combination of (1,0) and should be zero for the combinations of (0,0), (0,1)
and (1,1). From the constraint of x̃c

t ≥ xc
t −xc

t−1, we see that the value of x̃c
t must

be one for the combination of (1,0) and can be one or zero for other combinations.
Since the purpose is to minimize the total logistics costs, x̃c

t = 1 increase the total
cost. Thus, the value of x̃c

t must be zero for the combinations of (0,0), (0,1) and
(1,1). Accordingly, constraint (2.17) is sufficient to control the value of x̃c

t . Us-
ing the same logic, constraint (2.18) can be applied to determine the value of s̃d

t .
Equation (2.19) guarantees that collection center c must be assigned to exactly one
treatment-center if collection-center c is opened; equation (2.20) guarantees that at
least one collection-center is assigned to treatment-center d if treatment-center d
is opened; equation (2.21) guarantees that collection center c should not assigned
to any treatment-center if collection-center c is closed; equation (2.22) guaran-
tees that no collection-center ships returned commodities to treatment-center d if
treatment-center d is closed; equation (2.23) guarantees that no returned commod-
ity is shipped from collection-center c to treatment-center d if collection-center c is
not assigned to treatment-center d; equation (2.24) guarantees that the quantity of
returned commodities shipped from collection-center c to treatment-center d must
be larger then zero if collection-center c is assigned to treatment-center d; equa-
tion (2.25) guarantees that no component is shipped from treatment-center d to
the manufacturer if treatment-center d is not open; equation (2.26) guarantees that
the quantities of components shipped from treatment-center d to the manufacturer
must be larger than zero if treatment-center d is open; equation (2.27) guarantees
that no returned commodity is held in collection-center c if collection-center c is
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closed; equation (2.28) guarantees that no component is held in treatment-center
d if treatment-center d is closed; equations (2.29) and (2.30) respectively represent
the production limit and the warehousing limit for commodities at the manu-
facturer; equation (2.31) represents the warehousing limit for components at the
manufacturer; equation (2.32) represents the warehousing limit for returned com-
modities at collection-centers; equation (2.33) represents the warehousing limit
for components at treatment-centers; equations (2.34) to (2.37) ensures that the
inventory levels are nonnegative; (2.34) also ensures that demands must be sat-
isfied; equation (2.38) specifies the initial facility status; equation (2.39) specifies
the binary nature of the parameters.

3. Solution methology

The model developed in this study is a generalization of a simple plant location
problem, so it can be described as a NP-hard problem (Krarup and Pruzan [13]).
We develop a hybrid genetic algorithm to deal with this problem.

3.1. Hybrid genetic algorithm

Problem P1 is a constrained integer linear programming model. Due to the
computational complexity of the model, there is no guarantee that any approach
can solve the problem optimally within a polynomial time. To overcome this dif-
ficulty, we have developed a solution approach to obtain a compromise within a
reasonable CPU time. The solution approach is an iterative method in which the
concepts of the genetic algorithm (GA) and linear programming are employed.
GA is an iterative optimization procedure that mimics the process of natural evo-
lution. GAs are a particular class of evolutionary algorithms, which generate
exact or approximate solutions to optimization and search problems using tech-
niques inspired by evolutionary biology such as inheritance, mutation, selection,
and crossover. For details, readers are referred to two textbooks by Onwubolu and
Babu [24] and Michalewicz [21].

At each iteration, the values of xc
t , sd

t and ud
ct are determined by GA. Then, this

paper establishes Problem P2 by substituting the values of xc
t , sd

t and ud
ct into

Problem P1. Then, we solve Problem P2 by relaxing the integer constraints.
Finally, we round the relaxed decision variables to obtain feasible solutions of
Problem P1. The details of the heuristic are addressed as follows.

3.1.1. Encoding

Designing a suitable chromosome is the first step in implementing a successful
GA. Each chromosome is represented as a single dimensional array with CT genes.
Each gene is randomly generated by an integer number within the range of [0, D].
The value of the (t− 1)C + c-th entry of a chromosome represents whether or not
collection-center c is assigned to treatment-center d in period t. For example, if
the number of candidate collection sites, the number of candidate treatment sites
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Table 1. An encoding example.

t = 1 t = 2 t = 3
1 0 2 0 1 4 0 0 1

Table 2. A description of crossover operator.

