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SOME ASPECTS OF BALKING AND RENEGING
IN FINITE BUFFER QUEUES

Amit Choudhury1 and Pallabi Medhi1

Abstract. In this paper, a single server finite buffer Markovian queu-
ing system is analyzed with the additional restriction that customers
may balk as well as renege. Reneging considered in literature is usually
of position independent type where the reneging rate is constant irre-
spective of the position of the customer in the system. However there
are many real world situations where this assumption does not hold.
This paper is an attempt to model balking with position dependent
reneging. Explicit closed form expressions of a number of performance
measures are presented. A typical problem is discussed to demonstrate
the usefulness of results derived in the paper.

Keywords. Balking, finite buffer queue, impatience, position depen-
dent reneging, queuing, reneging.
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1. Introduction

These days service oriented organizations pay a lot of importance to positive
customer experiences at the point of service delivery. This, it is said, can generate
customer loyalty. Being in a fast-paced world, these days customers are very hard
pressed for time and hence would usually prefer not to be involved in the act of
waiting in any form. However queuing and waiting for service is unavoidable in
real life. Consequently customers react to waiting for service in different ways.
This reaction is a reflection of their impatience.
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In queuing literature two of the most common reaction modes of reflecting cus-
tomer’s intolerance to waiting are balking and reneging. By balking, we mean the
phenomenon of customers arriving for service into a non-empty queue and leaving
without joining the queue. There is no balking from an empty queue. Haight [20]
has provided a rationale which might influence a person to balk. It relates to the
perception of the importance of being served which induces an opinion somewhere
in between urgency, so that a queue of certain length will not be joined, to in-
difference where a non-zero queue is also joined. The other commonly observed
customer behavior reflecting impatience is reneging. If a customer does not balk
and joins a queuing system, it is possible that the customer gets impatient while
waiting and departs without having completed the act of receiving service. Such
impatient behavior is known as reneging.

Reneging can be of two types – reneging till beginning of service (henceforth
referred to as R BOS) and reneging till end of service (henceforth referred to as
R EOS). R BOS can be observed in queuing systems where customers can renege
only as long as they are in the queue. Once they begin receiving service, they do
not renege. A common example is the barbershop. A customer can renege while he
is waiting in queue. However once service starts i.e. hair cut begins, the customer
cannot leave till hair cut is over. On the other hand, R EOS can be observed
in queuing systems where customers can renege not only while waiting in queue
but also while receiving service. An example is processing or merchandising of
perishable goods. The patience time commences from the moment the customer
joins the system. In case the reneging discipline is R BOS, the customer will renege
i.e. leave the system in case service does not begin before expiry of his patience
time. On the other hand in case of R EOS, the customer would renege if service is
not complete before the expiry of his patience time. Thus in case of R EOS, the
customer may depart either from the queue or from the service with partial and
incomplete service whereas in case of R BOS, the customer can renege only from
the queue. Both types of reneging R BOS and R EOS are treated separately in
this paper.

As for modeling reneging phenomenon, one of the approaches in literature is
to assume that each customer joining the system has a Markovian patience time.
It has also been assumed that customers joining a queuing system are not aware
of their position in the same so that the reneging rate is position independent.
However, it is one’s common day observation that there are systems where the
customers are aware of their position in the system. For example, customers queu-
ing at the O.P.D. (out patient department) clinic of a hospital would know of their
position in the queue. This invariably causes waiting customers to have higher
rates of reneging if their position in the queue is towards the end. It is not un-
reasonable then to expect that such customers, who are positioned at a distance
from the service facility, would have reneging rates which are higher than the
reneging rates of customers who are near the service facility. In other words we
assume that customers are ‘position aware’ and in this paper we model the reneg-
ing phenomenon in such a manner that the Markovian reneging rate is a function
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of the position of the customer in the system. Customers will be assumed to have
monotonic reneging rates.

The subsequent sections of this paper are structured as follows. Section 2 con-
tains a brief review of the literature. Sections 3 and 4 contain model description,
derivation of steady state probabilities and performance measures. We perform sen-
sitivity analysis in Section 5. A numerical example is discussed in Section 6. Con-
cluding remarks are presented in Section 7. The appendix contains some derivation.

2. Literature survey

Reneging considered in literature is of three types-deterministic, Markovian and
general. The bulk of the work considers deterministic or Markovian reneging. One
of the earliest work on reneging was by Barrer [7] where he considered deterministic
reneging with single server Markovian arrival and service rates. Customers were
selected randomly for service. In his subsequent work, Barrer [8] also considered
deterministic reneging (of both R BOS and R EOS type) in a multi server scenario
with FCFS discipline. Another early work on reneging was by Haight [21]. Ancker
and Gafarian [5] carried out an early work on Markovian reneging with Markovian
arrival and service pattern.

