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Abstract. A hypergraph is Helly if every family of hyperedges of it,
formed by pairwise intersecting hyperedges, has a common vertex. We
consider the concepts of bipartite-conformal and (colored) bipartite-
Helly hypergraphs. In the same way as conformal hypergraphs and
Helly hypergraphs are dual concepts, bipartite-conformal and bipartite-
Helly hypergraphs are also dual. They are useful for characterizing bi-
clique matrices and biclique graphs, that is, the incident biclique-vertex
incidence matrix and the intersection graphs of the maximal bicliques
of a graph, respectively. These concepts play a similar role for the bi-
cliques of a graph, as do clique matrices and clique graphs, for the
cliques of the graph. We describe polynomial time algorithms for rec-
ognizing bipartite-conformal and bipartite-Helly hypergraphs as well as
biclique matrices.
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1. Introduction

It is well known that Helly hypergraphs and conformal hypergraphs are dual
concepts, in the sense that a hypergraph is Helly if and only if its dual is conformal.
We consider an extension of these concepts, namely (colored) bipartite-Helly and
bipartite-conformal hypergraphs. The interest on these concepts can be justified
both by their own, as combinatorial structures, and by their applications. These
hypergraphs were explicitly employed in the characterizations of biclique matrices
and biclique graphs. A biclique matrix can be viewed as a matrix representation
of the maximal bicliques of a graph, in the same way as a clique matrix represents
the maximal cliques of a graph. A biclique graph is the intersection graph of the
maximal bicliques of a graph, in a similar way as a clique graph is the intersection
graph of the maximal cliques of a graph. In fact, this paper has been motivated
by the study of bicliques of a graph. Bicliques have been considered in many
different contexts, for instance, in covering problems [1, 10]. Moreover, bicliques
have already been studied in relation to the Helly property, as in [6,7]. Finally, as
for the matrices, we mention that clique matrices are related to interval graphs [5],
Helly circular-arc graphs [4] and self-clique graphs [9]. Similarly, biclique matrices
are related to the study of biclique graphs [8].

In this work, we describe polynomial-time algorithms for recognizing bipartite-
Helly and bipartite-conformal hypergraphs. These algorithms can be viewed as
counterparts of the known algorithms for recognizing Helly hypergraphs and con-
formal hypergraphs [2]. As applications of techniques described in this work, we
present algorithms for recognizing biclique matrices. Furthermore, we employ the
concept of bipartite-Helly hypergraph in order to prove that the problem of rec-
ognizing biclique graphs lies in NP , a fact so far unknown.

In order to develop the ideas of bipartite-Helly and bipartite-conformal hy-
pergraphs, we need further concepts related to bicliques and hypergraphs. For
instance, to distinguish between the two parts of the bicliques of a graph, it would
be natural to define the biclique matrix as being a {0, 1,−1}-matrix, instead of
a {0, 1}-matrix, employed for representing the cliques. When considering hyper-
graphs, the bipartitions which are present throughout the work, lead to defining
a bi-coloring of their vertices. We also employ the concept of a black section of
a hypergraph, which plays a similar role for bipartite-conformal hypergraphs, as
the known 2-section, employed for conformal hypergraphs [2]. Finally, recall that
the Helly property requires the concept of pairwise-intersecting families of hyper-
graphs. Similarly, for the bipartite-Helly property, we need the equivalent concepts
of monochromatic and bipartite-intersecting families.

The paper is divided as follows. In the next section, we present the main defini-
tions and concepts related to the work. In Section 3, we describe the polynomial
time algorithm for recognizing bipartite-Helly hypergraphs, while in Section 4, we
present algorithms for recognizing bipartite-conformal hypergraphs. Two applica-
tions of these concepts are given in Section 5, namely, in the recognition of biclique
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matrices and in the NP containment proof for the biclique graph recognition prob-
lem. Some short remarks form the last section.

2. Preliminaries

Denote by H a hypergraph, with vertex set V (H) and hyperedge set E(H). Write
V (H) = {v1, . . . , vn} and E(H) = {E1, . . . , Em}. If |Ei| = 2, for all 1 ≤ i ≤ m,
we then say that the hypergraph is a graph and the hyperedges are edges. Usually,
we denote a graph by G. For a graph G, write ek = vivj , with the meaning of
Ek = {vi, vj} for some k, and say that vertices vi, vj are adjacent. The 2-section
of a hypergraph H is a graph G2, where V (G2) = V (H) and such that there is an
edge ek = vivj ∈ E(G2) precisely when there exists some hyperedge Ek ⊇ {vi, vj},
for all 1 ≤ i �= j ≤ n.

