
RAIRO-Oper. Res. 45 (2011) 315–338 RAIRO Operations Research

DOI: 10.1051/ro/2011116 www.rairo-ro.org

ON DESIGNING CONNECTED RAPID TRANSIT
NETWORKS REDUCING THE NUMBER OF TRANSFERS
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Abstract. In this paper we introduce some improvements on an ap-
proach that we described elsewhere for solving a modification of the
well-known extended rapid transit network design problem. Firstly, we
propose an integer programming model for selecting the stations to be
constructed and the links between them, in such a way that a con-
nected rapid transit network is obtained. Secondly, we consider a linear
0-1 programming model for determining a route of minimum length in
the rapid transit network between certain pairs of locations, and present
a greedy heuristic procedure which attempts to minimize an estimation
of the total number of transfers that should be made by the users to
arrive at their destinations. We also report several computational ex-
periments that show that this procedure can significantly reduce the
estimated total number of transfers required for the solutions obtained
using our previous approach.
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1. Introduction 1

Given the crucial role that transportation plays in society, the problems of 2

developing and improving urban public transportation networks have been widely 3

studied in the literature (see e.g. [3,9,11] for good surveys on the subject). These 4

types of problems are so complex that, in order to obtain acceptable solutions in 5
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a reasonable amount of time, it is necessary to resort to simplifications and/or1

heuristic methods.2

The extended rapid transit network design problem was stated in [14]. Given a3

set of potential station locations and a set of potential links between them, this4

problem basically consists in selecting which stations and links to construct with-5

out exceeding budget, and determining an upper bounded number of noncircular6

lines from them, to maximize the total expected number of trips. A linear 0-1 pro-7

gramming model for solving this problem is presented in [14], where, in order to8

compute the total expected number of trips, it is assumed that the demand and a9

private transportation cost are known for each origin-destination pair of locations.10

It is also implicitly assumed that the users obey the well-known Wardrop’s first11

principle (see [17]), and, consequently, they seek to minimize their expected travel12

costs (in [14], the travel cost is interpreted as the travel distance; another common13

interpretation of the travel cost is the travel time).14

A two-stage approach for solving a modification of the extended rapid transit15

network design problem to allow the definition of circular lines is provided in [5],16

and it is shown that it outperforms the solving of a modification of the model given17

in [14] to adapt it to this new problem. In the first stage of the proposed approach,18

a linear integer programming model is solved for selecting the stations and links19

to be constructed without exceeding budget, so that the total expected number20

of trips on the rapid transit network is maximized (without loss of generality, it21

is assumed that whichever two locations are linked by one line at most). In the22

second stage, the line design problem is solved by assigning each selected link to23

exactly one line, in such a way that the number of lines that go to each selected24

location is as small as possible; the required computational effort is not appreciable25

for all the instances under consideration.26

The models presented in [5, 14] have some disadvantages, namely, that they do27

not guarantee either a connected rapid transit network or recommended routes of28

minimum length for the users of each origin-destination pair of locations, and they29

do not take into consideration the transfers that should be made by the users to30

arrive at their destinations. The model proposed in [10] for designing robust rapid31

transit networks neither takes transfers into consideration.32

Several indicative papers dealing with transfers in transit networks are [1,2,7,8,33

13]. Some of the assumptions and simplifications that they consider are as follows:34

In [13] it is assumed that there are no capacity constraints on the lines of the35

transportation network. It proposes a heuristic algorithm that starts from a feasible36

set of lines and iteratively searches for better solutions. The main disadvantages37

of this approach are that the output solution will depend to a great extent on the38

initial one, and that it only involves three different ways of attempting to reach39

better solutions.40

In [1] it is assumed that the users take trips which involve the fewest possible41

number of transfers. This assumption may contradict Wardrop’s first principle.42

In [2], the lines for the transportation network can only be selected from a pre-43

defined set of potential lines (obviously, this restriction could rule out solutions44
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which are even better than the considered feasible solutions). The goal is to maxi- 1

mize the number of users that require no transfer during their trips. As mentioned 2

in [8], this optimization criterion could lead to unsatisfactory solutions due to its 3

partial measure of service quality. 4

In [8], as in [2], the lines can only be selected from a predefined set of potential 5

lines, and it is assumed that the station locations and the links between them are 6

already known. The waiting time for the users and the effect of passenger crowding 7

are not considered. 8

In [7] it is assumed that the number of lines for the transportation network is 9

upper bounded, and that the length of each line and the total length of the lines 10

are lower and upper bounded. Moreover, the endpoints of each line are predefined. 11