Haghighi et al. [19] considered a Markovian multiserver queuing model with
balking as well as reneging. Each customer had a balking probability which was
independent of the state of the system. Reneging discipline considered by them
was R BOS. Liu et al. [25] considered an infinite server Markovian queuing system
with reneging of type R BOS. Customers had a choice of individual service or
batch service, batch service being preferred. Brandt and Brandt [11] considered a
s-server system with two FCFS queues where the arrival rate at the queue and the
service may depend on number of customers n in service or in the first queue. The
service rate was assumed to be constant for n > s. Customers in the first queue
were assumed impatient with deterministic reneging.

Ke and Wang [24] considered the machine repair problem in which failed ma-
chines balked with probability (1 − b) and renege according to a negative expo-
nential distribution. Zhang et al. [35] considered an M/M/1/N framework with
Markovian reneging where they derived the steady state probabilities and formu-
lated a cost model. Some performance measures were also discussed. A numer-
ical example was discussed to demonstrate how various parameters of the cost
model influence the optimal service rates of the system. Choudhury [13] analyzed
a single server Markovian queuing system with reneging. He assumed that the
individual patience times were independent and identically distributed exponen-
tial random variables. Reneging till beginning of service was considered. A de-
tailed and lucid derivation of the distribution of virtual waiting time in the system
was presented. Some performance measures were also presented. El-Paoumy [16]
also derived the analytical solution of Mx/M/2/N queue for batch arrival system
with Markovian reneging. In this paper, the steady state probabilities and some
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performance measures of effectiveness were derived in explicit forms. Another pa-
per on Markovian reneging was by Altman and Yechiali [4].

Jouini et al. [23] considered two multi-class call center models with and without
reneging. They assumed that customers had different priorities and the content
of different types of calls was assumed as similar allowing their service times to
be identical. Choudhury [14] analyzed a single server finite buffer queuing system
(M/M/1/K) where he assumed that customers are of reneging type. Both rules of
reneging were considered and various performance measures presented under both
rules of reneging.

Other attempts at modeling reneging phenomenon include those by Baccelli
et al. [6], Martin and Artalejo [26], Shawky [30], Choi et al. [12], and Singh
et al. [33], El-Sherbiny [18] and El-Paoumy and Ismail [17] etc.

An early work on balking was carried out by Haight [20]. Another work using
the concepts of balking and reneging in machine interference queue has been car-
ried out by Al-Seedy and Al-Ibraheem [2]. Jouini et al. [22] modeled a call center
as an M/M/s queue with Markovian reneging and endogenized customer reactions
to announcements. They assumed that customers react by balking upon hearing
the delay announcement and may subsequently renege if they realized waiting
time exceeds the delay that was originally announced to them. They calculated
the waiting time distribution i.e. announcement coverage and subsequent perfor-
mance in terms of balking and reneging. Al-Seedy et al. [3] presented an analysis
for the M/M/c queue with balking and reneging. They assumed that arriving
customers balked with a fixed probability and reneged according to a negative ex-
ponential distribution. To obtain the transient solution of system, the generating
function technique was used. Yue et al. [34] analyzed an M/M/2 queuing system
with balking and two heterogeneous servers, server 1 and server 2. They assumed
that customers arrived according to a Poisson process and form a single waiting
line where two parallel servers provided heterogeneous exponential service on a
first-come first-served basis. It is also assumed that server 1 is perfectly reliable
and server 2 is subject to breakdowns. They obtained the stationary condition
where the system reaches a steady state and derived the steady state probabilities
in a matrix form by using matrix-geometric solution method. They produced ex-
plicit expressions of some performance measures such as the mean system size, the
average balking rate and the probabilities that server 2 is in various states. They
also provided some numerical illustrations.

There have been some papers in which both balking and reneging were consid-
ered. Here mention may be made of the work by Shawky and El-Paoumy [31,32],
El-Paoumy [15, 16], El-Sherbiny [18], Shawky and El-Paoumy [32], Pazgal
et al. [29].

3. The model and system state probabilities

The model we deal with is the traditional M/M/1/k model with the restriction
that customers may balk from a non-empty queue as well as may renege after they
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join the queue. The importance of this queuing model stems from the fact that
in the classical M/M/1 model, “it is assumed that the system can accommodate
any number of units. In practice, this may seldom be the case. We have thus to
consider the situation such that the system has limited waiting space and can hold
a maximum number of k units (including the one being served)” Medhi [27].