Chromosome
Individual t = 1 t = 2 t = 3

Parent 1 1 0 2 0 1 4 0 0 1
Parent 2 0 1 3 1 0 2 1 2 0
Offsprint 1 1 0 3 0 0 2 0 2 0
Offsprint 2 0 1 2 1 1 4 1 0 1

and the number of planning periods are C = 3, D = 4 and T = 3, respectively,
then, the number of the total genes of a chromosome is CT = 9 and the possible
value of each gene is within the range of 0 to 4. Table 1 is a description of the
encoding operator.

3.1.2. Genetic operators

Four genetic operators are used in our proposed heuristic. These operators are
described as follows.

1. Cloning operator:
In our genetic algorithm, we first select the best K individuals and di-
rectly copy them to the next generation, and then produce the remaining
Numpop − K individuals by parent selection, crossover and mutation op-
erators.

2. Parent selection:
Roulette-wheel selection is used to produce the mating pool to produce
the remaining individuals.

3.1.3. Crossover operator

1. Sequentially choose two individuals from the mating pool for crossover.
2. For each period, generate a random integer number pos from the range of

[0, C − 1]. The number pos indicates the position of the crossing point.
Table 2 is a description of the crossover operator. In this table, we assume
that the crossing points are 2, 1 and 1 for t = 1, t = 2 and t = 3,
respectively.

3.1.4. Mutation operator

1. For each crossed individual, generate a random number r within the range
[0, 1]. If r < ρ, generate two random integer numbers k1 and k2 within
[1, CT ] and [0, D], respectively, and replace the number at k1th bit with the
number k2.
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Table 3. A decoding operation.

xc
t c sd

t d
t 1 2 3 t 1 2 3 4

1 0 1 1 1 1 1 0 0
2 1 1 1 2 1 0 0 1
3 1 0 1 3 1 0 0 0

Table 4. A decoding operation.

ud
c1 d ud

c2 d ud
c3 d

c 1 2 3 4 c 1 2 3 4 c 1 2 3 4

1 0 0 0 0 1 1 0 0 0 1 1 0 0 0
2 1 0 0 0 2 1 0 0 0 2 0 0 0 0
3 0 1 0 0 3 0 0 0 1 3 1 0 0 0

2. Copy the individual to the next generation.

3.1.5. Decoding

The heuristic initializes a population with Numpop chromosomes. Each chro-
mosome has CT genes and each gene is randomly generated by an integer number
E within the range of [0, D]. The integer number E may be a zero or a positive
number. Integer number E = 0 means that no collection-center is located at candi-
date site c. That is, xc

t = 0. Integer number E > 0 means that a collection-center
is located at candidate site c, a treatment-center is located at candidate treatment
site E and collection-center c is assigned to treatment-center E. That is, xc

t = 1,
sE

t = 1 and uE
ct = 1. Consider the previous example in Table 2. The chromosome

of offspring 2 which is encoded as (0, 1, 2, 1, 1, 4, 1, 0, 1) can be decoded as those in
Tables 3 and 4.

Tables 3 and 4 show that in period 1, collection-centers 2 and 3 are opened and
assigned to treatment-centers 1 and 2, respectively; in period 2, collection-centers
1, 2 and 3 are opened and assigned to treatment-centers 1, 1 and 4, respectively;
in period 3, collection-centers 1 and 3 are opened and both of them are assigned
to treatment-center 1.

3.1.6. Fitness function

To measure the goodness of a chromosome, we have to compute its fitness
value. In problem P1, the values of xc

t , sd
t and ud

ct are binary decision variables
and the decision variables of Omt, Qjt, Y d

cjt and Y F
dmt are required to be integers.