The aim of the present work is to improve the approach proposed in [5]. We 12

provide a two-fold improvement on this. Firstly, we introduce several modifications 13

in the model considered in the first stage to obtain a connected rapid transit 14

network. Secondly, we explicitly determine the shortest routes for those origin- 15

destination pairs of locations whose users are expected to utilize the rapid transit 16

network, and present a greedy heuristic procedure which is a modification of the 17

algorithm proposed for solving the line design problem of the second stage that 18

attempts to minimize an estimation of the total number of transfers made by the 19

users, without increasing the number of lines going to each location. We shall 20

assume that the users obey Wardrop’s first principle of route choice, where, as 21

in [5, 14], the travel cost is interpreted as the travel distance. 22

We do not take into consideration the capacities of the lines, since they directly 23

depend on the headways, which in turn will depend on the demands for the origin- 24

destination pairs of locations. Notwithstanding the fact that we are dealing with 25

static demands, actually the demands will vary over time. Therefore, it does not 26

seem appropriate to determine the headways for the lines at this early stage of 27

the problem. Instead, we propose to determine them during subsequent stages by 28

taking into account the trade-off between operating costs and service quality. To 29

this end, it may be advisable to develop transit assignment models for predicting 30

as accurately as possible the way in which the users choose the routes to take their 31

trips. Some works exclusively devoted to the development of such models are [4,16]; 32

both of them take into account the expected waiting times for the users, among 33

many other factors. 34

The remainder of the paper is structured as follows: Section 2 provides a 35

nonlinear integer programming model for selecting the stations and links to be 36

constructed. Section 3 shows two methods for solving the line design problem. 37

Specifically, Section 3.1 reproduces the algorithm proposed in [5], which does not 38

consider transfers. Section 3.2 states a linear 0-1 programming model for deter- 39

mining a minimum-length route between two locations, and presents a greedy 40

heuristic procedure for solving the line design problem attempting to minimize an 41

estimated number of required transfers, where it is assumed that the users choose 42

routes of minimum length to take their trips. Section 4 proposes a linearization 43

of the model stated in Section 2 and reports some computational experience on 44
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several instances from an extension of a network considered in [14]; the results1

show that the greedy procedure presented in Section 3.2 can significantly reduce2

the estimated number of transfers obtained by the procedure given in Section 3.1.3

Finally, Section 5 draws some conclusions from this work.4

2. Station and link location5

We consider the following notation and assumptions (see [5] for more details):6

Let V = {1, . . . , n} be the set of potential locations for the stations, and let E be7

the set of (nonordered) pairs of locations that can be linked, i.e., E = {{i, j} ∈ V ×8

V | i �= j and it is possible to link i and j}. Without loss of generality, whenever9

we refer to an edge {i, j} ∈ E it will be assumed that i < j.10

Let us consider the simple graph G = (V, E). For each i ∈ V , let Γ (i) be the set11

of locations that can be linked to i (notice that Γ (i) is the set of nodes adjacent12

to i in G and |Γ (i)| is the degree of i in G).13

Let W be the set of origin-destination pairs of locations in demand, and let us14

denote w=(ow , dw) ∀w ∈ W , where ow and dw are the origin and the destination15

of pair w, respectively, and ow �= dw. Let w = (dw, ow) ∀w ∈ W such that16

ow > dw, and let s(w) =
{

w if ow < dw

w if ow > dw
∀w ∈ W and W ′ = {s(w) | w ∈ W}.17

Throughout the paper, we shall consider W = {(i, j) ∈ V × V | i �= j}, hence18

W ′ = {(i, j) ∈ V × V | i < j}. We shall store only the values of {ow}w∈W ′ and19

{dw}w∈W ′ .20

Let ai denote the cost of constructing a station at location i, cij the cost of21

linking locations i and j, b the available budget for constructing the rapid transit22

network, dij the distance between locations i and j, and gw the demand for pair23

w, i.e., the number of potential trips from ow to dw in a given time period. (We24

are assuming that cji = cij and dji = dij ∀{i, j} ∈ E.)25

If there are λ lines going to a location i, then the associated construction cost will26

be λai, since it is assumed that we construct as many stations at i as the number27

of lines that go to it. Nevertheless, depending on the transportation company’s28

construction policy, it could be more appropriate to compute this cost in some29

other way.30

From now on it will be assumed that whichever two locations are linked at most31

by one line.32

We define the following variables:

xij =
{

1 if i and j are linked
0 otherwise ∀{i, j} ∈ E

pw =
{

1 if the users of pair w will utilize the rapid transit network
0 otherwise ∀w ∈ W

fw
ij =

{
1 if the users of pair w are recommended to utilize edge {i, j}
0 otherwise

∀w ∈ W ′, ∀{i, j} ∈ E
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εw
i =