We shall assume that the inter arrival and service rates are λ and μ respectively.
As for balking, we shall assume that each customer arriving at the system has a
probability ‘p’ of balking from a non-empty queue. Customers joining the system
will assume to be of Markovian reneging type. We shall also assume that on joining
the system, the customer is aware of its position in it. Consequently the reneging
rate will be taken as a function of the customer’s position. In particular, a customer
who is at position ‘n’ will be assumed to have random patience time following
exp(νn). Under R BOS, we shall assume that

νn =
{

0 for n = 0, 1.
ν + cn−1 for n = 2, 3, . . . , k

and under R EOS,

νn =
{

0 for n = 0.
ν + cn−1 for n = 1, 2, . . . , k

where c is a constant (c � 0 and c �= 1).
Our aim behind this formulation is to ensure that customers at higher positions

have monotonic reneging rate. As a customer progresses in the system from posi-
tion n to (n − 1), the reneging distribution will shift from exp(νn) to exp(νn−1).
In view of the memory less property, this shifting of reneging distribution is math-
ematically tractable as we shall demonstrate in the subsequent sections.

Our work stands out on a number of counts. First, one can observe from Sec-
tion 2 that existing reneging literature does not analyze the case where the reneging
behavior is position dependent. All such Markovian reneging rules assumed that
the reneging rate was constant irrespective of the position of the customer. To the
best of our knowledge, formulation of position dependent reneging rule has not
been attempted in literature. However, as mentioned in Section 1, there are many
systems where customers are position aware and hence have variable reneging
rates. This formulation is an important focus of this paper. Second, even though
one can observe reneging and balking in our day-to-day life, very little work has
analyzed these two features together. This has been attempted here. Third, the
derivation of explicit closed form expressions of performance measures which can
be used ‘off the shelf’ by practitioners is an important focus of this paper. Reneg-
ing and balking literature seldom provide explicit closed form expressions; much
less when reneging and balking are both involved as in the case of this paper. The
expressions we shall present here are flexible enough to incorporate traditional
assumption of position independent reneging rule as a special case.

We derive the steady state probabilities by the Markov process method. Under
R BOS, let pn denote the probability that there are ‘n’ customers in the system.
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The steady state equations are given below.

λp0 = μp1 (3.1)

λp0 + (μ + ν + c)p2 = λ(1 − p)p1 + μp1 (3.2)

λ(1 − p)pn−1 + {μ + nν + c(cn − 1)/(c − 1)} pn+1 = λ(1 − p)pn

+
{
μ + (n − 1)ν + c(cn−1 − 1)

/
(c − 1)

}
pn; n = 2, . . . , k − 1 (3.3)

λ(1 − p)pk−1 = {μ + (k − 1)ν + c(ck−1 − 1)/(c − 1)}pk. (3.4)

Solving recursively, we get (under R BOS)

pn =
λn(1 − p)n−1

n∏
r=1

{μ + (r − 1)ν + c(cr−1 − 1)/(c − 1)}
p0; n = 1, 2, . . . , k (3.5)

where p0 is obtained from the normalizing condition
k∑

n=0
pn = 1 and is given as

p0 =

⎡
⎢⎢⎣1 +

k∑
n=1

λn(1 − p)n−1

n∏
r=1

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}]

⎤
⎥⎥⎦
−1

· (3.6)

The steady state probabilities satisfy the recurrence relation

pn =
[

λ(1 − p)
[μ + (n − 1)ν + {c(cn−1 − 1)/(c − 1)}]

]
pn−1; n = 1, 2, . . . , k.

Under R EOS let qn denote the probability that there are n customers in the
system. Again applying the Markov process method, we obtain the following set
of steady state equations.

λq0 = (μ + ν)q1 (3.7)

λq0 + (μ + 2ν + c) q2 = λ(1 − p)q1 + (μ + ν)q1 (3.8)

λ(1 − p)qn−1 + {μ + (n + 1)ν + c(cn − 1)/(c − 1)} qn+1 = λ(1 − p)qn

+
{
μ + nν + c(cn−1 − 1)/(c − 1)

}
qn; n = 2, 3, . . . , k − 1 (3.9)

λ(1 − p)qk−1 = {μ + kν + c(ck−1 − 1)
/
(c − 1)}qk+1. (3.10)
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Solving recursively, we get

qn =

⎡
⎢⎢⎣ λn(1 − p)n−1

n∏
r=1

[μ + rν + {c(cr−1 − 1)/(c − 1)}]

⎤
⎥⎥⎦ q0; n = 1, 2, . . . , k (3.11)

where q0 is obtained from the normalizing condition
k∑

n=0
qn = 1 and is given by

q0 =

⎡
⎢⎢⎣1 +

k∑
n=1

λn(1 − p)n−1

n∏
r=1

[μ + rν + {c(cr−1 − 1)/(c − 1)}

⎤
⎥⎥⎦
−1

· (3.12)

The steady state probabilities satisfy the recurrence relation

qn =
[

λ(1 − p)
[μ + nν + {c(cn−1 − 1)/(c − 1)}]

]
qn−1; n = 1, 2, . . . , k.

