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Abstract. In this paper we deal with the preemptive asymmetric
stacker crane problem in a heuristic way. We first present some theo-
retical results which allow us to turn this problem into a specific tree
design problem. We next derive from this new representation an inte-
ger linear programming model together with simple and efficient greedy
and local search heuristics. We conclude by presenting experimental
results which aim at both testing the efficiency of our heuristic and
evaluating the impact of the preemption hypothesis.
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1. Introduction

Pickup and delivery problems, which consist in scheduling the transportation of
sets of goods and/or passengers from origin nodes to destination nodes while using
a given set of vehicles, have been intensively studied for decades. Many variants
have been considered and one can refer to [7,29,33] for surveys on these problems
and methods. Among all the pickup and delivery like problems which have been
addressed by researchers, the stacker crane problem is characterized by the fact
that only one vehicle is involved, which can deal with only one demand unit at
the same time.
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2 LIMOS, CNRS UMR 6158, Université Blaise-Pascal, Clermont-Ferrand II, Complexe
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Figure 1. (a) Solution without reload; (b) solution with one reload.

An informal description of the stacker crane problem (SCP) comes as follows:
given some transit network G whose oriented links or arcs are endowed with lengths
or costs which to any arc (x, y), makes correspond some cost Dxy, and which is
provided with some specific Depot node; we are required to schedule the route of a
single vehicle V , which is required to address a Demand set K, each demand k ∈ K
being defined by some origin node ok and by some destination node dk. Namely,
addressing the demand k means transporting some unique load unit from ok to
dk, the capacity of V being such that V cannot contain more than one load unit
at a given time. Thus, scheduling V means designing a tour Γ inside the network
G which is going to start and end in Depot while making possible for V to handle
every demand k ∈ K. Solving the stacker crane problem will mean computing
this tour in such a way that it is the shortest possible. In the Preemptive Stacker
Crane Problem (PSCP), any load unit may be dropped (unloaded) at any node x
of the transit network G, before being later reloaded. This unload/reload process
may be performed several times before the load unit reaches its destination node.
In case the costs Dxy(x, y ∈ X) are symmetric, we talk about Symmetric SCP and
conversely if no symmetry hypothesis is made we talk about Asymmetric SCP.

Introducing the preemption hypothesis allows us in many cases to reduce the
optimal tour cost (length). Figure 1a shows a non preemptive tour which addresses
three demands 1, 2 and 3 according to this order. Its cost is 107 (distances used
for this example are Euclidean distances). Figure 1b shows a tour which addresses
the same demands while dealing with demand 2 in a preemptive way: the vehicle
unloads the load unit of demand 2 at the node Reload that allows it to deal with
demand 3. Finally it goes back to node Reload to complete its tour while bringing
the load unit of demand 2 to its destination. This tour cost is 99, so we obtain
some 7.5% of improvement with one reload only

The stacker crane problem was first introduced by Frederickson et al. in [18],
under its non preemptive symmetric form. These authors proved its NP-hardness
by using a reduction from the TSP [24,25]. They also got a 9/5-approximation
scheme for this problem. Atallah and Kosaraju [5] were the first to consider the
preemptive version of the symmetric SCP. They studied both non-preemptive
and preemptive versions of the symmetric SCP when the underlying graph is
an elementary path or an elementary cycle. They proved that in such a case,
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both versions are polynomial-time solvable. Frederickson and Guan [16,17] stud-
ied both preemptive and non-preemptive versions of the symmetric SCP when the
underlying graph is a tree Lacroix [23] gives a polyhedral analysis of the preemptive
SCP. Several variants of the pickup and delivery problems closely related to the
SCP have been studied. We mention the pickup and delivery traveling salesman
problem (PDTSP) which corresponds to the non-preemptive stacker crane problem
where no capacity constraint is taken into account: see Renaud et al. [32,33] Rodin
and Ruland [34] and also [13,22] The asymmetric version of the PDTSP was han-
dled through polyhedral approaches and branch-and-cut algorithms [3,4,6,20] as
well as through heuristics [10,19,27]. Hernández-Pérez and Salazar-González [21]
considered the PDTSP with capacity constraints. Also, authors have consid-
ered additional constraints such as time windows [29], precedence constraints
imposed to demand processes [14,15] or LIFO loading policy [11], and also a
stacker crane problem extension involving several origins and destinations [30].
This extension, named the swapping problem [1,2,8,9], belongs to the class of
many-to-many pickup and delivery problems (see [7]). Finally, we mention some
models which involve transshipments : pickup and delivery problem with transfers
(PDPT) [11,12], with time-windows and transshipments (PDPTWT) [26,31] and
with reloads (RPDP) [28].

The focus of this paper will be on the asymmetric preemptive stacker crane
problem, which we shall denote by APSCP. We are first going (Sect. 2) to set
our problem in a formal way. Next (Sect. 3) we shall prove some structural re-
sults which will allow us to turn the problem into an unconstrained tree design
problem. This reformulation of the problem will lead us to cast it into a specific
integer linear programming model, and to design (Sect. 4) in a natural way a local
search heuristic scheme whose implementation and tests are discussed in Section 5
providing us with satisfactory numerical results.

2. A formal description of the APSC problem

This section aims at providing a formal model of the APSCP This description
will help us in Section 3 in making clear that the search for an optimal solution
of APSCP may be restricted to a specific subset of feasible solutions which admit
what we shall call a tree representation

2.1. Modelling the asymmetric preemptive stacker crane problem

(APSCP)

As told in Section 1, the asymmetric preemptive stacker crane problem can be
described as follows:

• a single vehicle V is required to address a set K of transportation demands,
while performing some tour inside a given oriented transit network G. Any
demand k ∈ K is expressed as a pair (ok, dk) of nodes of G, according to
the following semantics:

– ok is the origin node of k;
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Figure 2. Deriving a logical node set X from a physical network G.

– dk is the destination node of k;
– V must transport exactly one load unit from ok to dk;

• the load capacity of V is equal to 1;
• V is allowed to address a demand k in K in a preemptive way: it may,

while carrying its load L stop at some node x, unload L, deal with other
demands and next come back to x, load again L and keep on with the
handling of L. Such an intermediate node is then called a reload node for
the demand k;
• V starts and ends its tour in a “Depot” node, and try to do it as fast as

possible, in the sense of a cost (length) function which is supposed to be
defined on the arcs of the network G.

In order to get a formal model of this problem, we make copies of the original
physical nodes of the network G in such a way that the nodes Depot, okdk, k ∈ K,
and the possible reload nodes become all distinct. That means that we deal
with a logical node set X which may be written according to some partition:
X = {Depot}∪XO ∪XD ∪XR, in such a way that:

• XO = {ok, k ∈ K};
• XD = {dk, k ∈ K};
• XR contains a copy of every element in {Depot}∪XO ∪XD together with

a set of other possible reload nodes.

Then the original cost function which was defined on the arc set of the network G
gives rise, through a shortest path computing process, to a X ·X indexed (shortest
path) distance matrix D, such that if x ∈{Depot}∪XO ∪XD and if x′ is the copy
of x in XR, then Dxx′ = 0. Doing this allows us to get rid of the original graph
structure: from now on, we deal with a node set X , with a distance matrix D,
and we suppose that D satisfies the triangle inequality property, but that it
does not need to be symmetric.

The left part of Figure 2 represents a network G with 4 physical nodes a, b, c
and d, and 6 symmetrical links, given together with 2 demands 1 = (a, b) and
2 = (d, b). The right part represents the resulting X ·X matrix D.
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2.2. Formal description of a APSCP solution

We start defining feasible solutions as sequences of objects which we call labelled
links. In order to do it we first need to introduce some notations about sequences.