{
1 if the users of pair w are recommended to pass through i
0 otherwise

∀w ∈ W ′, ∀i ∈ V \ {ow, dw}
yi =

{
1 if at least one station is constructed at i
0 otherwise ∀i ∈ V

γi =
{

1 if
∑

j∈Γ (i),j>i xij +
∑

j∈Γ (i),j<i xji is odd
0 otherwise

∀i ∈ V

Δi ∈ {0, . . . , r(i)} ∀i ∈ V,

where r(i) =

{ |Γ (i)|
2 if |Γ (i)| is even

|Γ (i)|−1
2 if |Γ (i)| is odd

1

and Δi =
∑

j∈Γ (i),j>i xij+
∑

j∈Γ (i),j<i xji−γi

2 ∀i ∈ V . 2

The reason for considering the variables {γi}i∈V and {Δi}i∈V is that, in order 3

to compute the cost of constructing a station at each location, we need to know the 4

number of lines that go to that location. The two methods presented in Section 3 5

for solving the line design problem will define the lines in such a way that the 6

number of lines that go to each selected location is as small as possible. Notice 7

that, for each i ∈ V , the value of
∑

j∈Γ (i),j>i xij +
∑

j∈Γ (i),j<i xji is the number 8

of selected links with an endpoint at i, and, according to the definition of Δi, 9

this number equals 2Δi + γi. Thus, if 2Δi + γi is even (which is equivalent to 10

having γi = 0), then the number of lines going to i will be Δi, whereas if 2Δi + γi 11

is odd (which is equivalent to having γi = 1), then the number of lines going 12

to i will be Δi + 1. Therefore, in both cases the number of lines going to i will 13

be Δi + γi. 14

It is assumed that the users of each pair w ∈ W will utilize the rapid transit 15

network if and only if yow = 1, ydw = 1 and
∑

{i,j}∈E dijf
s(w)
ij ≤ μ upri

w , where 16

upri
w is the so-called generalized cost of satisfying the demand of pair w through 17

an existing private network and μ is a so-called congestion factor verifying that 18

μ upri
w is the distance covered by the users of pair w through the private network 19

(see [14] for more details). Since we are interested in maximizing the total ex- 20

pected number of trips on the rapid transit network, if some route from ow to 21

dw with length less or equal to μ upri
w is found, then the variables f

s(w)
ij such that 22

{i, j} ∈ E and f
s(w)
ij = 1 will define one of such routes as the recommended route 23

for the users of pair w, but it is worth noting that it may not be of minimum 24

length. 25

Constraints (14) from Model 2 in [5] allow nonconnected rapid transit networks, 26

since they are redundant if pw = 0 (for the sake of completeness, this model is 27

reproduced in Appendix A). The model below contains the modifications that 28

we propose to introduce in Model 2 for selecting the stations and links to be 29

constructed without exceeding budget, so that the resulting rapid transit network 30

is connected and the total expected number of trips is maximized (notice that we 31

have taken W ′ = {(i, j) ∈ V × V | i < j}, and, therefore, any feasible solution 32
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to this model will give rise to a connected rapid transit network); see [5] for more1

details.2

Maximize z =
∑

w∈W

gwpw

subject to:∑
j∈Γ (i),j>i

xij +
∑

j∈Γ (i),j<i

xji = 2Δi + γi ∀i ∈ V (2.1)

∑
i∈V

ai (Δi + γi) +
∑

{i,j}∈E

cijxij ≤ b (2.2)

yi ≤ Δi + γi ∀i ∈ V (2.3)

(r(i) + 1)yi ≥ Δi + γi ∀i ∈ V (2.4)

fw
ij ≤ xij ∀w ∈ W ′, ∀{i, j} ∈ E (2.5)

εw
i ≤ yowydw ∀w ∈ W ′, ∀i ∈ V \ {ow, dw} (2.6)∑

j∈Γ (i),j>i

fw
ij +

∑
j∈Γ (i),j<i

fw
ji =

{
yowydw if i ∈ {ow, dw}
2εw

i otherwise
∀w ∈ W ′, ∀i ∈ V (2.7)