The particular case of c = 0 provides steady state probabilities for the tradi-
tional assumption of position independent Markovian reneging rule. For large ‘k’,
it can be shown that our results agree with those reported by Haghighi et al. [19].

4. Performance measures

In general, “performance measures are the specific representation of a capac-
ity, process or outcome deemed relevant to the assessment of performance, which
are quantifiable and can be documented” (www.iphionline.org). The main ob-
jective of any queuing study is to assess some well-defined parameters which are
designed at striking a good balance between customer satisfaction and economic
considerations. In queuing theory, measures through which the nature of the qual-
ity of service can be studied are known as performance measures. Performance
measures are important as their analysis allows the cause of queuing issues to be
identified and the impact of proposed system changes to be assessed. Some of the
performance measures of any queuing system that are of general interest for the
evaluation of the performance of an existing queuing system and to design a new
system in terms of the level of service a customer receives as well as the proper
utilization of the service facilities include mean size, server utilization, customer
loss and the like.

An important measure is the mean number of customers in the system, which
is traditionally denoted by ‘L’. We have presented the derivation of this important
performance measure separately for the two reneging disciplines in the appendix.
These are denoted by LR BOS and LR EOS.

www.iphionline.org
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Let P (s) be the p.g.f of the steady state probability under R BOS rule. Then
we note that

LR BOS =
k∑

n=0

npn

= P ′(1)

=
d
ds

P (s)|s=1

(See the appendix for more derivations).
From (A.7) and (B.2), the mean system sizes under the two reneging rules are

LR BOS = [λ − (μ − ν + λp)(1 − p0) − p0 − λ(1 − p)pk

+ {c − (p0/p0(cλ, μ, ν, k))/(c − 1)}] /ν (4.1)
LR EOS = [λ − (μ + λp)(1 − q0) − q0 − λ(1 − p)qk

+ {c − (q0/q0(cλ, μ, ν, k))/(c − 1)}] /ν. (4.2)

The mean queue size for the two cases can now be obtained and are given by

Lq(R BOS) =
k∑

n=2

(n − 1)pn

= LR BOS − (1 − p0)
= [λ − (μ + λp)(1 − p0) − p0 − λ(1 − p)pk

+ {c − (p0/p0(cλ, μ, ν, k))/(c − 1)}] /ν

where p0 and p0(cλ, μ, ν, k) are defined in (3.6) and (A.4) respectively.
Similarly,

Lq(R EOS) = LR EOS − (1 − q0)
= [λ − (μ + ν + λp)(1 − q0) − q0 − λ(1 − p)qk

+ {c − (q0/q0(cλ, μ, ν, k))/(c − 1)}] /ν

where q0 and q0(cλ, μ, ν, k) are defined in (3.12) and (B.3) respectively.
Customers arrive into the system at rate λ. However, all the customers who

arrive do not join the system because of balking and finite buffer restriction. The
effective arrival rate into the system is thus different from the overall arrival rate
and is given by

λe
(R BOS) = λp0 + λ(1 − p)

k−1∑
n=1

pn

= λp0 + λ(1 − p)(1 − p0 − pk)
= λ(1−p)(1 − pk) + λpp0. (4.3)
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Similarly in case of R EOS

λe
(R EOS) = λ(1 − p)(1 − qk) + λpq0. (4.4)

We have assumed that each customer has a random patience time following
exp(νn). As such, the reneging rate of the system would depend on the state of
the system as well as the reneging rule. The average reneging rate (avg rr) is
given by

Avg rr(R BOS) =
k∑

n=2

{(n − 1)ν + c(cn−1 − 1)/(c − 1)}pn

= ν {p′ (1) − p1} − ν {1 − p0 − p1}

+ {1/(c − 1)}
k∑

n=2

cnpn − {c/(c − 1)}
k∑

n=2

pn

= λ − (μ + λp)(1 − p0) − λ(1 − p)pk (4.5)

Avg rr(R EOS) =
k∑

n=1

{nν + c(cn−1 − 1)/(c − 1)}qn

= νQ′ (1) + {1/(c − 1)}
k∑

n=1

cnqn − {c/(c− 1)}
k∑

n=1

qn

= λ − (μ + λp)(1 − q0) − λ(1 − p)qk. (4.6)