Substituting the values of xc
t , sd

t and ud
ct into problem P1, making it a more

simplified model. We refer to this model as Problem P2.
At each iteration, we relax the integer constraints on decision variables Omt,

Qjt, Y d
cjt and Y F

dmt in Problem P2. We refer to such a problem as problem P3.
It is clear that P3 is a linear programming problem and can be solved optimally.
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Table 5. Problem types.

Type C D J M N T

1 3 3 3 3 3 3
2 5 5 5 5 5 5
3 5 5 5 5 5 10
4 8 8 8 8 8 8
5 10 10 10 10 10 10

However, the values of Omt, Qjt, Y d
cjt and Y F

dmt are not necessarily integers. Thus,
the solution obtained from P3 may be an infeasible solution for problem P2. For
the integer constraints to be satisfied, we round off the values of Omt, Qjt, Y d

cjt

and Y F
dmt. However, this may lead to the problem that some constraints may be

violated. To reduce the probability that chromosomes with infeasible solutions are
copied to the next generation, the fitness function is evaluated by adding a penalty
to the original objective function. The penalty function is assumed to be a linear
function of the amount by which a constraint’s boundary is violated. For each
violation, the amount of the penalty is determined by the violation amount times
a fixed penalty cost ηe where e is the equation number of an inequality constraint.
For example, if the violation amount for constraint (6) is η6 = 2 units and the unit
penalty cost is set at 5, then the penalty is 10.

4. Computational study

In this section, the proposed approach was applied to solve some fictitious
problems. Six problem types, which are described in Table 5, have been considered.
For each of these problem types, the number of potential collection cites, C, the
number of potential treatment cites, D, the number of market regions, N , the
number of products, J and the number of planning periods, T are given, and 20
problem instances were generated. Due to extensive data requirements, for the
sake of simplification, we assumed that the values of the parameters of djnt, rc

n,
bc
n, cc, cd, vc, vd, gc

j , gd
j , cm, hF

j , hp
m, hc

j , hd
m, zd

cj, zF
dm, wd

c , wF
d , njm, prodF

j , capF
j ,

capc
j and capd

m of the first problem instance in each problem type were generated
according to Table 6.

The parameters of the problem instances 2–20 in each problem type were gener-
ated in the same way as the first problem instance except that one of the parameter
generating rules was varied. The different parameters and the generating rules for
problem instances 2–20 are shown in Table 7. For these six problem types, problem
type 1 has the smallest problem size and problem-type 2 has the second smallest
problem size, and so on.

To measure the performance of the proposed HGA (hybrid genetic algorithm),
the commercial software GAMS/CPLEX modeling language was adopted for the
purpose of feasible solution comparison with the proposed HGA for all problem
types. The proposed HGA was coded in Visual C++ 6.0 programming language
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Table 6. Values of the parameters for the first test problem in
each problem type.

njm = m vc = 8000 + 800c

cm = 5 + 0.5m vd = 15 000 + 100(D − d)
prodF

j = 100 000 + 1000j hF
j = 0.02 + 0.01j

capF
j = 100 000 + 1000j hp

m = 0.01 + 0.005m

capp
m = 50 000 + 500m hd

m = 0.005 + 0.002m + 0.001d

capd
m = 50 000 + 500(D − d) hc

j = 0.005 + 0.002j + 0.001c
capc

j = 50 000 + 500c gc
j = 0.5 + 0.2(J − j) + 0.2(C − c)

djnt = 5000 + 20(j + n + t) gd
j = 1 + 0.2(J − j) + 0.1(D − d)

rc
n = (0.3 − 0.01|n − c|)/C τ j

c = 0.05

wF
d = 5 + 0.5d wd

c = 5 + 0.5|c − d|
zd

cj = 0.1 + 0.05j zF
dm = 0.02 + 0.01m

cc = 30 000 + 1000c cd = 50 000 + 1000d

Table 7. Replaced parameters and the generating rule for test
cases 2–20.