2.2.1. Preliminary notations about sequence

Let Γ = {x1, . . . , xn}be a sequence of objects xi, i = 1 . . . n :
• we denote by Succ(Γ, xi) (Pred(Γ, xi)), the successor (predecessor) xi+1

(xi−1) of xi in Γ, and by Rank(Γ, xi) the rank of xi in Γ. A sequence with
only one element x is denoted by {x} and the empty sequence is denoted
by Nil The number n of elements of Γ is denoted by |Γ|;
• we call subsequence of Γ any sequence Γ′ = {xi1 , . . . , xip} with i1 <i2

<. . . <ip and 1 � ip � n; (remark: it comes from this definition that two
consecutive elements of Γ′ may not be consecutive in Γ);
• if xi and xj are two elements of Γ such that i � j, then we denote by I(Γ,

xi, xj) the subsequence (or segment) {xi, . . . , xj} of Γ which is defined by
all z such that i � Rank(Γ, z) � j;
• the first (last) element of Γ is denoted by First(Γ) (Last(Γ));
• we denote by ⊕ the concatenation operator, which takes two sequences

Γ = {x1, . . . , xn} and Γ′ = {y1, . . . , ym} and concatenates them into a
unique sequence Γ⊕ Γ ’ = {x1, . . . , xn, y1, . . . , ym};
• we call cut of Γ any decomposition of Γ as a concatenation Γ′ ⊕ Γ′′.

2.2.2. Labelled links, tours and valid tours

We represent a tour of a vehicle V using labelled links: a labelled link is a triple
r = (x, y, k), where x and y are nodes of X and k is a label in the set {0}∪K:
x(y) is called the starting node (ending node) of the labelled link r and is denoted
by Start(r) (End(r)); k is called the label of r and is denoted by Label(r). So the
labelled link (x, y, k) is going to represent a move of the vehicle V from the node
x to the node y, V being empty if k = 0 or loaded with the unit load of demand
k otherwise.

A tour defined on X is a sequence Γ of labelled links. For such a tour Γ,
and for any label k in {0}∪ K, we denote by Γk the labelled link sequence which
derives in a natural way from Γ by only considering the labelled links r such that
Label(r) = k, and we call it the deriving subsequence of Γ related to the label k.
The cost of Γ is then defined in a natural way as the quantity:

Cost (Γ) =
∑
r∈Γ

DStart(r),End(r)

Clearly, not any tour Γ is likely to express the activity of a vehicle V which would
conveniently handle every demand k ∈ K. In order to get such a property, we
need to impose Γ to be valid, which will mean that:

• for any consecutive pair of labelled links r, r′ = Succ(Γ, r) in Γ, we have
End(r) = Start(r′);
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Figure 3. Visualizing a valid tour (arc labels indicate the order
according to which arcs are visited).

• start(First(Γ)) = End(Last(Γ)) = Depot;
• any node x in XO ∪ XD is involved in exactly two labelled links r and

r′ = Succ(Γ, r): this means that V moves to ok(dk), k ∈ K, only when it
comes to start (finish) dealing with demand k;
• the Depot node is involved only in both labelled links r = First(Γ) and

r′ = Last(Γ);
• for any demand k ∈ K, the deriving subsequence Γk related to k is such

that:
– Start(First(Γk) ) = ok;
– End(Last(Γk)) = dk;
– For any consecutive labelled link pair r, r′ = Succ(Γk, r), we have

End(r) = Start(r′).

Figure 3 visualizes the valid tour Γ = {(Depot, o1, 0), (o1, x, 1), (x, o2, 0), (o2, y,
2), (y, d2, 2), (d2, x, 0), (x, d1, 1), (d1, Depot, 0)}.

Then the APSCP may be set as follows: {given the node set X and a shortest
path distance matrix D that means a X ·X distance matrix which satisfies triangle
inequality, compute a valid tour Γ with minimum cost}.

3. A tree representation of tours

The goal of this section is to describe the way some specific tours can be repre-
sented by trees. This representation will integrate both the preemption hypothesis
and the vehicle capacity constraint. So dealing with APSCP while restricting our-
selves to those specific tours will mean solving a kind of unconstrained problem
and can be done through both efficient and simple tree handling algorithms. Of
course it will not be possible to represent every tour according to such a tree rep-
resentation. But the restriction theorem of Section 3.1. is going to make clear
that, in any case, an optimal solution of APSCP may be found among those tours
which admit this tree representation.
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3.1. The restriction theorem

In order to enable us to correctly state this restriction theorem we need to
introduce some additional definitions and notations. Let Γ be a valid tour. For
any labelled link r = (x, ok, 0) in Γ, we denote by σ(Γ, r) the unique labelled
link = (dk, y, 0) which is also in Γ. So r is related to the first arrival of the vehicle
V in ok and σ(Γ, r) is related to the last departure of V from dkV being empty in
both cases. In the same way, if r = (y, x, k), k �= 0, is some labelled link in Γ such
that x is a reload node in XR, then we also denote by σ(Γ, r) the first triple r′ =
(x, z, k) which is in Γk Thus r is related to an arrival of V at the reload node x
and r′ is related to a departure of V from x, carrying V in both cases, the demand
k load One may notice that σ(Γ, r) is not defined for all labelled links r.

We say that two labelled links r and r′ in Γ are overlapping if σ(Γ, r′) and σ(Γ,
r) are defined and if they are such that:

Rank(Γ, σ(Γ, r′)) >Rank(Γ, σ(Γ, r)) > Rank(Γ, r′) >Rank(Γ, r).
Overlapping labelled links corresponds to demand pairs k and k′ which are such
that ok, ok′ , dk, dk′ are visited according to this order. We shall see further that
applying the restriction theorem will consist in avoiding the appearance of such
overlapping links inside an optimal tour.

Then we may state the following restriction theorem, whose meaning is that one
may restrict the search for an optimal solution of APSCP to a sub-domain whose
elements are valid tours endowed with additional properties which will allow us to
code them in a tree design.

Restriction theorem.
Let Γ be some optimal tour for the APSCP problem, which we suppose chosen

in such a way that:
• (A) |Γ|is the smallest possible;
• (B) the number of labelled links r in the tour Γ, for which (A) is supposed

to be satisfied which are such that Label(r) �= 0 is the smallest possible;
Then, the following assertions must be true:

• (S1) Γ does not contain two occurrences of the same labelled link r = (x,
y, k), with k �= 0;
• (S2) Γ does not contain two consecutive labelled links r and r′ such that

Label(r) = Label(r′);
• (S3) Γ does not contain two overlapping labelled links r and r′;
• (S4) Γ does not contain two labelled links r and r′ such that End(r) =

End(r′) and both Label(r), Label(r′) �= 0.
In other words (S1) means that the same commodity is never carried twice in the
same link; (S2) means that every time the vehicle reaches a node it is in order to
perform either a load action or an unload action; (S3) means that if the vehicle
unloads a demand k at a reload node x it must not take back this demand k
before having delivered all the demands it has loaded after the unload of k; (S4)
means that the vehicle does not reaches twice the same node while being not
empty. Since the proof of our restriction theorem is going to be divided into four
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Figure 4 represents the tour
{(Depot, o1, 0), (o1, x, 1), (x, y,
1), (y, z, 1), (z, x, 1), (x, y, 1),
(y, d1, 1), (d1, Depot, 0)}. The
linkr = (x, y, 1) appears twice.

Figure 4. A tour with the configuration prohibited by (S1) (arc
labels indicate the order according to which arcs are visited).

parts, respectively related to (S1) . . . (S4) we shall include in those four parts new
Figures 4–6 and 8 representing configurations that are prohibited by these four
assertions.
Proof.

We assume that Γ is given, which is an optimal solution of APSCP and which
is such that (A) and (B) are true.

Part (S1).
If r = (x, y, k), k >0 appears twice in Γ, with respectively rank s and s′, then

x and y are both reload nodes, and we may replace by 0 the label value Label(r′′)
in any labelled link r′′ which is such that:

– s � Rank(Γ, r′′) < s′;
– Label( r′′) = k

While doing it, we keep on with a valid tour which is an optimal solution of
APSCP and we get a contradiction on the (B) hypothesis. Figure 4 shows a tour
in which the labelled link r = (x, y, 1) appears twice.