In real life, lost customers represent the business lost. Customers are lost to the
system in three ways viz by balking, by finite buffer restriction and by reneging.
Management of any queuing system would like to know the proportion of total
customers lost in order to have an idea of total business lost. The mean rate at
which customers are lost (under R BOS) is

λ − λe
(R BOS) + avg rr(R BOS) = λ − μ(1 − p0) (4.7)

and the mean rate at which customers are lost (under R EOS) is

λ − λe
(R EOS) + avg rr(R EOS) = λ − μ(1 − q0). (4.8)

These rates helps in determining the proportion of customers lost. These pro-
portions are {λ−λe

(R BOS)+avg rr(R BOS)}/λ and {λ−λe
(R EOS)+avg rr(R EOS)}/λ

respectively.
The proportion of customers completing service can now be easily determined

from the above proportions.
The customers who leave the system from the queue do not receive service.

Consequently, only those customers who reach the service station constitute the
actual load of the server. From the server’s point of view, this provides a measure
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of the amount of work the server has to do. Let us call the rate at which customers
reach the service station as λs. Then under R BOS

λs
(R BOS) = λe

(R BOS) (1-proportion of customers lost due to reneging out of those
joining the system)

= λe
(R BOS)

{
1 −

k∑
n=2

(n − 1)νpn/λe
(R BOS)

}

= λe
(R BOS) − avg rr(R BOS)

= μ(1 − p0).

In case of R EOS, one needs to recall that customers may renege even while be-
ing served and only those customers who renege from the queue will not constitute
any work for the server. Thus

λs
(R EOS) = λe

(R EOS) (1-proportion of customers lost due to reneging from the
queue out of those joining the system)

= λe
(R EOS)

{
1 −

k∑
n=2

(n − 1)νqn/λe
(R EOS)

}

= λe
(R EOS) − avg rr(R EOS)

= μ(1 − q0).

5. Sensitivity analysis

We have assumed that there are essentially four parameters viz: λ, μ, ν, k. re-
lating to arrival, service, reneging patterns and system size. Various reasons may
influence these parameters to undergo change from time to time. From managerial
point of view, an idle server is a waste. Similarly also for low server utilization.
It is therefore interesting to examine and understand how server utilization varies
in response to change in system parameters. We place below the effect of change
in these system parameters on server utilization. For this purpose, we shall follow
the following notational convention in the rest of this section.

pn(λ, μ, ν, k) and qn(λ, μ, ν, k) will denote the probability that there are ‘n’
customers in a system with parameters λ, μ, ν, k in steady state under R BOS and
R EOS respectively.
(i) To understand the change in server utilization consequent to increase in arrival

rate, let us consider two arrival rates λ0 and λ1 where λ1 > λ0. Then

p0 (λ1, μ, ν, k)
p0 (λ0, μ, ν, k)

< 1

⇒ (λ0 − λ1)
μ

+
(1 − p)(λ2

0 − λ2
1)

μ(μ + ν + c)

+ . . . +
(1 − p)k−1(λk

0 − λk
1)

μ(μ + ν + c) . . . {μ + (k − 1)ν + c(ck−1 − 1)
/
(c − 1)} < 0

which is true. Hence p0 ↓ as λ ↑.
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Similarly, it can be shown that

(ii) p0 ↑ as μ ↑.
(iii) p0 ↑ as ν ↑.
(iv) p0 ↓ as k ↑.

Similarly, under R EOS, we have

(v) q0 ↓ as λ ↑.
(vi) q0 ↑ as μ ↑.
(vii) q0 ↑ as ν ↑.
(viii) q0 ↓ as k ↑.
Under R BOS, these results state that an increase in arrival rate would result in

lowering of the fraction of time the server is idle. An increase in service rate would
mean the server is able to work efficiently so that it can process same amount of
work quickly. This translates to higher server idle time. An increase in reneging
rate would mean the server has fewer work to do and hence higher fraction of idle
time. An increase in system size translates to lowering of the fraction of time the
server is idle. Similar conclusions can be drawn under R EOS.

6. Numerical example

To illustrate the use of our results, we apply them to a queuing problem. We
quote below an example from Allen [1] (p. 267 and 273).

“Traffic to a message switching centre for Extraterrestrial Communications Cor-
poration arrives in a random pattern (remember that ‘random pattern’ means ex-
ponential interarrival time) at an average rate of 240 messages per minute. The
line has a transmission rate of 800 characters per second. The message length
distribution (including control characters) is approximately exponential with an
average length of 176 characters. Calculate the principal statistical measures of sys-
tem performance assuming that a very large number message buffers is provided”.
“Suppose, however, that it is desired to provide only the minimum number of
messages buffers required to guarantee that

pk < 0.005.