3

pw ≤ yos(w)yds(w) ∀w ∈ W (2.8)∑
{i,j}∈E

dijf
s(w)
ij − μ upri

w − Mw(1 − pw) ≤ 0 ∀w ∈ W (2.9)

xij ∈ {0, 1} ∀{i, j} ∈ E

pw ∈ {0, 1} ∀w ∈ W

fw
ij ∈ {0, 1} ∀w ∈ W ′, ∀{i, j} ∈ E

εw
i ∈ {0, 1} ∀w ∈ W ′, ∀i ∈ V \ {ow, dw}

yi ∈ {0, 1} ∀i ∈ V

γi ∈ {0, 1} ∀i ∈ V

Δi ∈ {0, . . . , r(i)} ∀i ∈ V,

where Mw =
∑

{i,j}∈E dij − μ upri
w ∀w ∈ W (notice that Mw is an upper bound4

for the value of
∑

{i,j}∈E dijf
s(w)
ij − μ upri

w ).5

The objective function is the same as in Model 2 from [5], which computes6

the total number of expected trips on the rapid transit network (this optimiza-7

tion criterion was also considered in [14]). Constraints (2.1) and (2.2) are the8

constraints (10) and (11) from Model 2, respectively, which impose the budget9

constraint. Constraints (2.3) and (2.4) impose that, for each i ∈ V , yi = 0 if and10

only if no station is constructed at i (i.e., if Δi + γi = 0). Constraints (2.5) are a11

modification of constraints (14) from Model 2 to impose that, for each {i, j} ∈ E,12

if i and j are not linked, then the users of no pair w ∈ W ′ are recommended to13
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utilize edge {i, j}. Constraints (2.6) impose that, for each w ∈ W ′, if no station 1

is constructed at an endpoint of pair w, then its users are not recommended to 2

pass through any location i ∈ V \ {ow, dw}. Constraints (2.7) are a modification 3

of constraints (12) from Model 2 to allow that, for each w ∈ W ′, if no station is 4

constructed at an endpoint of pair w, then its users are not recommended to utilize 5

any edge {i, j} ∈ E. Constraints (2.8) impose that, for each w ∈ W , if no station 6

is constructed at an endpoint of pair w, then its users will not utilize the rapid 7

transit network. Constraints (2.9) are the constraints (13) from Model 2, which, 8

jointly with the optimization criterion and the constraints (2.8), impose that, for 9

each w ∈ W , pw = 1 if and only if yow = 1, ydw = 1 and
∑

{i,j}∈E dijf
s(w)
ij ≤ μupri

w . 10

For the particular case where at least one station should be constructed at 11

each location, it would suffice to replace constraints (14) from Model 2 in [5] 12

with constraints (2.5) above; thus, a linear integer programming model could be 13

considered. 14

3. Line designing from a given set of links to be 15

constructed 16

Let (xij){i,j}∈E , (pw)w∈W , (f
w

ij)w∈W ′, {i,j}∈E , (εw
i )w∈W ′, i∈V \{ow,dw}, (yi)i∈V , 17

(γi)i∈V , (Δi)i∈V be an optimal solution to the model stated in Section 2 (or 18

an incumbent solution if the model has not been solved to optimality), and let 19

V = {i ∈ V | yi = 1} and E = {{i, j} ∈ E | xij = 1}. 20

Let us consider the partial subgraph G = (V , E) of G. For each i ∈ V , let 21

Γ (i) be the set of nodes adjacent to i in G (notice that |Γ (i)| =
∑

j∈Γ (i),j>i xij + 22∑
j∈Γ (i),j<i xji). 23

In Section 3.1 we reproduce the method proposed in [5] for solving the line design 24

problem for G. In Section 3.2 we present a new method which is a modification of 25

the previous one and attempts to minimize an estimation of the total number of 26

transfers that should be made by the users to arrive at their destinations; in order 27

to make this estimation, it is assumed that the users choose routes of minimum 28

length in G to take their trips, and a linear 0-1 programming model is provided 29

for determining such routes. 30

It is worth noting that both methods would be valid for any partial subgraph 31

G of G, not necessarily defined from an optimal or an incumbent solution to the 32

model stated in Section 2; it would suffice to have an estimation gw for the number 33

of trips on the rapid transit network from ow to dw in the given time period for 34

each w ∈ W , and define the set W considered in Section 3.2 as {w ∈ W | gw > 0} 35