For a graph G, say that V ′ ⊆ V (G) is a complete set if vi, vj are adjacent,
for all vi, vj ∈ V ′. A complete bipartite set is a subset B ⊆ V (G), which admits
a bipartition V1 ∪ V2 = B, where vi, vj ∈ B are adjacent exactly when vi, vj

belong to distinct parts of the bipartition. We restrict to proper bipartitions, that
is, V1, V2 �= ∅. A clique is a maximal complete set, while a biclique is a maximal
complete bipartite set. The neighborhood of a vertex v of a graph is the subset of
vertices adjacent to v. Denote by Pk a path formed by k vertices.

If G has c cliques {C1, . . . , Cc}, the clique matrix of G is the matrix A ∈
{0, 1}c×n, defined as aki = 1 if and only if vi ∈ Ck. Finally, if G has d bicliques
B1, . . . , Bd ⊆ V (G), the biclique matrix of G is the matrix A ∈ {0, 1,−1}d×n,
where aki = −akj �= 0, precisely when vi, vj ∈ Bk and vi, vj are adjacent, for all
1 ≤ k ≤ n and 1 ≤ i �= j ≤ n.

Say that a hypergraph H is conformal if each clique of its 2-section is contained
in some hyperedge of H. Furthermore, say that H is Helly if every subfamily of
pairwise intersecting hyperedges contains a common vertex.

A colored hypergraph H is a hypergraph in which there is a coloring C of the
occurrences of each vertex in the hyperedges of H, using the colors white and
black. That is, if vertex v belongs to hyperedges E1, . . . , Ek, then v is assigned
a color either white or black, in each of these hyperedges, and these colors are
independent. Define a coloring of the edges of the 2-section G2 of H as follows.
Each vivj ∈ E(G2) is black if there exists some edge Ek ⊇ {vi, vj}, where vi and
vj have different colors in Ek; otherwise vivj is white. Define the black section of
H, as the subgraph Gb of G2, containing exactly the black edges of G2. Say that
H is bipartite-conformal, relative to C, when each biclique B of Gb is contained in
some hyperedge of H. That is, there is a hyperedge Ek such that vivj is an edge
of B precisely when vi, vj have different colors in Ek. When every two vertices
contained in a hyperedge of H with the same color are not adjacent in Gb , we say
that C is a compatible coloring and that H is a compatibly colored hypergraph.

Given a {0, 1,−1}m×n-matrix A, the associated hypergraph H of A is the hyper-
graph having one vertex vi for each column i and one hyperedge Ek for each row
k of A, such that vi ∈ Ek precisely when aki �= 0. Define a special coloring of the
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M1 =

(
1 1
1 −1

)
M2 =

(
1 −1
1 1

)

M3 =

(
1 1

−1 1

)

Figure 1. Row-similar matrices.

• V(H) = {v,t,s,r}, colors = {w,b}
• E(H) = {E1, E2, E3, E4, E5, E6}
• Hyperedges:E1 = {vw, tb}, E2 = {vb, tb}, E3 = {sb, tb},

E4 = {vw , rb, sw}, E5 = {vb, rw, tw}, E6 = {vw, tw}

Figure 2. Example of a colored hypergraph.

occurrences of each vertex in the hyperedges of H as follows: vertex vi ∈ V (H) is
white in Ek when aki = 1 and vi is black in Ek when aki = −1. When vi �∈ Ek then
vi is uncolored for Ek. Such a coloring and the coloring of edges of its 2-section,
is called the canonical coloring of H. We also employ special concepts related to
matrices, as follows.

Let A, A′ be {0, 1,−1}m×n-matrices. Denote by Ak the vector consisting of row
k of A. Say that row k is dominated by row l, when aki = 1 implies a′

li = 1 and
aki = −1 implies a′

li = −1, for all 1 ≤ i ≤ n, where A′
l = Al or A′

l = −Al.
In general, say that A, A′ are row-similar when Ak = A′

k or Ak = −A′
k, for all

1 ≤ k ≤ m. In Figure 1 there is an example of matrices row-similar to M1. In
general, denote by M∗

1 any matrix which is row-similar to M1.
Remark that whenever A, A′ are two row-similar matrices then the 2-sections

G2, G
′
2 of their corresponding associated hypergraphs are isomorphic. Moreover,

if e ∈ E(G2) and e′ ∈ E(G′
2) are two corresponding edges in an isomorphism

G2
∼= G′

2 then they have identical colors in the respective canonical colorings.
Given a colored hypergraph H and a coloring C of it, say that C bicovers vertices

of H if for each v, there are hyperedges Ei, Ej such that v ∈ Ei ∩ Ej and v
has different colors in Ei and Ej . On the other hand, a subfamily of hyperedges
E ⊆ E(H) is monochromatically intersecting if, for any two hyperedges Ei, Ej ∈ E ,
either Ei ∩ Ej = ∅ or each v ∈ Ei ∩ Ej has the same color in both Ei and Ej .
Consider a bipartition E = E1 ∪ E2 of E . Say that E is bipartite-intersecting if
E1, E2 are both monochromatically intersecting, and for every pair of hyperedges
E1 ∈ E1, E2 ∈ E2, there exists a vertex v ∈ E1∩E2, such that v has different colors
in E1 and E2. Finally, say that H is bipartite-Helly if C is compatible and every
bipartite-intersecting subfamily E = E1 ∪ E2 ⊆ E(H) contains a common vertex.