How many buffers should be provided?”
This is a design problem. Here λ = 4/s and μ = 4.55/s. As required by the

switching centre, we examine the minimum number of message buffers with dif-
ferent choices of k. Though not explicitly mentioned, it is necessary to assume
reneging and balking. We assume balking because in telecommunication systems
it is known that an incoming message that sees a workload may be admitted into
the system with a certain probability and rejected otherwise. Rejection implies
balking. We shall assume that the balking probability is ‘p’ (Boxma et al. [10] has
analyzed with similar motivation).
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Table 1. Performance measures assuming λ = 4/s, μ = 4.55/s,
ν = 0.1/s, p = 0.001 and c = 1.1.

Size of minimum number

Performance measure of message buffers

k = 6 k = 7 k = 8

pk 0.00712 0.00208 0.00053

λs (i.e. arrival rate of customers reaching
3.07524 3.07831 3.07909

service station)

Effective mean arrival rate (λe) 3.96885 3.98898 3.99518

Fraction of time server is idle (p0) 0.32412 0.32345 0.32328

Average number of customers in queue 0.69988 0.71091 0.71425

Average number of customers in system 1.37575 1.38746 1.39097

Average reneging rate 0.89360 0.91066 0.91608

Rate of loss due to finite buffer and balking 0.03115 0.01103 0.00483

Average rate at which customers are lost 0.92476 0.92169 0.92091

Proportion of customers lost due to reneging,
0.23119 0.23042 0.23023

balking and finite buffer

We also assume reneging because in telecommunication systems it is also known
that messages usually have some real time constraints within which the message
has to be processed. Message received after the deadline is considered obsolete and
discarded. This can be seen as reneging (Movaghar [28] and Boots and Tijms [9]
have analyzed with similar motivation).

We shall assume that reneging distribution is position dependent following
exp(νn) where νn is as defined in Section 3. Specifically, we shall assume ν = 0.1/s
and consider the scenario with c = 1.1. We further assume that balking rate is
independent of system state and is taken as p = 0.001 (one in 1000 message).

Various performance measures of interest computed under different scenarios are
given in Table 1. These measures were arrived at using a FORTRAN 77 program
coded by the authors. Different choices of k were considered. Results relevant
with regard to the requirement that the switching centre should provide only the
minimum number of message buffers to guarantee pk < 0.005 are presented in the
tables (the units of time of all rates in the table are per second).

From Table 1 it appears that an ideal choice of k could be 7 with pk = 0.00208.
A few interesting observations can be made from Table 1. First, the rate of

arrival into the system is 4 messages/s whereas the actual load of the server
(λs) is 3.71686 (case of k = 7). Thus, 4 − 3.07831 = 0.92169 messages/s are
being lost. As a proportion of all message arriving at the centre, this amounts to
0.23042 (=0.92169/4) proportion of lost messages. This can be confirmed from the
last row of Table 1. Second, since λs = 3.07831, the centre is required to process
3.07831 messages/s when its capacity is 4.55 messages/s. The centre is therefore
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idle for 0.32345{=(4.55− 3.07831)/4.55} proportion of time. This corroborates p0

in under k = 7.

7. Conclusion

The analysis of a single server markovian queuing system with balking and
position dependent reneging has been presented. Even though balking and reneging
have been discussed by others, explicit expressions are not always available. Besides
to the best of our knowledge, modeling of position dependent reneging has not been
attempted in literature. We believe this paper makes a humble contribution here.
Closed form expressions of a number of performance measures have been derived.
It is our sincere belief that the expressions we have presented are ‘off the shelf’
variety and would find favour for ready use among operational research consultants
in industry. To study the change in the system corresponding to change in system
parameters, sensitivity analysis has also been presented. A numerical example
has been discussed to demonstrate results derived. The numerical example is of
indicative nature meant to illustrate the benefits of our theoretical results in a
design context. The limitations of this work stem from the Markovian assumptions.
Extension of our results for general distribution is a pointer to future research.

Acknowledgements. The authors wish to profusely thank the anonymous referees for their
detailed, careful and exhaustive comments. These have led to very substantial improve-
ment of the paper in the realms of conceptual exposition as well as presentation.

Appendix A. Derivation of P ′(1) under R BOS

Let P(s) denote the probability generating function, defined by P (s) =
∞∑

n=0
pnsn.

From equation (3.3) we have

λ(1 − p)pn−1 + {μ + nν + c(cn − 1)/(c − 1)} pn+1 = λ(1 − p)pn

+
{
μ + (n − 1)ν + c(cn−1 − 1)/(c − 1)

}
pn; n = 2, . . . , k − 1.