11 wd
c = 10 + 0.5|c − d|

2 cm = 5.5 + 0.5m 12 wd
c = 12 + 0.5|c − d|

3 cm = 6.0 + 0.5m 13 wd
c = 15 + 0.5|c − d|

4 cm = 7.0 + 0.5m 14 zd
cj = 0.2 + 0.05j

5 djnt = 5500 + 20j + 20n + 20t 15 zd
cj = 0.25 + 0.05j

6 djnt = 6000 + 20j + 20n + 20t 16 zd
cj = 0.3 + 0.05j

7 djnt = 6500 + 20j + 20n + 20t 17 vd = 18 000 + 100(D − d)

8 wF
d = 10 + 0.5d 18 vd = 20 000 + 100(D − d)

9 wF
d = 12 + 0.5d 19 cc = 35 000 + 1000c

10 wF
d = 15 + 0.5d 20 cc = 40 000 + 1000c

and along with the GAMS/CPLEX model were implemented on an Intel Core 2
Duo personal computer equipped with a speed of 2.4 GHz and 2GB of memory.
For identifying the gaps between the results obtained from CPLEX and HGA
for optimal solution, the Lingo global solver [32], which can identify the global
minima, was used to solve all problems. For practical concerns, all algorithms
were terminated if the execution time exceeded 10 h.

Problem instances in problem type 1 were run to determine the optimal com-
binations of population size, maximum number of generations, the crossover rate,
mutation rate and maximum number of iterations. The parameters of HGA after
the tests were set as follows. The population size was equaled to 14; the maximum
number of iterations was set to be 5T ; the cloning parameter K was set at 3;
the crossover rate was set at 100%; the mutation rate was set at 5%; the penalty
values of ηes were set at 5 for all e.

To explain the application of the decisions, we show the dynamic facility and
shipping decisions for the first problem instance of problem-type 1 that was solved
by HGA. The computational result shows that xc

t = 1 for all t and c, sd
t = 0 for
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Table 8. Values of Omt for the first case.

m t = 1 t = 2 t = 3

1 33 054 33 186 33 316
2 66 108 66 372 66 632
3 99 162 99 558 99 948

Table 9. Values of QF
jt for the first case.

j t = 1 t = 2 t = 3

1 15 240 15 300 15 360
2 15 300 15 360 15 420
3 15 360 15 420 15 480

Table 10. Values of Y 3
cjt for the first case.

c = 1 c = 2 c = 3
j t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

1 1422 1427 1432 1422 1427 1433 1422 1428 1433
2 1427 1432 1438 1427 1433 1438 1428 1433 1438
3 1432 1438 1444 1433 1438 1444 1433 1438 1444

Table 11. Values of Y F
3mt for the first case.

m t = 1 t = 2 t = 3

1 12 846 12 894 12 944
2 25 692 25 788 25 888
3 38 538 38 682 38 832

all t and d except for s3
t = 1 for all t. This implies that collection centers 1,

2 and 3, and treatment-center 3 were opened in period 1 and were kept open
throughout the entire planning periods. The production and purchasing schedules
are shown in Tables 8 and 9, respectively. The amount of returned products
shipped from collection-centers to treatment-center 3 is shown in Table 10, and
the amount of components shipped from treatment-center 3 to the manufacturer
is shown in Table 11. For example, the amount of returned commodity-1 shipped
from collection-center 1 to treatment-center 2 was 1422 in period 1.

The exact solution approach using Lingo global solver was only able to solve
problem types 1 an 2 optimally. However, it failed to produce global solutions for
problem types 3 to 6 after 10 h of computational time due to the complexity of
the problem structure.

For problem types 1 and 2, the gaps between the heuristic solutions and global
solutions, as well as those between the CPLEX solutions and the global solutions
in terms of solution qualities and computational times for problem types 1 and 2
are shown in Tables 12 and 13, respectively. The criteria of performances consid-
ered were the quality of the total logistics cost and the amount of CPU time (s).
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Table 12. Computational result for problem type 1.