In Figure 2, there is an example of a colored hypergraph H, using colors
white and black, where vw and vb mean that vertex v is colored white and black,
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A1 =

⎛
⎜⎜⎝

v1 v2

1 0
0 1

−1 0

w1 w2 w3 w4

0 −1 −1 −1
−1 −1 −1 0

0 1 0 1

⎞
⎟⎟⎠

A2 =

⎛
⎜⎜⎝

v1 v2

1 0
0 1
1 1

w1 w2 w3 w4

0 −1 −1 −1
−1 −1 −1 0

0 −1 −1 0

⎞
⎟⎟⎠

Figure 3. {0, 1,−1} matrices.
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Figure 4. Graphs G2(H2) and Gb(H2).

respectively. Observe that E(H) bicovers V (H). However, examining the coloring
of the hyperedges E1 and E2, we conclude that the coloring is not compatible. On
the other hand, the coloring restricted to the partial hypergraph formed by the
hyperedges E1 and E3 is compatible. The subfamily {E1, E6} is not monochro-
matically intersecting. On the other hand, {E3} ∪ {E4, E6} and {E5} ∪ {E1, E4}
are examples of bipartite-intersecting subfamilies of E(H). The latter contains a
common element, while the former does not, meaning that H is not bipartite-Helly.

Figure 3 illustrates an example of a {0, 1,−1} matrix with dominated rows. The
last row of A1 is dominated by the first row. The hypergraphs H1, H2, associated
to the matrices A1 and A2, respectively, have as vertex sets V (H1) = V (H2) =
{v1, v2, w1, w2, w3, w4}, and hyperedges H1 = {E1, E2, E3}, H2 = {E1, E2, E

′
3},

where E1 = {v1, w2, w3, w4}, E2 = {v2, w1, w2, w3}, E3 = {v1, w2, w4}, and E′
3 =

{v1, v2, w2, w3}. In Figure 4, we show the 2-section G2 of H2 and the black section
Gb of the hypergraphs H1 and H2. Although A1 and A2 and their corresponding 2-
sections are distinct, their black sections coincide. Observe that H1 is not bipartite-
conformal, and that A2 is a biclique matrix of Gb.

Notice that whenever A, A′ are two row-similar matrices then the 2-sections
G2, G

′
2 of their corresponding associated hypergraphs are isomorphic. Moreover,

if e ∈ E(G2) and e′ ∈ E(G′
2) are two corresponding edges in the isomorphism

G2
∼= G′

2 then they have identical colors in the respective canonical colorings.
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3. Algorithm for recognizing bipartite-Helly
hypergraphs

In this section we study bipartite-Helly colored hypergraphs. We give a charac-
terization for bipartite-Helly colored hypergraphs that leads to a polynomial time
algorithm for the recognition problem.

We need the following further definitions. Let H be a colored hypergraph of
m hyperedges, n vertices and let C be its coloring using colors white or black.
For every subset S′ = {vi, vj , vk} of three vertices of V (H), consider every triple
li, lj, lk, 1 ≤ i, j, k ≤ m, where li, lklk are equal to 1 or −1, with the meaning
of white or black, respectively. Let E1

{li,lj ,lk} be the subfamily of hyperedges of
E(H) which contains at least two vertices vs ∈ S′, vr ∈ S′, having colors ls, lr,
respectively. Similarly, let E2

{li,lj ,lk} be the subfamily of hyperedges of E(H) which
contains at least two vertices vs ∈ S′, vr ∈ S′, having color −ls, −lr, respectively.
In the example of the hypergraph of Figure 2, take b = 1 with w = −1 and
consider the subset of vertices S′ = {v, t, s} together with the triples b, b, b and
w, w, w. Then, E1

{b,b,b} = {E2, E3}, E2
{b,b,b} = {E5, E6}.

We start with an observation.

Observation 3.1. Let H= {E1, E2, . . . , Ek} be a colored hypergraph. Then, H
is compatible if and only if every bipartite-intersecting subfamily of hyperedges
E ′ ={Ei} ∪ {Ej} is compatible.

As a corollary of Observation 3.1, we also derive some properties on {0, 1,−1}-
matrices.