Part (S2).
If r = (x, y, k) and r′ = (y, z, k) were two consecutive labelled links of Γ such

that Label(r) = Label(r′) = k, then we would be able to remove both r and r′ from
Γ, and replace them by a unique labelled link (x, z, k). While doing this, we would
also keep, because of the triangle property on the distances, an optimal solution of
APSCP, and this solution would contradict the (A) hypothesis. Figure 5 shows
a tour in which two consecutive labelled links have the same label.

Part (S3).
Let us suppose that there exist two labelled links r = (y, x, k) and r′ = (y′,

x′, k′) which are overlapping in Γ. We may choose them in such a way that
Rank(Γ, σ(Γ, r′)) – Rank(Γ, r) is the smallest possible (E1). Because of (E1), we
see that x and x′ must be reload nodes: if, for instance, x were an origin node oh,
then there would exist a labelled link r′′ with Label(r′′) = h and h �= k such that:

Rank(Γ, r) < Rank(Γ, r′′) < Rank(Γ, r′) < Rank(Γ, σ(Γ, r′′)) <Rank(Γ, σ(Γ,
r)) < Rank(Γ, σ(Γ, r′)).

Then we might deduce a new overlapping pair (r′′, r′) which would induce a
contradiction on the minimality assumption (E1). In the same way, we may check
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Figure 5 represents the tour
{(Depot, o1, 0), (o1, x, 1), (x, d1,
1), (d1, Depot, 0)}. The two con-
secutive links (o1, x, 1) and (x,
d1, 1) can be replaced by (o1, d1,
1): the tour resulting is clearly
better due to triangle property
on the distances.

Figure 5. A tour with the configuration prohibited by (S2) (arc
labels indicate the order according to which arcs are visited).

Figure 6 represents the tour Γ =
{(Depot, o1, 0), (o1, x, 1), (x, o2,
0), (o2, y, 2), (y, x, 0), (x, d1, 1),
(d1, y, 0), (y, d2, 2), (d2, Depot,
0)}. The two labelled links r =
(o1, x, 1) and r′ = (o2, y, 2)
are overlapping since: Rank(r)
< Rank(r′) < Rank(σ(Γ, r))
< Rank(σ(Γ, r)) where σ(Γ,
r) = (x, d1, 1) and σ(Γ, r′) =
(y, d2, 2).

Figure 6. A tour with two overlapping labelled links (arc labels
indicate the order according to which arcs are visited).

that x′ cannot be an origin node oh. Thus x and x′ are both reloads nodes, and
we clearly have: k �= k′ �= 0.

It comes that we may write:

– r = (y, x, k) and r′ = (y′, x′, k′);
– σ(Γ, r) = (x, z, k) and σ(Γ, r′) = (x′, z′, k′).

So, we set :
I1 = I(Γ, First(Γ), r);
I 2 = I(Γ, Succ(Γ, r), r′);
I 3 = I(Γ, Succ(Γ, r′), Pred(Γ, σ(Γ, r)));
I 4 = I(Γ, σ(Γ, r), Pred(Γ, σ(Γ, r′)));
I 5 = I(Γ, σ(Γ, r′), Last(Γ));

and we replace Γ by the concatenation ΓAux = I 1⊕ I 4⊕ I 3⊕ I 2⊕ I 5. Of course,
the lengths of Γ and ΓAux are equal, as well as their respective costs. Moreover
ΓAux defined above is a valid tour. Indeed, we only need to check that switching
I 2, I 3 and I 4 does not break any sequence Γk, or, in other words, that for any
k �= 0, we have Γk = Γk

Aux. If the converse were true, we would be able to find
k′′ �= k′, k, k′′ �= 0, as well as two labelled links r′′ and σ(Γ, r′′), with label k′′
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According to the notations in the
proof of (S3):
I1 = {(Depot, o1, 0), (o1, x, 1)}
I 2 = {(x, o2, 0), (o2, y, 2)}
I 3 = {(y, x, 0)}
I 4 = {(x, d1, 1), (d1, y, 0)}
I 5 = {(y, d2, 2), (d2, Depot, 0)}
This figure represents the final
tour ΓAux = {(Depot, o1, 0), (o1,
x, 1), (x, d1, 1), (d1, y, 0), (y, x,
0), (x, o2, 0), (o2, y, 2), (y, d2,
2), (d2, Depot, 0)}.

Figure 7. The tour resulting from the transformation of the one
depicted in Figure 6 (arc labels indicate the order according to
which arcs are visited).

or with the ending node of r′′ equal to ok′′ , in such a way that one of the three
following relations would be true:

• r′′ ∈ I 2 and σ(Γ, r′′) ∈ I 3; (E2)
• r′′ ∈ I 2 and σ(Γ, r′′) ∈ I 4; (E3)
• r′′ ∈ I 3 and σ(Γ, r′′) ∈ I 4. (E4)

In case (E2) or (E3) were true, r′′ and r′ would be overlapping, and would con-
tradict the (E1) hypothesis, related to the minimality of Rank(Γ, σ(Γ, r′)) –
Rank(Γ, r).

In case (E4) were true, r and r′′ would be overlapping, and would contradict
the (E1) hypothesis, related to the minimality of Rank(Γ, σ(Γ, r′)) – Rank(Γ, r).

So, in any case, ΓAux is a valid tour.
This result allows us to conclude the proof of (S3) by noticing that r and σ(Γ,

r) become consecutive in the valid tour ΓAux, which implies (proof of statement
(S2)) that r and σ(Γ, r) may be replaced in ΓAux by a unique labelled link (y,
z, k) in such a way that Cost(ΓAux) does not increase and that |ΓAux| decreases,
inducing a contradiction on the (A) hypothesis. This part of proof is illustrated
by Figures 6 and 7: Figure 6 shows a tour Γ with two overlapping labelled links
while Figure 7 shows the tour ΓAux resulting from the transformation proposed.

Part (S4)
Let us suppose that Γ contains two labelled links r and r′ such that End(r) =

End(r′) and such that Rank(Γ, r) <Rank(Γ, r′). Since the starting node x of σ(Γ,
r) cannot be in {Depot}∪XD it must belong to XR and must be used twice as a
reload node. So, r, σ(Γ, r), r′ and σ(Γ, r′) may be written:

• r = (y, x, k), k �= 0 and r′ = (y′, x, k′), k′ �= 0, k;
• σ(Γ, r) = (x, z, k) and σ(Γ, r′) = (x, z′, k′).

Because of (S3) we must have:
• Rank(Γ, r) < Rank(Γ, σ(Γ, r)) <Rank(Γ, r′) <Rank(Γ, σ(Γ, r′)) (E5)
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Figure 8 represents the tour Γ =
{(Depot, o1, 0), (o1, x, 1), (x, o3,
0), (o3, d3, 3), (d3, x, 3), (x, d1,
1), (d1, o2, 0), (o2, x, 2), (x, o4,
0), (o4, d4, 4), (d4, x, 0), (x, d2,
2), (d2, Depot, 0)}.
The two labelled links r = (o1,
x, 1) and r′ = (o2, x, 2) are such
that End(r) = End(r′) and both
Label(r), Label(r′) �= 0.

Figure 8. A tour including the configuration prohibited by (S4)
(arc labels indicate the order according to which arcs are visited).

or
• Rank(Γ, r) < Rank(Γ, r′) < Rank(Γσ(Γ, r′)) < Rank(Γ, σ(Γ, r)). (E6)

Let us first suppose that (E5) holds. Then we set:
I1 = I(Γ, First(Γ), r);
I2 = I(Γ, Succ(Γ, r), Pred(Γ, σ(Γ, r)));
I3 = I(Γ, σ(Γ, r), r′);
I4 = I(Γ Succ(Γ, r′), Pred(Γ, σ(Γ, r′)));
I5 = I, (Γ, σ(Γ, r′), Last(Γ));

and we replace Γ by the concatenation ΓAux = I 1⊕ I 3⊕ I 2⊕ I 4⊕ I 5. Of course,
the lengths of Γ and ΓAux are equal, as well as their respective costs, and we
proceed as in the proof of (S3) in order to prove that ΓAux must be a valid tour.
But we also notice as in the proof of (S3), that ΓAux can be shortened by replacing
the consecutive labelled links r and r′ by a unique labelled link (y, z, k), in such
a way that Cost(ΓAux) does not increase and that |ΓAux|decreases, inducing a
contradiction on the (A) hypothesis.