Multiplying both sides of the equation by sn and summing over n

λs(1 − p)
k−1∑
n=2

pn−1s
n−1 − λ(1 − p)

k−1∑
n=2

pnsn

=
k−1∑
n=2

{μ + (n − 1)ν + (cn − c)/(c − 1)}pnsn

− 1
s

k−1∑
n=2

{μ + nν + (cn+1 − c)/(c − 1)}pn+1s
n+1 (A.1)
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⇒ λs(1 − p){p1s
1 + . . . + pk−2s

k−2} − λ(1 − p)(p2s
2 + . . . + pk−1s

k−1)
= μ(p2s

2 + . . . + pk−1s
k−1) + ν{p2s

2 + 2p3s
3 + . . . + (k − 2)pk−1s

k−1}
+ {1/

(c − 1)}{c2p2s
2 + . . . +ck−1pk−1s

k−1 − c(p2s
2 + . . . + pk−1s

k−1)
− (1/s)[μ(p3s

3 + . . . + pksk} + ν{2p3s
3 + . . . + (k − 1)pksk}

+ {1/(c− 1)}{c3p2s
3 + . . . + ckpksk − c(p3s

3 + . . . + pksk)
⇒ λs(1 − p){P (s) − p0 − pk−1s

k−1 − pksk} − λ(1 − p){P (s) − p0 − p1s − pksk}
= μ{P (s) − p0 − p1s − pksk} + νs{2p2s + 3p3s

2 + . . . + (k − 1)pk−1s
k−1}

− ν(p2s
2 + p3s

3 + . . . + pk−1s
k−1) + {1/(c − 1)}{P (cs)− p0 − ckpksk

− cP (s) + cp0 + cpksk} − (1/s)[μ{P (s) − p0 − p1s − p2s
2}

+ νs{3p3s
2 + . . . + kpksk−1} − ν(p3s

3 . . . + pksk)
+ {1/(c− 1)}{P (cs) − p0 − c2p2s

2 − cP (s) + cp0 + cp2s
2}

⇒ λs(1 − p){P (s) − p0 − pk−1s
k−1 − pksk} − λ(1 − p){P (s) − p0 − p1s − pksk}

= μ{P (s) − p0 − p1s − pksk} + νs{P ′(s) − p1 − kpksk−1}
− ν{P (s) − p0 − p1s − pksk} + P (cs)/(c − 1) + p0

− [{c(ck−1 − 1)}/(c − 1)]pksk − (μ/s){P (s) − p0 − p1s − p2s
2}

− ν{P ′(s) − p1 − 2p2s} + (ν/s){P (s) − p0 − p1s − p2s
2}

− {1/(c− 1)s}[P (cs) − p0(c − 1) − cP (s) − {c/(c − 1)}p2s
2]

⇒ νP ′(s)(1 − s)=μP (s) − μp0 − μp1s − {μ − ν + νk + c(ck−1 − 1)/(c − 1)}pksk

− νP (s) + νp0 + P (cs)/(c − 1) + p0 − cP (s)/(c − 1) − μP (s)/s

+ μp0/s + μp1 + (μ + ν + c)p2s + (ν/s)P (s) − νp0/s − P (cs)/(c − 1)s
− p0/s+cP (s)/(c− 1)s−λs(1 − p)P (s) + λs(1 − p)p0 + λ(1 − p)pk−1s

k

+ λs(1 − p)pksk + λ(1 − p)P (s) − λ(1 − p)p0−λ(1−p)p1s−λ(1−p)pks
k

⇒ νP ′(s)(1 − s) = {νP (s)(1 − s)}/s − {μP (s)(1 − s)}/s + {μp0(1 − s)}/s

− {νp0(1 − s)}/s + λp0(1 − s) − {P (cs)(1 − s)}/{(c − 1)s}
− {p0(1 − s)}/s + {cP (s)(1 − s)}/{(c − 1)s} + λ(1 − p)P (s)(1 − s)
− λ(1 − p)p0(1 − s) − λ(1 − p)pksk(1 − s)

⇒ P ′(s) = (1/ν)[νP (s)/s − μP (s)/s + μp0/s − νp0/s + λp0 − P (cs)/(c − 1)s
− p0/s + cP (s)/(c − 1)s + λ(1 − p)P (s) − λ(1 − p)p0 − λ(1 − p)pksk.