Corollary 3.2. Let A be a {0, 1,−1} − matrix. The columns of A form a com-
patible family if and only if A does not contain any matrix M∗

1 .

The following Theorem characterizes colored bipartite-Helly hypergraphs.

Theorem 3.3. A colored hypergraph H is bipartite-Helly if and only if

(1) Every bipartite-intersecting subfamily E ′ ={Ei} ∪ {Ej} of H is compatible,
(2) every bipartite-intersecting subfamily E ′ ={Ei} ∪ {Ej, Ek} has a common ele-

ment, and
(3) every subfamily E1

{li,lj ,lk} ∪ E2
{li,lj ,lk} has a common intersection.

Proof. If H is bipartite-Helly, then the first two conditions follow directly. We prove
that also the third condition holds. We need to show that E1

{li,lj ,lk} ∪ E2
{li,lj,lk} is

a bipartite intersecting subfamily, for every {i, j, k}. First, we prove that E1
{li,lj ,lk}

and E2
{li,lj ,lk} are monochromatically intersecting. Let Er, Es ∈ E1

{li,lj ,lk}. Then
there is a vertex, suppose vi, which belongs to both subsets with color li. If Er, Es

intersect in a vertex having different colors in these hyperedges then {Er} ∪ {Es}
is a bipartite-intersecting family which is not compatible, a contradiction. Anal-
ogously, E2

{li,lj ,lk} is monochromatically intersecting. Finally, it remains we prove
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that E1
{li,lj,lk} ∪ E2

{li,lj ,lk} is a bipartite-intersecting family. Let Er ∈ E1
{li,lj ,lk},

and Es ∈ E2
{li,lj,lk}. Then, there is a common vertex, suppose vj , that belongs to

Er, Es with different colors among them since vj has color lj in Er, and −lj in Es.
Since H is bipartite-Helly, we conclude that E1

{li,lj ,lk} ∪ E2
{li,lj,lk,lk} has a common

vertex.
Conversely. Let E ′ = E1∪E2 be minimal bipartite-intersecting subfamily with no

common element. Then, |E1| + |E2| ≥ 4. Consider the case where | E1 |=| E2 |= 2.
Let v1 be the common vertex to E1 \ {Ei1} ∪ E2. Let l1 be the color of v1 in E2

(recall that since E1 is monochromatically intersecting, every vertex has the same
color in E2). Analogously, let v2 be the common vertex to E1 \ {Ei2} ∪ E2. Let l2
be the color of v2 in E2. Finally, let v3 be the vertex belonging to E1 ∪ E2 \ {Ej1}
and let l3 be the color of v3 in E2. Consider E1

{l1,l2,l3} ∪ E2
{l1,l2,l3}. We prove that

E ′ = E1 ∪ E2 is included in E1
{l1,l2,l3} ∪ E2

{l1,l2,l3}. Subset Ei1 contains v2 and v3.
Since Ej2 ∈ E2 contains v1, v2 and v3, the colors of vj2 in E1, E2 and E3 are l1,
l2, l3 respectively. Then, as Ej2 intersects Ei1 and both contain v2 and v3, their
colors in Ei1 are −l2, −l3 respectively. Analogously, Ei2 contains v1, v3 with colors
−l1, −l3, respectively. Finally, Ej1 contains v1, v2 with colors l1, l2 respectively. It
follows that E1 ⊆ E1

{l1,l2,l3}, E2 ⊆ E2
{l1,l2,l3}.

The case where | E1 |≥ 3 is similar. We consider E1 \ {Ei1}∪E2, E1 \ {Ei2}∪E2

and E1 \ {Ei3} ∪ E2 and conclude that there are elements v1, v2, v3, such that
vj /∈ Eij . Finally, let l1, l2, l3 be the colors of v1, v2, v3 ∈ E1, respectively. In any
case, it follows that E ′ = E1 ∪ E2 has a common vertex, a contradiction.

Finally, by Lemma 3.1, every bipartite-intersecting subfamily is compatible. We
conclude that E is a bipartite-Helly hypergraph. ∇.

Theorem 3.3 leads to a polynomial time algorithm for recognizing bipartite-
Helly colored hypergraphs.