We apply exactly the same kind of reasoning in case (E6) holds. This part of
proof is illustrated by Figures 8 and 9: Figure 8 shows a tour Γ with two labelled
links r and r′such that End(r) = End(r′) and both Label(r), Label(r′) �= 0 while
Figure 9 shows the tour ΓAux resulting from the transformation proposed.

3.2. A tree representation of the APSCP problem

Restriction theorem leads us to restrict our search, when we deal with the
APSCP, to valid tours which satisfy the above (S1). . . (S4) properties. We will
call such valid tour strongly valid tour Figure 10 shows us how the valid tour Γ of
Figure 3 may be turned into a strongly valid tour without any cost loss.

Clearly, solving the APSCP Problem means finding a strongly valid tour Γ with
minimum cost value.

Now, we are going to see that any strongly valid tour may be represented as a
particular tree, and this will provide us with the basis for the algorithmic handling
of APSCP which will be proposed in Section 4.
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According to the notations in the
proof of (S4):
I1 = {(Depot, o1, 0), (o1, x,
1)}I 2 = {(x, o3, 0), (o3, d3, 3),
(d3, x, 3)}
I 3 = {(x, d1, 1), (d1, o2, 0), (o2,
x, 2)}
I 4 = {(x, o4, 0), (o4, d4, 4), (d4,
x, 0)}
I 5 = {(x, d2, 2), (d2, Depot, 0)}.
And so this figure represents the
final tour ΓAux = {(Depot, o1, 0),
(o1, x, 1), (x, d1, 1), (d1, o2, 0),
(o2, x, 2) (x, o3, 0), (o3, d3, 3),
(d3, x, 3), (x, o4, 0), (o4, d4, 4),
(d4, x, 0), (x, d2, 2), (d2, Depot,
0)}.

Figure 9. The tour resulting from the transformation of the one
depicted in Figure 8 (arc labels indicate the order according to
which arcs are visited).

Figure 10. A derivation of the valid tour Γ of Figure 1 into a
strongly valid tour Γ’.

Bipartite ordered trees: given two classes of nodes A and B we say that a
subgraph T of G(A ∪B, A×B) is a bipartite ordered tree if:

• nodes in class A have their sons in class B and conversely;
• for every node x in T which is not a terminal node (leaf), the son set

associated with x is linearly ordered and is consequently described as a
sequence.

Remark: The “ordered” term means that the way the sons of a given node are
ordered will have an impact on the semantics of the tree, that is to say on the way
an ordered tree is going to be interpreted as a valid APSCP tour.
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(a) (b) 

Figure 11. A strongly valid tour Γ; (b) the related bipartite tree Tree(Γ).

In order to explain what we expected by the bipartite ordered tree concept, let
us considered a tour Γ which satisfied the (S1)· · · (S4) properties and let us deduce
from it a bipartite ordered tree Tree(Γ).

Figure 11 features a strongly valid tour Γ and the bipartite tree T = Tree(Γ)
which derives from this tour. We can describe in an informal way the construction
of the tree as follows:

(1) the vehicle V starts at the depot: so the depot is the root of T ;
(2) V goes to the origin node o1: so node demand 1 becomes a son of depot

node in T ;
(3) V unloads the unit load of the demand 1 at reload node x: so reload node

x becomes a son of node demand 1 in T ;
(4) V satisfies the demand 2 and goes back to x: so node demand 2 is the

unique son of reload node x in T ;
(5) after reloading the unit load of the demand 1 in x and deliver it in d1, V

satisfies directly (without any reload) the demand 3: so node demand 3 is
the second son of depot.

(6) V goes back to the depot: the construction of T is then finished.

We see that the nodes of the tree T = Tree(Γ) are alternatively demand nodes and
reload nodes. In order to describe this construction in a more formal way we need
to state which properties must be satisfied by a bipartite tree T in order to make
possible the construction of a tour Γ such that T = Tree(Γ) Given an APSCP
instance defined by the demand set K and by the node set X , this leads us to
define a (X , K)-consistent bipartite ordered tree T as a bipartite ordered tree T
such that:

• a node in T can be identified either with a demand k ∈ K (we shall then
talk about demand node) or with a node in {Depot}∪XR, (and then we
talk about reload node); any possible demand node k ∈ K appears in
T , while only some of nodes of {Depot}∪XR appear in T : those nodes
in {Depot }∪XR which appear in T define the active reload node set
ACTIVE(T ) of T ; (S5)
• the root of T is the Depot node and the terminal nodes (leafs) of T are all

demand nodes; (S6)
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• for any demand node k, its linearly ordered son set RELOAD(T , k) (which
may be empty) is made with active reload nodes and its father FATHER(T ,
k) is in ACTIVE(T ); (S7)
• for any reload node x, its linearly ordered son set DEMAND(T , x) is made

with demand nodes and its father FATHER(T , x) is in K. (S8)

Tree(Γ) construction
This allows us to describe in a formal way the intuitive construction of Figure 11:

given a strongly valid tour Γ we get T = Tree(Γ) from Γ as follows:
• ACTIVE(T ) is defined as the set of the nodes of {Depot}∪XR which ap-

pear in some labelled link of Γ, and which are then said to be the active
reload nodes for Γ;
• for any demand node k ∈ K, the son set Reload(T , k) is made with the

reload nodes which appear in some labelled link of Γk, ordered according
to their appearance order in Γk;
• for any active reload node x in {Depot}∪XR, we denote by ρ(x) = (x, y,

0) and by τ(x) = (z, x, 0) the two labelled links with label 0 which involve
x in Γ and which are such that: Rank(Γ, ρ(x)) < Rank(Γ, τ(x)). Then we
define the son set Demand(T , x) by setting that a demand k ∈ K is a son
of x if the unique labelled link r(k) = (ok, t, k), t in X which appears in
Γ is such that:

– Rank(Γ, ρ(x)) <Rank(Γ, r(k)) <Rank(Γ, τ(x));
– there exists no reload node y such that Rank(Γ, ρ(x)) <Rank(Γ,

ρ(y)) <Rank(Γ, r(k)) < Rank(Γ, τ(y)) < Rank(Γ, τ(x)).

TreeCost value of a consistent bipartite ordered tree
For any (X , K)-consistent bipartite ordered tree T , we define a cost value

TreeCost(T ) as follows:
• for any demand node k ∈ K, we set:

If k is a terminal node then

CDem (T, k) = Dok,dk

else

CDem(T, k) =Dok,First(Reload(T,k)) + DLast(Reload(T,k)),dk

+
∑

xReload (T, k) ,
x �= Last (Reload (T,k))

Dx,Succ(Reload(T,k),x)

• for any reload node x ∈ {Depot}∪XR, we set:

CRel (T, x) = Dx,oFirst(Demand(T ,x)) + DdLast(Demand(T,x)),x

+
∑

k ∈ Demand (T,x)
k �= Last(Demand (T, x) )

Ddk,oSucc(Demand(T,x),k) .
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Finally,

TreeCost (T ) =
∑
k∈K

CDem (T, k) +
∑

x∈ACTIVE(T )

CRel (T, x).

Then the following results are going to turn the APSCP problem into a somewhat
simpler problem related to the search for specific trees.

Tree representation theorem

The above described Tree correspondence is a one-to-one correspondence be-
tween the strongly valid tours and the (X , K)-consistent bipartite ordered trees;
for any such a tour Γ, we have: TreeCost(Tree(Γ)) = Cost(Γ).

Proof.
(1) The equality TreeCost(Tree(Γ)) = Cost(Γ) comes in an easy way by con-

struction;
(2) we check that Tree is a one-to-one correspondence:
• Tree is injective: let Γ and Γ′ two different valid tours such that Γ �= Γ′

then Tree(Γ) �= Tree(Γ′). Indeed we scan Γ and Γ′ until they differ, and we
see that the above construction make Tree(Γ) and Tree(Γ′) be different.
• Tree is onto: Let a tree T , then it exists a tour Γ such that T = Tree(Γ)

Indeed, to get Γ we only have to perform a depth first search of the tree T .
Then it comes that the so defined Tree correspondence is as it is claimed in the
statement of the tree representation theorem �

We deduce from the tree representation theorem the following corollary:

Corollary 3.1. Solving an APSCP instance (X, K) means finding a bipartite
ordered tree T consistent with (X, K) such that TreeCost(T ) is the smallest pos-
sible.