Optimal GAMS HGA Gap
No. Sol Time Sol Time Sol Time S-CG S-HG

1 4 363 171 6 4 363 171 3 4 363 171 21 0.00% 0.00%
2 4 661 839 10 4 661 839 3 4 661 839 28 0.00% 0.00%
3 4 960 507 10 4 960 507 3 4 960 507 28 0.00% 0.00%
4 5 557 843 7 5 557 843 3 5 557 843 27 0.00% 0.00%
5 4 742 128 8 4 742 128 3 4 742 128 27 0.00% 0.00%
6 5 121 093 13 5 121 263 3 5 121 093 27 0.00% 0.00%
7 5 500 000 13 5 500 000 3 5 500 000 27 0.00% 0.00%
8 4 413 460 8 4 413 460 3 4 413 460 27 0.00% 0.00%
9 4 433 576 10 4 433 576 3 4 433 576 27 0.00% 0.00%
10 4 463 750 10 4 463 750 2 4 463 750 27 0.00% 0.00%
11 4 401 880 10 4 401 880 3 4 401 880 27 0.00% 0.00%
12 4 417 363 7 4 417 363 4 4 417 363 27 0.00% 0.00%
13 4 440 588 5 4 440 588 3 4 440 588 27 0.00% 0.00%
14 4 384 447 7 4 384 452 3 4 384 447 27 0.00% 0.00%
15 4 394 768 10 4 394 768 3 4 394 768 27 0.00% 0.00%
16 4 405 084 9 4 405 084 3 4 405 084 27 0.00% 0.00%
17 4 366 171 12 4 366 821 2 4 366 171 27 0.01% 0.00%
18 4 368 171 10 4 368 821 2 4 368 171 27 0.01% 0.00%
19 4 408 171 11 4 408 171 4 4 408 171 27 0.00% 0.00%
20 4 453 171 8 4 453 171 4 4 453 171 27 0.00% 0.00%

Average 9.2 2.8 27.1 0.00% 0.00%

The solution percentage gap, defined as 100 (HGA (or CPLEX) solution – global
solution)/(global solution) percentage points, was used to evaluate the solution
quality of the HGA (or CPLEX) for samll size problems. The symbols of S-CG
and S-HG are used to represent the solution percentage gaps between the exact
solutions obtained by Lingo global solver and CPLEX’s feasible solutions, and
between the exact solutions and the HGA’s feasible solutions, respectively. In ad-
dition, the time gap, (defined as the CPU time used by Lingo global solver – the
CPU time used by HGA or CPLEX), was used to evaluate the efficiency of the
proposed heuristic.

In terms of running time, from Table 12, we see that the average computational
time to solve test cases in problem type 1 are 9.2, 2.8 and 27.1 for Lingo Global
solver, CPLEX solver and HGA, respectively. We can also conclude from Table 12
that CPLEX outperformed HGA, and the Lingo Global solver outperformed HGA
for problem type 1. From Table 13, we see that problem type 2 was solved in an
average of 164.2, 7.1 and 135.2 seconds by the Lingo Global solver, CPLEX solver
and HGA, respectively. From Table 13, we see that CPLEX outperformed the
HGA, and HGA outperformed the Lingo Global solver for problem type 2. In
general, either approach will need more computational time to solver the testing
problems when the problem size increases. However, we can find from these two
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Table 13. Computational result for problem type 2.

Optimal GAMS HGA Gap
No. Sol Time Sol Time Sol Time S-CG S-HG

1 51 878 836 208 51 878 836 7 51 878 836 114 0.00% 0.00%
2 55 472 836 205 55 472 836 7 55 472 836 108 0.00% 0.00%
3 59 066 836 126 59 066 836 8 59 066 836 128 0.00% 0.00%
4 66 254 836 144 66 254 836 6 66 254 836 138 0.00% 0.00%
5 56 773 768 146 56 773 768 8 56 773 768 136 0.00% 0.00%
6 61 668 699 171 61 668 699 6 61 668 699 138 0.00% 0.00%
7 66 563 630 138 66 563 630 7 66 563 630 139 0.00% 0.00%
8 52 594 111 121 52 594 111 8 52 594 111 141 0.00% 0.00%
9 52 880 221 159 52 880 221 9 52 880 221 138 0.00% 0.00%
10 53 309 386 123 53 309 386 7 53 309 386 138 0.00% 0.00%
11 52 089 536 247 52 089 536 7 52 089 536 139 0.00% 0.00%
12 52 173 816 207 52 173 816 7 52 173 816 136 0.00% 0.00%
13 52 300 236 169 52 300 236 7 52 300 236 143 0.00% 0.00%
14 51 979 819 146 51 979 819 8 51 979 819 139 0.00% 0.00%
15 52 030 310 154 52 030 310 8 52 030 310 145 0.00% 0.00%
16 52 080 801 152 52 080 801 9 52 080 801 135 0.00% 0.00%
17 51 881 836 240 51 881 836 6 51 881 836 139 0.00% 0.00%
18 51 883 836 129 51 883 836 5 51 883 836 133 0.00% 0.00%
19 52 003 836 124 52 003 836 7 52 003 836 135 0.00% 0.00%
20 52 128 836 175 52 128 836 7 52 128 836 141 0.00% 0.00%