The algorithm is described below. For a given colored hypergraph H, it answers
YES or NO, depending on whether H is bipartite-Helly. Let H be a colored hy-
pergraph of m hyperedges and n vertices and let C be a coloring with colors white
and black, represented by −1 and 1. �

Algorithm 3.4. Recognizing bipartite-Helly hypergraphs
Input: Colored hypergraph H, V (H) = {v1, . . . , vn} and E(H) = {E1, . . . , Em}

(1) for every bipartite-intersecting subfamily {E1} ∪ {Ej} do
if {E1} ∪ {Ej} is not compatible then return NO

(2) for every bipartite-intersecting subfamily {Ei} ∪ {Ej, Ek} do
if Ei ∩ Ej ∩ Ek = ∅ then return NO

(3) for every vi, vj , vk, 1 ≤ i, j, k ≤ n and every l = 1,−1 do
construct E1

{li,lj ,lk}, E2
{li,lj,lk}

if E1
{li,lj ,lk} ∩ E2

{li,lj,lk} = ∅ then return NO
return YES

The complexity of the above algorithm can be evaluated as follows. As a pre-
processing, we compute the black section Gb of G. For this purpose, for each pair
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of vertices va, vb ∈ V (H), verify if some hyperedge Ei contains both va, vb. Conse-
quently, we can construct Gb in O(mn2) time. Next, we determine the complexity
of verifying whether the coloring of a hypergraph H is compatible, as follows. Let
Ei be a hyperedge of H and consider the bipartition of the vertices of Ei induced
by the two colors of the hypergraph. The coloring of Ei is not compatible precisely
when there is an edge of Gb formed by a pair of vertices having the same color
in H. Since there are O(n2) pairs of vertices and m hyperedges, we conclude that
compatibility can be checked in O(mn2) time, for the entire hypergraph.

Now, we examine the steps of the algorithm. For Step 1, we need to consider each
of the bipartite-intersecting subfamilies Ei ∪ Ej of H. Therefore we compute the
intersection Ei∩Ej , and for each v ∈ Ei∩Ej verify if v has the same color in both
edges. If the answer is positive or Ei ∩ Ej = ∅ then Ei ∪ Ej is monochromatically
intersecting. Consequently, Step 1 can be computed in O(mn2) time.

For Step 2, we compute first the bipartite-intersecting subfamilies of the form
{E1} ∪ {Ej , Ek}. Using similar arguments as above, we conclude that these oper-
ations can be performed in O(m3n) time.

Finally, for Step 3, we need to consider each triple vi, vj .vk ⊆ V (H) and each
of the triples li, lj , lk, corresponding to colors white and black, respectively. Then
we need to examine each hyperedege of H in order to construct the subfamily of
hyperedges E1

li,lj .lk
and E2

li,lj.lk
, employing the definitions. There are O(n3) triples

and m hyperedges. Consequently, Step 3 requires O(mn3) time.
Therefore, Algorithm 3.4 requires O(mn3 + m3n) time.

4. Algorithms for recognizing bipartite-conformal
hypergraphs

In this section we study bipartite conformal hypergrahs. The Helly property is
the dual concept of conformality for hypergraphs. Similarly, we relate the bipartite-
Helly property to the bipartite-conformal condition. We derive an algorithm for
recognizing bipartite-conformal hypergraphs having compatible colorings. We need
the following definitions.

The dual of a hypergraph H is the hypergraph H∗, where V (H∗) = E(H),
E(H∗) = V (H), and such that for v∗i ∈ V (H∗) and E∗

j ∈ E(H∗), v∗i ∈ E∗
j precisely

when vj ∈ Ei ∈ E(H). If H is a hypergraph with a coloring C, then its dual
hypergraph H∗ has a coloring C∗ defined as follows. Let vi ∈ V (H) and Ej ∈ E(H),
where vi ∈ Ej . Denote by v∗j and E∗

i the vertex and hyperedge of H∗, corresponding
to Ej and vi, respectively. Then the color of v∗j in E∗

i is precisely the same as the
color of vi in Ej .

Theorem 4.1. Let H be a colored hypergraph, C its coloring and H∗ its dual
colored hypergraph. Then H is compatible and H is bipartite-conformal if and only
if H∗ is bipartite-Helly.
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Proof. Observe that H is compatible if and only if H∗ is compatible. We need to
prove that H is bipartite-conformal if and only every bipartite-intersecting family
of hypedeges of H∗ has a common vertex.

Suppose H is bipartite-conformal. Let Gb be its black section. Consider E1 ∪E2

a bipartite-intersecting family of hyperedges of H∗, where E1 = {E∗
i1 , . . . , E

∗
ik
},

E2 = {E∗
ik+1 , . . . , E

∗
is}.

Since E1, E2 are monochromatically intersecting, V1 = {vi1 , . . . vik
}, V2 =

{vik+1 , . . . , vis} are both independent sets in G. On the other hand, since ev-
ery E∗

i ∈ E1, E∗
j ∈ E2 intersect in a different color, vertices vi ∈ V1, vj ∈ V2 are

adjacent in G. It follows that V1, V2 induce a complete bipartite subgraph in G.
Since H is bipartite-conformal, there is a hyperedge Et which contains the vertices
of V1 ∪ V2. It follows that Et in H∗ is a common vertex of E1 ∪ E2.