(for example, [12, 15] make use of the Logit function to do these estimations). 36

Thus, these methods could also be employed for redesigning the lines of existing 37

rapid transit networks. 38

In both methods, the aim of assigning each selected link to exactly one line so 39

that the number of lines that go to each selected location is as small as possible 40
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is accomplished by imposing that each node with odd degree in G is an endpoint1

of exactly one line, whereas each node with even degree in G is an endpoint of no2

line.3

3.1. Line designing without considering transfers4

For the sake of completeness, below we reproduce the algorithm for solving5

the line design problem for G proposed in [5]. It is based on the following idea:6

Starting from a node with odd degree, or, in its absence, with positive even degree,7

other nodes are reached sequentially through edges in E, until we reach a node8

which either has previously been visited or it has no incident edges (once an edge9

has been considered, it is eliminated from E). In the first case, a circular line is10

defined, and the above procedure is carried on from the last node reached which11

is an endpoint of an edge that has been eliminated from E but has not yet been12

assigned to a line, if such a node exists. In the second case, a noncircular line is13

defined. This approach is repeated until we get E = ∅.14

Proceeding in this way, the number of lines going to each location i ∈ V will be15

|Γ (i)|
2 if |Γ (i)| is even, or |Γ (i)|+1

2 if |Γ (i)| is odd. In both cases, this number equals16

Δi + γi, i.e., the smallest possible number of lines that can go to i (see Sect. 2).17

(Notice that it is necessary to firstly consider as starting nodes those with odd18

degree, since, otherwise, it may occur that the number of lines going to some node19

with even degree is not as small as possible).20

In order to store the sequence of nodes chosen at each iteration, a nonnegative21

integer value p(i) is associated to each node i ∈ V , in such a way that a positive22

value p(i) means that node i has been reached from node p(i) (for the starting node23

i0 we define p(i0) = i0). A counter l for the number of lines that are being defined24

is also considered. Each one of these lines is denoted by L(l), and it is expressed25

as the union of its edges, considering the nodes in reverse order as they have been26

reached. When the last node j of the current iteration sequence is reached, the27

current line L(l) starts to be defined from j. The last node to be included in L(l)28

is denoted by j0 and defined as j if L(l) is going to be a circular line, or as i0 if29

L(l) is going to be a noncircular line.30

Step 1 of Algorithm 1 initializes the values of {p(i)}i∈V and l to zero. Step 231

performs the stopping criterion, i.e., it checks whether E = ∅. Step 3 is the be-32

ginning of a new iteration; it chooses the starting node i0, increases by one unit33

the value of l, initializes line L(l) to the empty set, sets the value of p(i0) and34

initializes the value of i to i0 (i denotes the current node of the sequence). Step 435

chooses the next node j of the sequence, eliminates edge {i, j} from E and, if j36

belongs to the current sequence of nodes, sets the value of j0 and goes to Step 6 to37

start defining the circular line L(l). If j currently has some adjacent node, Step 538

sets the value of p(j), updates the value of i and goes back to Step 4; otherwise,39

it sets the value of j0 and goes to Step 6 to start defining the noncircular line40

L(l). Step 6 keeps on adding edges to L(l) and eliminating their endpoints from41

the current sequence of nodes until reaching j0. If j0 = i0, it means that all of the42
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edges so far considered at the current iteration have been assigned to a line; in this 1

case, Step 7 sets p(i0) to zero and goes back to Step 2. If j0 �= i0, it means that 2

the edges defining the sequence of nodes from i0 to i have not yet been assigned 3

to a line (notice that i = j0 at this point); in this case, Step 8 increases by one 4

unit the value of l, initializes line L(l) to the empty set and attempts to continue 5

adding nodes to the sequence from i (if it is not possible, it updates the values of 6

j, i and p(j), sets the value of j0 and goes back to Step 6 to start defining the 7

noncircular line L(l)). 8

Algorithm 1. 9

Step 1. Set p(i) = 0 ∀i ∈ V and l = 0. 10

Step 2. If |Γ (i)| = 0 ∀i ∈ V , STOP. 11

Step 3. If |Γ (i)| is even ∀i ∈ V , choose i0 ∈ V such that |Γ (i0)| > 0; otherwise, 12

choose i0 ∈ V such that |Γ (i0)| is odd. Set l = l + 1, L(l) = ∅, p(i0) = i0 13

and i = i0. 14

Step 4. Choose j ∈ Γ (i) and set Γ (i) = Γ (i) \ {j} and Γ (j) = Γ (j) \ {i}. If 15

p(j) > 0, set j0 = j and go to Step 6. 16

Step 5. If |Γ (j)| > 0, set p(j) = i, i = j and go to Step 4; otherwise, set j0 = i0. 17