The interest of this last statement is clearly that it provides us with a bipar-
tite tree formulation of the APSCP problem which is far less constrained that
the original one. Moreover it is going to provide us with an ILP (integer linear
programming) formulation of APSCP.

3.3. An integer linear programming (ILP) formulation of APSCP

An ILP formulation of APSCP may be derived from the previous structural
results. In order to get it, we first build the following auxiliary network G = (X∗,
E):

• X∗ = X ∪X∗
R∪ {Depot∗}, where X∗

R is a copy of XR and Depot∗ is a copy
of Depot.

For any node x in XR, we denote by x∗ its copy in X∗
R. In a similar way, for any

origin node x = ok in XO, we denote by x∗ the related node dk in XD.
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• E = {(Depot, x), x ∈ XO}∪ {(x, Depot∗), x ∈ XD}∪ {(ok, dk), k ∈ K}∪
{(dk′ , ok), k �= k′ ∈ K}∪ {(x, y), (y, x), x ∈ XO, y ∈ XR}∪ {(x, y) (y,
x), x ∈ X∗

R, y ∈ XD}∪ {(x, y), x ∈ X∗
R, y ∈ XR}.

Every arc e in E is then provided with a length D∗
e which derives from the D

distance matrix in a natural way.
Let us recall that a path γ of a such a network G is a node sequence γ such that,

for any node x in γ, the pair (x, Succ(γ, x)) defines an arc of E. One easily checks
that any strongly valid tour Γ can be turned into a path Γ∗ of the network G, in
such a way that:

• (S9) Γ∗ starts from Depot and ends into Depot∗ and Γ∗ is an elementary
path, i.e., its visits any node at most once;
• (S10) for every k in K, Γ∗ visits ok and dk according to this order, and

for every x in XR, Γ∗ visits x if and only if it visits x∗, and, in this case,
it does it according to this order;
• (S11) for any pair x, y, x �= y, in XR ∪ XO the following implication is

true:

(Rank(Γ∗, x) < Rank(Γ∗, y) and Rank(Γ∗, y) <Rank(Γ∗, x∗)) =>Rank(Γ∗, y∗)
< Rank(Γ∗, x∗).

We call this condition the non overlapping condition
• (S12) Cost(Γ) =

∑
x ∈ Γ∗
x �= Depot∗

D∗
x,Succ(Γ∗,x)

So we say that a path of the network G which satisfies (S9). . . (S12) above is a
strongly valid path.

Theorem 3.2. For any strongly valid path γ, there exists a strongly valid tour Γ
such that Γ∗ = γ.

Proof. Let us first describe the way Γ is going to derives from γ. It will occur
through the following RECONSTRUCT procedure:

RECONSTRUCT Procedure

x← Depot ;
Γ← Nil ;

While (x �= Depot∗) do
y ← Succ(γ, x);
If (y may be written y = z∗, with z ∈{Depot}∪XR, then

we set Π(y) = z,
else

we set Π(y) = y;
If (multi-case branching instruction)

1. x = Depot then Γ← {(x, y, 0)}⊕Γ;
2. x = ok, k ∈ K then Γ← {(x, y, k)}⊕Γ;
3. x ∈ XR then Γ← {(x, Π(y), 0)}⊕Γ;
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4. x ∈ XD then Γ← {(x, Π(y), 0)}⊕Γ;
5. x ∈ X∗

R then Γ← {(x, y, k)}⊕Γ, where k �= 0 is such that the labelled
link

(Pred(γ, Π(x)), Π(x), k) is already in Γ; (I1)

The instruction (I1) works here because of (S10) above, and because an arc of
G which arrives on Π(x) must come from an origin node ok or from a node z in
X∗

R. In this last case, a simple induction reasoning makes appear the fact that k
is different from 0.

We get our result while proceeding by induction on the length (the number of
nodes) of γ. In case γ involves no node in XR, then the results comes in a trivial
way. Else, we consider x ∈ XR which is the first node of XR which appears in γ.
We notice that Pred(γ, x0) must be some node ok, k ∈ K. Thus the arc (Pred(γ,
x0), Succ(γ, x∗

0)) belongs to the arc set E, and the removal of the subpath I(γ, x0,
x∗

0) from γ provides us with another path γ1 of the graph G. Let us set:

• K1 = {k ∈ K such that ok and dk are nodes of γ1};
• K2 = {k ∈ K such that ok and dk are nodes of γ2 = I(γ, x0, x∗

0)};
K1 and K2 define a partition of K, and one sees that γ2 may be viewed as a
strongly valid path, if we restrict ourselves to K2 as a demand set and if we
consider that x0 and x∗

0 play the role of Depot and Depot∗. Thus it comes from the
induction hypothesis that it may also be written, under this restriction, according
to the form γ2 = Γ∗

2. By the same way, γ1 is also a strongly valid path if we restrict
the demand node set to K1, and it comes from the induction hypothesis that it
may be written, under this restriction, according to the form γ1 = Γ∗

1. We only
need to insert Γ2 between (Pred(γ, x0), x0, k) and (x0, Succ(γ, x∗

0), k) in Γ1 in
order to get Γ such that γ = Γ∗

0. �

Corollary 3.3. Solving a APSCP instance (X, D, K) means finding a strongly
valid path γ with minimal length (for the D∗ length function) value in the net-
work G.

Since it will be possible to represent any strongly valid path as a combination
of a {0, 1}-flow vector z defined on the network G, of a rank vector R defined on
the vertex set of G, and of an auxiliary {0, 1}-decision vector t dedicated to the
expression of the properties (S1). . . (S4), we become able to state:

Theorem 3.4. Solving an APSCP instance (X, D, K) means solving the integer
linear program (P ) in which unknown vectors are:

• z = (ze, e ∈ E), with values in {0, 1};
• R = (Rx, x ∈ X) integer and positive;
• t = (tx,y, x �= y, x, y ∈ XR ∪XO) with values in {0, 1}.
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(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize
∑

e∈E

DIST ∗ (e) · ze

∑
x∈X∗

z(x,Depot)= 0 (C1)
∑

x∈X∗
z(x,Depot∗)= 1 (C2)

∑
x∈X∗

z(Depot,x)= 1 (C3)
∑

x∈X∗
z(Depot∗,x)= 0 (C4)

∀x∈XD∪XO,
∑

y∈X∗
z(y,x)= 1 (C5)

∀x∈XR∪XR∗ ,
∑

y∈X∗
z(y,x)� 1 (C6)

∀x∈XR,
∑

y∈X∗
z(y,x) =

∑
y∈X∗

z(y,x∗) (C7)

∀k∈K, Rok
�Rdk

− 1 (C8)

∀x∈XR, Rx �Rx∗− 1 (C9)

∀x∈X∗−{Depot, Depot∗}, ∑
y∈X∗

z(y,x)=
∑

y∈X∗
z(x,y) (C10)

∀ (x,y)∈E, z(x,y)+
Rx+1−Ry

|X∗| � 1 (C11)

∀ (x,y) , x�=y, x, y∈XR∪XO, txy+
Ry+1−Rx∗

|X∗| � 1 (C12)

∀ (x,y) , x�=y, x, y∈XR∪XO, txy+
Ry−1−Rx∗

|X∗| � 0 (C13)

∀ (x,y) , x�=y, x, y∈XR∪XO, txy+
Ry∗+1−Rx∗

|X∗| � 1 (C14)

The constraints of (P ) have the following meaning:

• (C1) . . . (C4): the inflow induced by z in Depot (Depot∗) is equal to 0 (1),
while the related outflow is equal to 1 (0);
• (C5): in any node of XD ∪XO, the inflow induced by z is equal to 1 (trans-

lation of (S9) and (S10));
• (C6), (C7): in any node of XR ∪XR∗ , the inflow induced by z is at

most equal to 1, and the inflow value in x is equal to the inflow value
in x∗ (translation of (S10) and (S9));
• (C8): the rank of a demand origin node is lower than the rank of the related

destination node (translation of (S10));
• (C9): the rank of a reload node x is lower than the rank of the related

reload node x∗ (translation of (S10));
• (C10): z is a flow vector, which satisfies the usual Kirshoff law in any node

but in Depot and Depot∗;
• (C11): translation of the implication ze = 1 [ERR : mgroupChr : nPar-

ams = 0, is T op = 1, iOp = 0x21D2] Rx +1−Ry � 0 ;
• (C12) . . . (C14): translation of the non overlapping condition.
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Proof. The above model involves a {0,1}-vector flow z = (ze, e ∈ E), a rank
integer vector R = (Rx, x ∈ X), as well as a positional {0, 1}vector t, which is
indexed on the pairs (x, y), x �= y, x, y ∈ XR ∪XO , with the following semantics:

• for any arc e in E, ze = 1 iff the arc e is in the strongly valid path γ;
• for any node x in γ, Rx will provide us with the rank of x in γ;
• for any pair (x, y), x �= y, x, y ∈ XR ∪XO:

– tx,y = 1 iff Rank(γ, y) <Rank(γ, x∗), i.e. y is located before x∗ in
the tour defined by z;

– tx,y = 0 iff Rank(γ, x∗) <Rank(γ, y), i.e. x∗ is located before y in
the tour defined by z

Then getting our result is only a matter of applying corollary 2 and of translating
into the ILP formalism the (S9) . . . (S12) requirements. Namely, we check that,
by simultaneously playing with tx,y and ty,x, one get that the last constraints of
the above linear program allows us to keep the valid tour defined by z to admit
any overlapping pair of labelled links. �

4. Tree based heuristics for the APSCP problem

The algorithms which we are going to describe and test here, derive in a straight-
forward way from the tree representation of the APSCP Problem which we got
in Section 3. These algorithms are simple greedy insertion algorithms and descent
algorithms, based upon the use of 2 classes of operators: insertion operators and
local transformation operators

4.1. Greedy insertion algorithm

Greedy insertion algorithms are designed in order to provide an initial solution.
They use insertion operators which act on some bipartite ordered tree T consistent
with the node set X and with a subset K ′ of the demand set K, and insert some
demand k ∈ K – K ′ into T . We use two operators:

• INSERT-SIMPLE: its parameters are some active reload node x in {Depot}
∪XR, and some cut (l1, l2) of the sequence DEMAND(T , x) = l1 ⊕ l2. It
acts by inserting the segment {k}into this cut: DEMAND(T , x) ← l1⊕
{k} ⊕ l2;
• INSERT-with-RELOAD: its parameters are some demand node k′ in K ′,

a cut c = (l1, l2) of the sequence RELOAD(T , k′), and a non active reload
node x. It acts by:

– inserting the segment {x} into the cut c: RELOAD(T , x) ← l1⊕
{x}⊕ l2;

– making x be active and setting: DEMAND
(T , x)← {k}and RELOAD(T , k)← Nil
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Then we can propose a first insertion greedy algorithm for dealing with APSCP:

APSCP-INSERTION algorithm

Randomly define a linear ordering ρ on the elements of K;
Initialize T to a tree reduced to the root node Depot ;
For k ∈ K do /* K being scanned according to the linear order ρ ∗/

Choose an insertion operator I and the related parameter u, such that
the insertion of k through I(u) induces the smallest possible increase
of Tree-Cost(T );
Apply I(u) to T ;

Remark 4.1. In apscp-insertion algorithm the insertion operator I is chosen
among INSERT-SIMPLE and INSERT-with-RELOAD. The related parameter u
is chosen in such a way:

• u = (x, (l1, l2)) in case I = INSERT-SIMPLE;
• u = (k′, (l1, l2), x) in case I = INSERT-with-RELOAD.

Remark 4.2. In order to save time, we filter the search for the good value of the
parameter u. The filtering process is performed by using, for any node x, y in
XR, small sets N(x), N(y) of neighbours of x and y, together with a middle z of
x and y, and by imposing conditions related to those objects when dealing with
the various components of u.

Of course, the algorithm APSCP-INSERTION may be embedded into the fol-
lowing Monte-Carlo Scheme:

Monte-Carlo scheme for APSCP-INSERTION
Parameter Δ:
For i = 1 to Δ

Run the APSCP-INSERTION Procedure;
Keep the best result.

4.2. Descent algorithms based on variable neighborhood search (VNS)

We perform a variable neighborhood search (VNS) in order to improve solu-
tions obtained by the insertion algorithm APSCP-INSERTION. This VNS process
involves six local transformation operators which act through side effect on some
bipartite ordered tree T consistent with X and K, and they modify T :

• MOVE-RELOAD: its parameters are some active reload node x and some
non active reload node y. It replaces x by y in T ;
• MOVE-RELOADS: its parameters are two different demand nodes k and

k′, a segment l of RELOAD(T , k) and a cut c = (l1, l2) of RELOAD(T ,
k′). It removes l from RELOAD(T , k) and it inserts it into the cut c.
Its precondition is that k does not dominate k′ in the tree T , i.e., that
k cannot be obtained from k′ through a succession of applications of the
FATHER operator;
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• MOVE-RELOADS1: its parameters are some demand node k, some seg-
ment l of RELOAD(T , k) which induces a decomposition RELOAD(T ,
k) = l3 ⊕ l ⊕ l4, and a cut c = (l1, l2) of l3 ⊕ l4. It first removes
l from RELOAD(T , k) and next insert it into the cut c: RELOAD(T ,
k)← l1 ⊕ l ⊕ l2;
• MOVE-DEMANDS: its parameters are two different active reload nodes

x and y, a segment l of DEMAND(T , x), and a cut c = (l1, l2) of
DEMAND(T , x′). It removes l from DEMAND(T , x) and it inserts it
into the cut c. In case DEMAND(T , x) = l, it removes the reload node
x from T , which becomes non active. Its precondition is that x does not
dominate y in the tree T ;
• MOVE-DEMAND1: its parameters are a reload node x, a segment l of

DEMAND(T , x) which induces a decomposition DEMAND(T , x) = l3 ⊕
l ⊕ l4, and a cut c = (l1, l2) of l3 ⊕ l4. It first removes l and next inserts
it into the cut c: DEMAND(T , x)← l1 ⊕ l ⊕ l2;
• MOVE-DEMANDS-RELOAD: it takes an active reload node x, a non

active reload node y, a demand node k, a segment l of DEMAND(T , x) and
a cut c = (l1, l2) of RELOAD(T , k). It first turns y into an active reload
node, next removes l from DEMAND(T , x), inserts it into DEMAND(T ,
y), and inserts the segment {y} into c. In case l = DEMAND(T , x),
it turns x into a non active reload node. Its precondition is that k is
dominated by no demand node k′ in l.

APSCP-INSERTION will initialize the following APSCP-DESCENT descent
algorithm:

Algorithm APSCP-DESCENT

Initialize the tree T through APSCP-INSERTION;
Initialize the filtering threshold valueH ;
Stop ← false;
While Stop = false do

Search (in a filtered way) parameter values u for some operator I in the
above mentioned local transformation operators, in such a way that
applying I to T and u improves Tree-Cost(T );
If the search fails then H ← H/2;
If H is small enough then Stop← true;

Remark 4.3. In algorithm APSCP-DESCENT, the operators are tried in the
same order as they were listed above. As for the way parameters are tried, we
use the same kind of filtering device as for the case of the insertion operators.
The threshold parameter H is involved in this filtering process, in such a way that
the smallest H is, the largest is the domain of the parameter values which are
effectively tried.