Average 164.2 7.1 135.2 0.00% 0.00%

tables that the time needed by HGA and CPLEX grow slower than the Lingo
global solve.

In terms of solution qualities, we observe from Tables 12 and 13 that both HGA
and CPLEX obtained the optimal solutions for all test cases in problem types 1
and 2. Therefore, in terms of solution qualities, both HGA and CPLEX performed
well for problem types 1 and 2.

For problem types 3 to 6, since we failed to produce optimal solutions after
more than 10 CPU hours, the feasible solution obtained by HGA was compared
to those found by CPLEX solver. The percentage gap, defined as 100 (CPLEX
solution -HGA solution)/(CPLEX solution) percentage points, is used to evaluate
the solution quality of the HGA. In addition, the time gap (defined as the CPU
time used by HGA – the CPU time used by CPLEX), is used to evaluate the
efficiency of the proposed heuristic.

For problem types 3 and 4, we observe from Tables 14 an 15 that except for
problem instance 1 of problem type 3, the feasible solutions found by HGA are
all better than or are in par with the feasible solutions found by CPLEX solver.
In addition, the average CPU time used in finding feasible solutions by HGA was
much slower compared to the average times used by CPLEX solver. Therefore,
from Tables 14 and 15, we also found that CPLEX outperformed HGA with respect
to computational time in most cases.
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Table 14. Computational result for problem type 3.

GAMS HGA Gap
No. Sol Time Sol Time Sol Time

1 104 671 617 435 104 684 093 739 −0.01% 304
2 111 928 992 213 111 835 409 1655 0.08% 1442
3 119 188 263 358 119 169 080 1180 0.02% 822
4 133 698 819 193 133 698 819 723 0.00% 530
5 114 462 556 350 114 384 650 875 0.07% 525
6 124 253 495 341 124 249 044 619 0.00% 278
7 134 117 822 896 134 038 906 578 0.06% –317
8 106 149 061 919 106 113 681 635 0.03% –284
9 106 691 426 294 106 641 412 1070 0.05% 776
10 107 578 412 669 107 558 044 584 0.02% –85
11 105 094 781 218 105 094 781 1017 0.00% 799
12 105 267 264 378 105 264 966 610 0.00% 233
13 105 522 542 395 105 444 695 895 0.07% 500
14 104 884 734 579 104 873 234 730 0.01% 151
15 105 007 191 470 104 975 191 655 0.03% 184
16 105 096 189 359 105 077 149 723 0.02% 364
17 104 672 319 145 104 672 319 621 0.00% 476
18 104 674 319 26 104 674 319 654 0.00% 627
19 104 927 657 400 104 919 319 626 0.01% 226
20 105 172 285 290 105 169 319 629 0.00% 339