Now
⇒ lim

s→1−
P ′(s) = lim

s→1−
(1/ν)[νP (s)/s − μP (s)/s + μp0/s − νp0/s + λp0

− P (cs)/(c − 1)s − p0/s + cP (s)/(c − 1)s + λ(1 − p)P (s)
− λ(1 − p)p0 − λ(1 − p)pksk

⇒ P ′(1) = (1/ν)[ν − μ + μp0 − νp0 − P (c)/(c − 1) − p0 + c/(c − 1) + λ(1 − p)
− λ(1 − p)p0 − λ(1 − p)pk

⇒ P ′(1) = (1/ν)[λ−(μ−ν+λp)(1−p0) − p0 − λ(1 − p)pk + {c − P (c)}/(c − 1)].
(A.2)
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Here P (c) =
k∑

n=0
pn(λ, μ, ν, k)cn where the symbol pn(λ, μ, ν, k) is as described in

Section 5. We use pn and pn(λ, μ, ν, k) interchangeably. However should any of
the parameters λ, μ, ν, k change, it is explicitly stated. To obtain a closed form
expression for P (c), let us for the time being consider another queuing system
with parameter and assumptions similar to the queuing system we are presently
considering except that the arrival rate is ‘cλ’. For this new system, the steady
state equations are same as (3.1), (3.2), (3.3) and (3.4) with ‘λ’ replaced by ‘cλ’.
Denoting the steady state probabilities of this new system by pn(cλ, μ, ν, k), we
can obtain

pn(cλ, μ, ν, k) =
(cλ)n(1 − p)n−1

n∏
r=1

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}]
p0(cλ, μ, ν, k);

n = 1, 2, . . . , k (A.3)

where

p0(cλ, μ, ν, k) =

⎡
⎢⎢⎣1 +

k∑
n=1

(cλ)n(1 − p)n−1

n∏
r=1

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}]

⎤
⎥⎥⎦
−1

· (A.4)

Let P (S; cλ, μ, ν, k) denotes the probability generating function of this new
queuing system so that

P (S; cλ, μ, ν, k) =
k∑

n=0

pn(cλ, μ, ν, k)sn.

Now

P (c) =
k∑

n=0

pn(λ, μ, ν, k)cn

= p0 +
k∑

n=1

(cλ)n(1 − p)n−1p0

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}]

⇒ [{P (c) − p0}/p0] =
k∑

n=1

(cλ)n(1 − p)n−1

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}] · (A.5)
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Now putting S = 1 in P (S; cλ, μ, ν, k) we get

P (1; cλ, μ, ν, k) = p0(cλ, μ, ν, k) +
k∑

n=1

pn(cλ, μ, ν, k)

⇒ 1 = p0(cλ, μ, ν, k)

+
k∑

n=1

⎡
⎢⎢⎣ (cλ)n(1 − p)n

n∏
r=1

[μ + (r − 1)ν + {c(cr−1 − 1)/(c − 1)}

⎤
⎥⎥⎦ p0(cλ, μ, ν, k)

⇒ 1 = p0(cλ, μ, ν, k) + {(P (c) − p0)/p0} p0(cλ, μ, ν, k)
⇒ P (c) = p0/p0(cλ, μ, ν, k)

using (A.3) and (A.5) (A.6)

Using (A.6) in (A.2) we obtain

P ′(1) = (1/ν)[λ − (μ − ν + λp)(1 − p0) − p0 − λ(1 − p)pk

+ {c − p0/p0(cλ, μ, ν, k)}/(c − 1)] (A.7)

where p0(cλ, μ, ν, k) is given in (A.4).

Appendix B. Derivation of Q′(1) under R EOS

Let Q(s) denote the probability generating function, defined by Q(s) =
∞∑

n=0
qnsn.

From equation (3.9)

λ(1 − p)qn−1 + {μ + (n + 1)ν + c(cn − 1)/(c − 1)} qn+1 = λ(1 − p)qn

+
{
μ + nν + c(cn−1 − 1)

/
(c − 1)

}
qn; n = 2, . . . , k − 1.

Multiplying both sides of this equation by sn and summing over n from we get

λs(1−p)
k−1∑
n=2

qn−1s
n−1−λ(1−p)

k−1∑
n=2

qnsn =
k−1∑
n=2

{μ + nν + (cn − c)/(c − 1)}qnsn

− 1
s

k−1∑
n=2

{μ + (n + 1)ν + (cn+1 − c)/(c − 1)}qn+1s
n+1. (B.1)

Proceeding in a manner similar to previous section, we obtain,

Q′(1) = (1/ν)[λ−(μ+λp)(1−q0)−q0−λ(1−p)qk+{c−q0/q0(cλ, μ, ν, k)}/(c−1)]
using (A.7) (B.2)
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where

q0(cλ, μ, ν, k) =

⎡
⎢⎢⎣1 +

k∑
n=1

(cλ)n(1 − p)n−1

n∏
r=1

[μ + rν + {c(cr−1 − 1)/(c − 1)}]

⎤
⎥⎥⎦
−1

· (B.3)
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