Additional examples and illustrations of this part are available in [35].
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5. Experiments

We have been performing experiments, on a PC equipped with an Intel Xeon
1.86 GHz CPU and 3.25 Go Ram, while using a Visual Studio C++ compiler, and
while focusing on several points:

• the ability of APSCP-INSERTION and APSCP-DESCENT to get in a
fast way solutions close to the optimal solutions;
• the characteristics of the solutions: number of reload nodes involved in

the solution, impact of preemption.

In order to do this, we performed several tests, while using node sets X and
distance matrices D proposed by the TSPLIB libraries, and by selecting ori-
gin/destination pairs (ok, dk, k ∈ K) in a random way inside the set X . We
dealt with instances which involves from 20 to 300 nodes, and from 10 to 100 ori-
gin destination pairs, and, in case of small instances, we got exact results through
the use of the ILP formulation of Section 3.

5.1. Experiments about the APSCP-INSERTION algorithm

Our first experiment consists in running the APSCP-INSERTION Monte-Carlo
scheme with Δ = 100 and keeping track, for every instance, of the following
quantities:

• REF: optimal Tree-cost value;
• MIN (MAX, AVG) minimal (maximal, average) Tree-cost value obtained

through Δ iterations of APSCP-INSERTION;
• EGI: gap (in %) between REF and the solution produced by the APSCP-

INSERTION Monte Carlo scheme (MIN value);
• REL: mean number of active reload nodes involved in a solution produced

by APSCP-INSERTION;
• DEM/REL: mean number of demands related to every reload node x

(length of the list DEMAND(x)), for x different from Depot ;
• CPU: CPU mean time (in milliseconds) for any iteration of APSCP-

INSERTION

The results which we get may be summarized in Tables 1 to 4:

Comments: The instances related to Table 4 are specific in the sense that they
have been obtained through a particular construction of the graph: reload nodes
are always located in the path between an origin and its destination, so there is
no extra cost to go to a reload node. The consequence is that we know in advance
their optimal value which may be computed as the sum

∑
k∈K

Dokdk
.

Globally, Tables 1–4 show that APSCP-INSERTION allows us to get in a fast
way solutions which are not too far from the optimal ones. Still, we notice that
our greedy scheme is in trouble when it is supposed to create reload nodes.
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Table 1. Tests performed on 10 instances which we got from the
gr24 instance with 49 nodes of the TSPLIB library by randomly
sorting 12 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk, k ∈ 1 . . . 12.

Instance REF MIN MAX AVG EGI REL DEM/REL CPU
Gr24 v01 24 654 25 023 27 883 26 391 1.5 0.06 2.83 <15
Gr24 v02 21 395 21 424 23 654 22 371 0.136 0.43 1.60 <15
Gr24 v03 22 834 23 363 26 825 24 760 2.32 0.36 2.51 <15
Gr24 v04 23 255 23 444 25 513 24 140 0.813 0.41 2.47 <15
Gr24 v04 23 993 23 993 27 373 25 261 0 0.31 2.03 <15
Gr24 v06 23 233 23 233 25 584 24 427 0 0.54 1.71 <15
Gr24 v07 20 224 20 283 22 594 20 906 0.292 0.11 1.72 <15
Gr24 v08 20 865 21 124 23 334 21 873 1.24 0.61 1.13 15
Gr24 v09 23 054 23 073 25 684 24 014 0.0824 0.43 3 <15
Gr24 v10 26 704 26 963 29 843 28 303 0.97 0.16 4.4 15

Table 2. Tests performed on 10 instances which we got from the
hk48 instance with 97 nodes of the TSPLIB library by randomly
sorting 24 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk, k ∈ 1 . . . 24.

Instance REF MIN MAX AVG EGI REL DEM/REL CPU
Hk48 v01 358 048 375 447 405 299 387 605 4.86 0.97 1.67 <15
Hk48 v02 280 579 291 800 325 548 306 673 4 1.44 1.39 <15
Hk48 v03 318 959 325 027 351 678 338 017 1.9 0.95 3.25 <15
Hk48 v04 315 118 322 908 347 647 336 123 2.47 0.53 2.46 15
Hk48 v04 320 578 327 709 360 167 340 639 2.22 0.27 2.80 15
Hk48 v06 306 000 318 838 351 007 334 372 4.2 0.59 4.42 <15
Hk48 v07 314 127 330 528 370 107 347 588 5.22 0.52 3.04 16
Hk48 v08 342 390 350 960 381 719 366 652 2.5 0.53 4.57 16
Hk48 v09 337 327 343 127 370 387 355 734 1.72 0.54 3.24 15
Hk48 v10 330 119 339 509 373 190 355 208 2.84 0.73 1.61 16

5.2. Experiments about the APSCP-DESCENT

Our second experiment consists in running APSCP-DESCENT from a solution
provided by only one application of APSCP-INSERTION, and keeping track, for
any instance, of the quantities:

• REF: optimal value;
• VAL: the cost value obtained through APSCP-DESCENT;
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Table 3. Tests performed on 10 instances which we got from the
gr120 instance with 241 nodes of the TSPLIB library by randomly
sorting 60 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk, k ∈ 1 . . . 60.

Instance REF MIN MAX AVG EGI REL DEM/REL CPU
Gr 120 v01 Unknown 327070 344139 335480 * 0.42 5.13 78
Gr 120 v02 Unknown 332679 353 240 343 622 * 0.64 4.60 78
Gr 120 v03 Unknown 326189 345 859 335 567 * 0.27 8.95 78
Gr 120 v04 Unknown 366750 380 409 374 350 * 0.36 5.74 78
Gr 120 v05 Unknown 310179 330 002 320 326 * 1.53 3.05 78
Gr 120 v06 Unknown 319619 337 921 327 146 * 0.64 3.24 78
Gr 120 v07 Unknown 285989 302 602 293 394 * 0.70 4.46 78
Gr 120 v08 Unknown 345100 365 379 355 230 * 0.56 7.33 78
Gr 120 v09 Unknown 333909 350 171 342 549 * 0.47 11.11 78
Gr 120 v10 318 099 337 259 354 809 345 393 6.02 0.36 9.19 78

Table 4. Tests performed on 10 instances called RELm , which
we built in such a way that the instance contains m demands,
p = 2m+1 reload nodes and n= (2m + p+1) nodes; its optimal
value is the sum

∑
k∈K

Dokdk
and that the related optimal solution

involves all the reload nodes.

Instance REF MIN MAX AVG EGI REL DEM/REL CPU
REL15 11 843 13 045 17 088 14 665 10.1 0.11 0.68 <15
REL27 17 464 19 554 23 322 21 841 12.0 0.35 2.40 16
REL39 21 053 24 235 28 386 26 194 15.1 0.54 2.92 31
REL45 22 323 26 321 29 924 27 658 17.9 0.54 2.85 47
REL57 24 142 28 117 31 813 30 000 16.5 0.91 4.50 78
REL81 26 036 30 734 35 302 32 966 18.0 1.76 5.61 141
REL93 26 494 32 077 36 486 34 092 21.1 2.87 4.83 187
REL105 26 775 32 830 36 434 34 655 22.6 3.39 4.83 250
REL128 27 042 33 773 38 796 35 654 24.9 5.92 4.70 375
REL141 27 098 33 664 37 496 36 035 24.2 6.86 5.17 453

• EGI: gap (in %) between REF and the initial solution produced by APSCP-
INSERTION;
• ED: gap between REF and the final solution produced byAPSCP-DESCE-

NT;
• REL: number of reloads involved in the solution produced by APSCP-

DESCENT;
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Table 5. Tests performed on 10 instances which we got from the
gr24 instance with 49 nodes of the TSPLIB library by randomly
sorting 12 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk, k ∈ 1 . . . 12.