Conversely, let B be a biclique of G with bipartition V1 = {vi1 , . . . , vis},
V2 = {vis+1 , . . . , vit}. Consider E1 = {E∗

i1 , . . . , E
∗
is}, E1 = {E∗

is+1 , . . . , E
∗
it},

hyperedges of H∗. Since V1, V2 are independent sets, E1, E2 are monochromatically
intersecting. Since every vertex of V1 intersects every vertex of V2, E1 ∪ E2 is a
bipartite-intersecting family in H∗. By hypothesis there is a vertex Et common to
E1, E2. Then, edge Et of H contains the vertices of B. ∇ �

Observation 4.2. Let A be a {0, 1,−1}-matrix which does not contain any matrix
M∗

1 as a submatrix. Let H be its associated colored hypergraph. Then H is bipartite-
conformal if and only if the columns of A are bipartite-Helly.

The dual relation between the bipartite-Helly and bipartite-conformal condi-
tions, motivates the theorem below. As before, given a colored hypergraph H, for
every subset E ′ = {Ei, Ej , Ek} of three hyperedges of H, 1 ≤ i, j, k ≤ m, consider
all distinct triples li, lj , lk, where each li, lj or lk is either equal to 1 or -1 (white or
black, respectively). Let V1

{li,lj ,lk} be the subfamily of vertices of H which belong
to at least two hyperedges Es ∈ E ′, Er ∈ E ′, with colors ls, lr, respectively. Simi-
larly, let V2

{li,lj ,lk} be the subfamily of vertices of H which belong to at least two
hyperedges Es ∈ E ′, Er ∈ E ′, with colors −ls, −lr, respectively. In the example of
he hypergraph of Figure 2, consider E ′ = {E1, E3, E4} and l1 = 1, l3 = 1, l4 = −1.
Assuming b = 1 and w = −1, then V1

{l1,l3,l4} = {t, s} and V2
{l1,l3,l4} = ∅

It follows the characterization for bipartite-conformal hypergraphs, with a com-
patible coloring C.

Theorem 4.3. Let H be a colored hypergraph, C a compatible coloring of it, and
Gb the black section of H. Then H is bipartite-conformal if and only if every
induced P3 of Gb is contained in a hyperedge of H and every subfamily V1

{li,lj ,lk}∪
V2
{li,lj ,lk} is contained in a hyperedge of H.

Proof. The proof is similar as that of Theorem 3.3. It is clear that every P3 is
contained in an hyperedge of H. First, observe that V1

{li,lj ,lk} and V2
{li,lj,lk} induce

independent sets in Gb, since C is a compatible coloring.
Finally, let vr ∈ V1

{li,lj ,lk}, vs ∈ V2
{li,lj,lk}. There is a hyperedge in H that con-

tains vr, vs with different colors, meaning that in Gb they are adjacent. Then, the
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complete bipartite subgraph V1
{li,lj ,lk}∪V2

{li,lj,lk} must be contained in a hyperedge
of H.

Conversely, let B′ be a minimal bipartite subgraph of a biclique B with bipar-
titions V ′

1 ⊆ V1, V ′
2 ⊆ V2 (V ′

1 , V ′
2 �= ∅) not contained in a hyperedge. Let E1 be

the hyperedge containing V ′
1 \ {vi1} ∪ V ′

2 . Let l1 be the color of vertices of V ′
2 in

E1 (recall that since V ′
2 is an independent set, every vertex has the same color in

E1). Analogously, let E2 be the hyperedge containing V ′
1 \ {vi2} ∪ V ′

2 . Let l2 be
the color of the vertices of V ′

2 in E2. Finally, let E3 be the hyperedge containing
V ′

1 ∪ V ′
2 \ {vj1}. Let l3 be the color of vertices of V ′

2 in E3. Consider the bipartite-
intersecting family V1

{l1,l2,l3} ∪ V2
{l1,l2,l3}. The proof follows observing that B′ is

included in V1
{l1,l2,l3} ∪ V2

{l1,l2,l3}, and therefore is also included in a hyperedge, a
contradiction.∇

The following algorithm for recognizing bipartite-conformal hypergraphs having
a compatible coloring follows from Theorem 4.3. As before, the algorithm returns
YES or NO, in case of a positive and negative recognitions, respectively. �

Algorithm 4.4. Recognizing bipartite-conformal hypergraphs

Input: Colored hypergraph H, |V (H)| = n and |E(H)| = m

(1) construct the black-section Gb of H
(2) for every triple of vertices t, forming an induced P3 of Gb do

if t is not contained in a hyperedge of H then return NO
(3) for every li, lj , lk, 1 ≤ i, j, k ≤ m, l = 1,−1 do

construct sets V1
{li,lj,lk}, V2

{li,lj ,lk}
if V1

{li,lj ,lk} ∪ V2
{li,lj ,lk} is not contained in a hyperedge of H

then return NO
return YES

We evaluate the complexity of the algorithm. Step 1 requires O(mn2) time, as
described in Section 3. In Step 2, we generate each triple of vertices, verify if it
forms an induced P3 and if there is any hyperedge containing it. Clearly, these
operations can be done in O(mn3) time. Finally, for Step 3, we generate all triples
li, lj, lk, for 1 ≤ i, j ≤ m and l = 1,−1, construct the subset of vertices V1

l1,l2,l3
,

V2
l1,l2,l3

, and check if some hyperedge Et contains V1
l1,l2,l3

∪ V2
l1,l2,l3

. There are
O(m3) triples li, lj.lk, for each triple, we perform intersections of the hyperedges
Ei, Ej , Ek, requiring O(n) time, in order to construct V1

l1,l2,l3
and V2

l1,l2,l3
. Addi-

tionally, verify, in O(nm) time, if some hyperedge Et contains V1
l1,l2,l3

∪ V2
l1,l2,l3

,
That is, Step 3 requires O(m4n) time. Consequently, the complexity of the algo-
rithm is O(mn3 + m4n).

Say that a {0, 1,−1}-matrix A is bipartite when it admits a row-similar matrix
A′, such that no column of A′ has both entries 1 and −1. Say that a hypergraph
H is bipartite if H is the hypergraph associated to some bipartite matrix.

Next, we describe an algorithm for recognizing if a bipartite hypergraph H
is bipartite-conformal. The algorithm is conceptually simple and employs the
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relationship between conformal and bipartite-conformal hypergraphs. The input
of the algorithm is the bipartite matrix A to which H is associated. We transform
A into a convenient matrix A′, whose associated hypergraph is conformal if and
only if H is bipartite-conformal. The algorithm answers YES or NO, respectively,
to each of these alternatives.

Algorithm 4.5. Recognizing bipartite-conformal hypergraphs

Input: {0, 1,−1}m×n- matrix A

(1) Partition the set of columns of A into two subsets V1, V−1, corresponding to
the {0, 1}-columns and {0,−1}-columns, respectively

(2) Let A′ be the matrix obtained from A by adding two extras rows, one containing
1’s in all columns of V1 and the other containing −1’s in all columns of V−1,
and having O’s in the remaining columns

(3) Construct the associated hypergraph H′ of A′

(4) if H′ is conformal then return YES else return NO

It is straightforward to conclude that the dominating operation of the above
algorithm is its last step. So, the complexity of the algorithm is that of recognizing
if H′ is conformal. The latter is equivalent to recognizing if its dual is Helly, which
can be done in O(m4n) time [2].

5. Applications

In this section, we describe applications of the concepts of bipartite-Helly and
bipartite-conformal hypergraphs. Two kinds of applications are given. In the first,
bipartite-conformal hypergraphs are employed in order to recognize biclique ma-
trices. On the other hand, we use bipartite-Helly hypergraphs to prove a result
on biclique graphs, that is, the intersection graphs of the bicliques of a graph.
We show that deciding whether a given graph is a biclique graph is in the
class NP .

First, we consider the recognition of biclique matrices. These matrices have
been employed in the characterization of biclique graphs [8]. Besides, they might
be useful in approaching covering problems of bicliques, through matrices. Such
covering problems have been considered, for example in [1,10]. A characterization
of these matrices is given in terms similar to those used in the characterization of
clique matrices, as below.

Theorem 5.1. [8] Let A ∈ {0, 1,−1}n×m-matrix, and H its associated hyper-
graph. Then A is a biclique matrix of some graph if and only if

(i) Each row of A has at least one 1 and at least one −1,
(ii) A has no dominated rows,
(iii) A does not contain a M∗

1 as a submatrix, and
(iv) H is bipartite-conformal, relative to its canonical coloring.
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The following property is a consequence of Theorem 5.1

Corollary 5.2. [8] A matrix is the biclique matrix of some graph if and only if it
is the biclique matrix of the 2-section of its associated hypergraph.

For recognizing biclique matrices, we describe two algorithms. The first is based
on Theorem 5.1. The second follows from Corollary 5.2 and employs an algorithm
for generating the bicliques of a graph.

The first algorithm for recognizing biclique matrices follows directly from The-
orem 4.3 and Theorem 5.1, by checking conditions (i),(ii), (iii) and (iv), for the
associated hypergraph of A. We recall that a {0, 1,−1}-matrix A does not contain
M∗

1 as a submatrix if and only if the canonical coloring of its associated hypergraph
H is compatible.