Average 396 791 0.02% 394

For problem types 5 and 6, we found that CPLEX failed to produce feasible
solutions after more than 10 h for problem types 4 and 5 while the proposed
HGA was still successful in generating feasible solution for all test problems within
reasonable CPU times. In order to test the performance of the proposed HGA on
a problem size which CPLEX solver can not solve, we compared the total cost
obtained by HGA, with associated lower bound to evaluate the solution quality
of the proposed HGA. The lower bound was obtained by using Lingo solver to
solve a relaxed P1 model in which the integer constraints on variable QF

jt, Omt,
Y d

cjt and Y F
dmt are relaxed. The solution and computational time are shown in

Tables 15 and 16, respectively. In these tables,the HL-gap denotes the percentage
gap between the feasible solution obtained by HGA and the lower bound obtained
in each instance of problem P1. We found from Tables 15 and 16 that the proposed
HGA produced near-optimal solutions with deviations of less than 0.1% from the
lower bound solutions. Accordingly, from the above computational results, the
proposed HGA can be used as a local search heuristic to solve the dynamic facility
logistics problems.

Summary of the computational results:

1. In problem types 1 and 2, from Tables 12 and 13, we found that both HGA
and CPLEX solver can produce global costs for all problem instances. In
terms of computational time, CPLEX solver is superior to HGA.



174 P.-S. YOU ET AL.

Table 15. Computational result for problem type 4.

GAMS HGA Gap
No. Sol Time Sol Time Sol Time

1 222 171 590 1379 221 926 041 1723 0.11% 344
2 236 994 844 1088 236 948 180 1876 0.02% 787
3 251 883 715 1003 251 883 715 1440 0.00% 437
4 281 666 335 1586 281 616 563 1653 0.02% 67
5 242 992 651 1977 242 958 584 1283 0.01% –695
6 263 884 049 1518 263 801 948 1903 0.03% 385
7 284 775 441 1593 284 775 441 1327 0.00% –266
8 225 238 432 1501 225 129 201 1509 0.05% 8
9 226 493 366 1462 226 433 723 1779 0.03% 317
10 228 375 769 840 228 375 769 1627 0.00% 787
11 222 751 105 1112 222 651 239 2025 0.04% 913
12 223 011 109 2154 222 987 770 1480 0.01% –674
13 223 401 115 2017 223 401 115 1874 0.00% –143
14 222 395 968 1591 222 287 697 1872 0.05% 281
15 222 543 404 1158 222 463 411 2297 0.04% 1139
16 222 690 841 1692 222 690 841 1377 0.00% –315
17 222 104 095 986 222 101 507 1794 0.00% 808
18 222 106 095 521 222 106 095 1472 0.00% 951
19 222 401 095 539 222 401 095 1225 0.00% 686
20 222 701 095 971 222 606 639 1970 0.04% 998

Average 1334 1675 0.02% 341

2. In problem types 3 and 4, comparing the HGA’s feasible solutions with
CPLEX’s feasible solutions, we found that HGA is better than CPLEX solver
in most problem instances in terms of solution quality. In terms of compu-
tational time, CPLEX solver is still superior to HGA.

3. The CPLEX solver can not produce feasible solutions over 10 h. However,
the proposed HGA can still produce feasible solutions. We compare HGA
feasible solutions with associated lower bounds and found that HGA’s feasible
solutions are very close to low-bound costs.

4. As for the computational efficiency, Tables 12–17 illustrate that the compu-
tational time used by the HGA method range from 27.1 s to about 3.41 h
as the problem size increases, and the growth rate is moderate. This implies
that the proposed HGA algorithm is scalable against problem complexity.

5. Conclusion

Many firms have begun to incorporate reverse logistics into their supply chain
systems since they are not only able to fill customers’ demands but also improve
corporate images. In terms of product flows, integrated supply chains consist of
both forward flows and reverse flows. In forward flows, production and material
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Table 16. Computational result for problem type 5.

LB HGA Gap
No. Sol Sol Time Sol

1 597 398 901 597 455 968 2137 0.01%
2 634 461 656 634 608 100 2587 0.02%
3 671 524 413 671 546 786 1562 0.00%
4 745 649 924 745 672 298 1808 0.00%
5 653 776 350 653 798 596 1841 0.00%
6 710 153 962 710 176 100 2157 0.00%
7 766 531 905 766 553 953 1904 0.00%
8 606 219 833 606 242 206 1650 0.00%
9 609 748 206 609 770 579 1795 0.00%
10 615 040 766 615 063 138 1861 0.00%
11 598 440 786 598 463 159 1587 0.00%
12 598 857 541 598 879 914 1638 0.00%
13 599 482 672 599 505 045 1747 0.00%
14 597 830 375 597 852 748 1950 0.00%
15 598 046 112 598 068 485 1826 0.00%
16 598 261 849 598 284 222 1803 0.00%
17 597 404 158 597 424 274 1826 0.00%
18 597 407 639 597 426 274 1686 0.00%
19 597 718 901 597 741 274 1744 0.00%
20 598 038 900 598 061 274 1731 0.00%