Instance REF VAL EGI ED ETDS REL TNB CPU (ms)
Gr24 v01 24 654 24 654 10.3 0 10.3 1 12 93
Gr24 v02 21 395 21 914 5.0 2.4 2.6 1 3 47
Gr24 v03 22 834 22 874 9.9 0.1 9.8 1 9 46
Gr24 v04 23 255 23 435 3.9 0.7 3.2 2 4 31
Gr24 v04 23 993 23 993 0 0 0 0 0 31
Gr24 v06 23 233 23 763 8.3 2.2 6.1 0 3 31
Gr24 v07 20 224 20 244 1.2 0.1 0.2 1 3 78
Gr24 v08 20 865 21 084 4.9 1.0 3.9 1 6 31
Gr24 v09 23 054 23 054 4.9 0 4.9 1 7 47
Gr24 v10 26 704 26 754 4.9 0.2 3.7 1 7 63

• ETDS: part of the gap between EGI and ED which is induced by the op-
erators MOVE-DEMANDS, MOVE-DEMANDS1 and MOVE-DEMAND-
with-RELOAD;
• REL: number of active reloads involved in the solution produced by AP-

SCP-DESCENT;
• TNB: number of times a local transformation operator is effectively applied

inside the APSCP-DESCENT process;
• CPU: Cpu running time.

The results which we got may be summarized in Table 5 to 8:

Comments: Though APSCP-DESCENT does not involve any of the classical
control mechanisms which allow dealing with local optima (simulated annealing,
tabu search. . . ), we see that the operators which derive from our tree representa-
tion enable us to get very satisfactory results in a fast way.

5.3. Experiments about the impact of the no preemption hypothesis

We have just been dealing with a preemptive version of a routing problem which
is usually handled in a non preemptive way. An interesting question which arises
in a natural way is about the evaluation of the true impact of this no preemption
hypothesis.

In order to estimate the gap between the optimal values which are respectively
related to preemptive and no-preemptive version of the ASCP, we perform a third
experiment which consists in running APSCP-DESCENT, from a solution which is
provided by only one application of APSCP-INSERTION while forbidding in both
cases the creation of reloads (we call the related restricted processes “no preemptive
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Table 6. Tests performed on 10 instances which we got from the
hk48 instance with 97 nodes of the TSPLIB library by randomly
sorting 24 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk, k ∈ 1 . . . 24.

Instance REF VAL EGI ED ETDS REL TNB CPU (ms)
Hk48 v01 358 048 358 349 5.2 0.1 5.1 2 18 8
Hk48 v02 280 579 284 411 7.9 1.3 6.3 4 20 11
Hk48 v03 318 959 322 879 5.7 1.2 4.3 2 12 200
Hk48 v04 315 118 316 362 5.1 0.4 4.6 5 24 7
Hk48 v04 320 578 323 508 7.1 0.9 6.1 1 23 300
Hk48 v06 306 000 310 963 12.6 1.6 10.4 5 38 14
Hk48 v07 314 127 319 009 12.9 1.5 11.1 2 28 12
Hk48 v08 342 390 342 551 6.7 0.05 6.6 4 26 18
Hk48 v09 337 327 338 500 6.4 0.3 6.0 3 35 9
Hk48 v10 330 119 334 881 6.4 1.4 4.8 4 19 7

Table 7. Tests performed on 10 instances which we got from the
gr120 instance with 241 nodes of the TSPLIB library by randomly
sorting 60 demands, and no reload nodes which is not the depot
node, the copy of an origin node ok or the copy of a destination
node dk k ∈ 1 . . . 60.

Instance REF VAL EGI ED ETDS REL TNB CPU (s)
Gr 120 v01 Unknown 313315 * * 5.2 6 89 130
Gr 120 v02 Unknown 318870 * * 8.9 1 116 189
Gr 120 v03 Unknown 314493 * * 6.2 4 96 125
Gr 120 v04 Unknown 360902 * * 3.5 3 107 145
Gr 120 v05 Unknown 293613 * * 9.8 4 99 125
Gr 120 v06 Unknown 303441 * * 7.7 2 90 80
Gr 120 v07 Unknown 265713 * * 6.4 4 84 86
Gr 120 v08 Unknown 330823 * * 6.9 4 77 94
Gr 120 v09 Unknown 314073 * * 8.5 4 105 70
Gr 120 v10 318 099 318 913 9.5 0.25 9.1 4 96 103

APSCP-DESCENT” and “no preemptive APSCP-INSERTION”). Every time this
composite process is performed we keep memory of the quantities:

• preemptive ED: gap between optimal preemptive value and the preemptive
solution produced by preemptive APSCP-DESCENT;
• no preemptive ED: gap between optimal preemptive value and the no-

preemptive solution produced by no-preemptive APSCP-DESCENT;
• preemptive CPU: Cpu running time for preemptive APSCP-DESCENT
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Table 8. Tests performed on 10 instances RELm , which we built
in such a way that the instance contains m demands, p = 2m+1
reload nodes and n = (2m + p + 1) nodes; its optimal value is the
sum

∑
k∈K

Dokdk
, and that the related optimal solution involves all

the reload nodes.

Instance REF VAL EGI ED ETDS REL TNB CPU (s)
REL15 11 843 11 953 16.7 0.9 15.8 4 10 0.04
REL27 17 464 17 583 27 0.7 36.3 8 28 0.34
REL39 21 053 21 053 29.9 0 29.9 12 56 1.5
REL45 22 323 22 605 20.8 1.2 19.6 14 46 2.9
REL57 24 142 24 225 28.4 0.34 28.4 18 78 8.4
REL81 26 036 26 279 19.3 0.93 18.3 26 79 25
REL93 26 494 26 626 26.6 0.49 26.2 30 112 39
REL105 26 775 26 851 33.1 0.28 30.1 34 134 78
REL128 27 042 27 067 37 0.09 36.9 42 162 232
REL141 27 098 27 211 33.1 0.4 32.4 46 202 328

Table 9. Tests performed on the 10 instances RELm.

Instance Preemptive ED No preemptive ED Preemptive No preemptive
CPU (s) CPU (ms)

REL15 0.90 13.7 0.04 15
REL27 0.70 27.1 0.34 15
REL39 0.00 26.9 1.50 15
REL45 1.20 13.9 2.90 15
REL57 0.34 24.8 8.40 16
REL81 0.93 17.2 25 31
REL93 0.49 23.3 39 31
REL105 0.28 31.3 78 31
REL128 0.09 35.3 232 31
REL141 0.40 37.4 328 47

• no-preemptive CPU: Cpu running time for no-preemptive APSCP-DES
CENT

The results which we get may be summarized in Table 9 and 10:

Comments: Through these results we see that, in some case, allowing preemp-
tion may induce a great improvement of solutions. However, handling solutions in
a preemptive way is much more time consuming.
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Table 10. Tests performed on the 10 instances which we got
from the hk48 instance with 97 nodes.

Instance Preemptive ED No preemptive ED Preemptive No preemptive
CPU (ms) CPU (ms)

Hk48 v01 0.1 7.64 80 <15
Hk48 v02 1.3 7.08 110 <15
Hk48 v03 1.2 2.92 200 <15
Hk48 v04 0.4 5.34 70 <15
Hk48 v04 0.9 4.59 300 <15
Hk48 v06 1.6 2.55 140 <15
Hk48 v07 1.5 10.5 120 <15
Hk48 v08 0.05 5.52 180 <15
Hk48 v09 0.3 8.05 90 <15
Hk48 v10 1.4 5.33 70 <15

6. Conclusion

We have been dealing here with a preemptive demand routing problem with
capacity constraints, and we showed how it was possible to turn it into a non
constrained tree construction problem in such a way that we could solve it in an
efficient way through simple greedy and descent processes. It would be interesting
to study to what extent our approach could be suitable to the handling of more
general routing and scheduling problems.
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polyèdres. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand II (2009).

[24] S. Lin, Computer solutions to the traveling salesman problem. Bell System Technical Journal
44 (1965) 2245–2269.

[25] J. Little, K. Murty, D. Sweeney and C. Karel, An algorithm for the traveling salesman
problem. Oper. Res. 11 (1963) 972–989.

[26] S. Mitrovic-Minic and G. Laporte, The pickup and delivery problem with time windows and

transshipment. INFOR 44 (2006) 217–227.
[27] R. Montemanni, D.H. Smith and L.M. Gambardella, A heuristic manipulation technique for

the sequential ordering problem. Comput. Oper. Res. 35 (2008) 3931–3944.
[28] P. Oertel, Routing with Reloads. Doktorarbeit, Universität zu Köln (2000).
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