Algorithm 5.3. Recognizing biclique matrices

Input: {0, 1,−1}m×n- matrix A

(1) if any row has no 1’s or no 0’s then return NO
(2) if A has a dominated row then return NO
(3) Construct the associated hypergraph H of A and its canonical coloring
(4) if the canonical coloring of H is not compatible then return NO
(5) if H is not bipartite-conformal, relative to its canonical coloring

then return NO
(6) return YES.

We determine the complexity of the algorithm. For Step 1, clearly, O(mn) steps
are needed. For Step 2, for each row of A, examine all the rows, which means
O(m2n) time, overall. The associated hypergraph H and its canonical coloring can
clearly be constructed in time proportional to the size of H, i.e. O(mn). Checking
if a coloring is compatible can be done in O(mn2) time, as described in Section 3.
Finally, by Algorithm 4.4, to verify if a hypergraph is bipartite-conformal requires
O(mn3 + m4n) time, which is therefore the complexity of the present algorithm.

Alternatively, we can recognize if A is a biclique matrix by employing Corol-
lary 2. The idea is to construct the biclique matrix of the black section Gb of the
associated hypergraph of A, and verify if these two matrices are row-similar. In
order to perform this operation, iteratively generate each biclique of Gb, construct
its row entry B′ in the biclique matrix of Gb, and search matrix A looking for a
row similar to B′. If no such row exists then A is not a biclique matrix. Other-
wise, remove from A the row similar to B′. If A becomes empty exactly after the
generation of the last biclique of Gb then A is a biclique matrix, otherwise it is
not.
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The formulation below describes the process.

Algorithm 5.4. Recognizing biclique matrices
Input: {0, 1,−1}m×n matrix A

(1) construct the associated hypergraph H of A, its canonical coloring and black
section Gb

(2) for each biclique B of Gb do
if A = ∅ then return NO
construct a {0, 1,−1}-vector B′ corresponding to an entry of B in a biclique

matrix of Gb

If A contains a row Ai which is row-similar to B′

then remove Ai from A else return NO
(3) if A = ∅ then return YES else return NO

The complexity of the above algorithm can be verified as follows. Step 1 requires
O(mn2) time, as already known. In Step 2, we need to generate the bicliques of
Gb. This can be done in O(n3) time per biclique [3]. To check if the entry B′

of the biclique matrix of Gb is row similar to some row Ai of A requires O(mn)
time. Consequently, Step 2 requires O(mn3) time. Therefore the complexity of the
algorithm is O(mn3 + m2n).

Finally, consider the second application, on biclique graphs. A characterization
of these graphs has been described as below.

Theorem 5.5. [8] Let G be a graph with no isolated vertices. Then G is a biclique
graph if and only if G contains a family F of not necessarily distinct complete sub-
graphs covering the edges of G, whose associated hypergraph HF admits a coloring
C such that

(1) HF bicovers V (G).
(2) H∗

F has no dominated hyperedeges
(3) F is a compatible coloring.
(4) HF is bipartite-Helly, relative to C.

The complexity of recognizing biclique graphs is unknown. However, we prove
that the problem belongs to NP .

Theorem 5.6. Let G be a graph with n vertices. The problem of determining if
G is a biclique graph is contained in NP.

Proof. A certificate for G being a biclique graph is a family F of complete sub-
graphs of G, satisfying the conditions of Theorem 5.5. First, we show that we can
restrict to families F of size O(n + m), where V (G) = n. For every vertex vi,
choose subsets F iW ∈ F and F iB ∈ F containing vertex vi with the color white
and black, respectively (2n subsets). For every edge vivj , consider a subset F ij ∈ F
that contains vivj (m subsets). Finally, for every pair of adjacent vertices vi, vj ,
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consider two subsets F i,j ∈ F and F j,i ∈ F , such that vi ∈ F i,j , vj ∈ F j,i and
vj /∈ F i,j and vi /∈ F j,i (2m subsets).

The subfamily F ′= {F iW , F iB , F i,j , F i,j , F i,j}i,j=1,...,n verifies conditions (1)−
(4) of Theorem 5.5 and contains O(n+m) subsets. By employing Theorem 5.1 the
proof is completed. ∇ �

6. Conclusions

We have considered bipartite-Helly and bipartite-conformal hypergraphs with
compatible colorings. For both types of hypergraphs, we have described character-
izations and recognition algorithms. The proposed algorithms run in polynomial
time in the size of the hypergraphs. As applications, we have formulated poly-
nomial time algorithms for recognizing biclique matrices. Finally, employing the
concept of bipartite-Helly hypergraphs, we have proved that the recognition prob-
lem for biclique graphs lies in NP .
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