Average 1842 0.00%

purchasing schedules have great effects on the performance of production manage-
ment since unsuitable schedules usually lead to high inventory cost. In reverse flows
with dynamic facilities, the timing for opening/closing of facilities and the amount
of shipping between facilities have an important influence on firms’ efficiency since
poorer shipping strategies result in high warehousing and transportation costs.

In this study, a supply chain problem with a forward and reverse logistics net-
work was formulated and an efficient heuristic was developed. The problem studied
here is formulated as an integer linear model with multi-periods, a dynamic reverse
logistics system, multi-commodities and capacitated facilities. The model intro-
duces the possibility of opening and closing a facility more than once during the
planning horizon. It also considers explicitly not only leasing and operating costs
but also start-up costs incurred when reopening facilities. Since such a problem
belongs to a class of NP hard problems, a hybrid genetic heuristic approach was
developed in order to solve a realistically sized problem. We report computational
results which show the gaps between the feasible solutions that we proposed and
the lower bounds of the optimal solution and exact solutions. The values of the
gaps and the computational times shown in Tables 12 to 17 indicate that the
proposed HGA is capable of producing optimal solutions for small size problems,
solving large size problems and producing good feasible solutions which are very
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Table 17. Computational result for problem type 6.

LB HGA Gap
No. Sol Sol Time Sol

1 2 013 961 021 2 014 047 261 9423 0.00%
2 2 129 865 271 2 129 976 761 10 210 0.01%
3 2 245 769 521 2 245 804 419 13 664 0.00%
4 2 477 578 021 2 477 742 042 15 506 0.01%
5 2 202 327 162 2 202 449 675 14 978 0.01%
6 2 390 723 904 2 391 343 585 11 534 0.03%
7 2 579 056 135 2 579 766 166 12 169 0.03%
8 2 041 563 000 2 041 599 594 8828 0.00%
9 2 052 604 470 2 052 908 151 12 343 0.01%
10 2 069 166 675 2 069 985 534 11 067 0.04%
11 2 016 059 175 2 016 618 310 11 300 0.03%
12 2 016 899 115 2 016 982 918 18 107 0.00%
13 2 018 159 025 2 019 295 750 11 457 0.06%
14 2 014 768 000 2 016 357 392 10 081 0.08%
15 2 015 172 338 2 015 975 878 11 098 0.04%
16 2 015 604 988 2 015 613 269 12 940 0.00%
17 2 013 964 677 2 014 033 053 11 960 0.00%
18 2 013 968 244 2 014 018 972 8532 0.00%
19 2 014 459 325 2 015 860 214 19 301 0.07%
20 2 014 959 325 2 014 995 919 11 148 0.00%

Average 12 282 0.02%

close to low-bound costs for large size problems that CPLEX solver fails to produce
feasible solutions.

Generally, a facility may be dedicated or flexible. In the first case, the facility
can only supply its local market while the later can supply not only its local market
but other markets as well. In this study, we consider a case in which a collection-
center is the dedicated facility of an assembly center. However, the model also
can be transferred to cases in which a collection-center is a flexible facility. This
can be done by eliminating the variable and the constraints of equations (2.19)
to (2.22) and equations (2.25) to (2.28), and increasing the following constraints:∑D

d=1 Y d
cjt ≤ xc

tB,
∑D

d=1 Y d
cjt ≥ xc

t for all c, j, t and
∑C

c=1 Y d
cjt ≤ sd

t B,
∑C

c=1 Y d
cjt ≥

sd
t for all d, j, t.
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