Step 6. Set L(l) = L(l)∪{{j, i}}. If i �= j0, set j = i, i = p(i), p(j) = 0 and repeat 18

Step 6. 19

Step 7. If j0 = i0, set p(i0) = 0 and go to Step 2. 20

Step 8. Set l = l+1 and L(l) = ∅. If |Γ (i)| > 0, go to Step 4; otherwise, set j = i, 21

i = p(i), p(j) = 0, j0 = i0 and go to Step 6. 22

Remark 3.1. If |Γ (i0)| is even, then it will always be |Γ (j)| > 0 in Step 5 and 23

|Γ (i)| > 0 in Step 8. 24

The flowchart for Algorithm 1 is given in Appendix B. 25

Example 3.2. Consider the graph G = (V , E), where V = {1, 2, 3, 4, 5} and 26

E = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {3, 5}, {4, 5}} (see Fig. 1). Then Γ (1) = 27

{2, 3, 4}, Γ (2) = {1, 4}, Γ (3) = {1, 4, 5}, Γ (4) = {1, 2, 3, 5} and Γ (5) = {3, 4}. 28

Algorithm 1 proceeds as follows: 29

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = 0, l = 0 30

Step 3. i0 = 1, l = 1, L(1) = ∅, p(1) = 1, i = 1 31

Step 4. j = 2, Γ (1) = {3, 4}, Γ (2) = {4} 32

Step 5. p(2) = 1, i = 2 33

Step 4. j = 4, Γ (2) = ∅, Γ (4) = {1, 3, 5} 34

Step 5. p(4) = 2, i = 4 35

Step 4. j = 1, Γ (4) = {3, 5}, Γ (1) = {3}, j0 = 1 36

Step 6. L(1) = {{1, 4}}, j = 4, i = 2, p(4) = 0 37

Step 6. L(1) = {{1, 4}, {4, 2}}, j = 2, i = 1, p(2) = 0 38

Step 6. L(1) = {{1, 4}, {4, 2}, {2, 1}} 39

Step 7. p(1) = 0 40
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1

2 3

4 5

Figure 1. Graphic representation of G = (V , E).

Step 3. i0 = 1, l = 2, L(2) = ∅, p(1) = 1, i = 11

Step 4. j = 3, Γ (1) = ∅, Γ (3) = {4, 5}2

Step 5. p(3) = 1, i = 33

Step 4. j = 4, Γ (3) = {5}, Γ (4) = {5}4

Step 5. p(4) = 3, i = 45

Step 4. j = 5, Γ (4) = ∅, Γ (5) = {3}6

Step 5. p(5) = 4, i = 57

Step 4. j = 3, Γ (5) = ∅, Γ (3) = ∅, j0 = 38

Step 6. L(2) = {{3, 5}}, j = 5, i = 4, p(5) = 09

Step 6. L(2) = {{3, 5}, {5, 4}}, j = 4, i = 3, p(4) = 010

Step 6. L(2) = {{3, 5}, {5, 4}, {4, 3}}11

Step 8. l = 3, L(3) = ∅, j = 3, i = 1, p(3) = 0, j0 = 112

Step 6. L(3) = {{3, 1}}13

Step 7. p(1) = 014

Consequently, two circular lines L(1) = {{1, 4}, {4, 2}, {2, 1}} and L(2) =15

{{3, 5}, {5, 4}, {4, 3}}, and one noncircular line L(3) = {{3, 1}} have been defined.16

3.2. Line designing considering transfers17

Although Algorithm 1 is computationally very efficient, it has the disadvantage18

of not taking into consideration the transfers that should be made by the users19

to arrive at their destinations. These transfers could be taken into account simply20

by imposing certain rules for choosing the node j in Step 4. In order to establish21

appropriate rules, it is necessary to estimate the number of transfers that should22

be made at each location; for this purpose, it will be assumed that the users always23

choose routes of minimum length to take their trips.24

Let W = {w ∈ W | pw = 1} and W
′

= {s(w) | w ∈ W} (notice that W is25

the set of origin-destination pairs of locations whose users are expected to utilize26

the rapid transit network, and W
′ ⊆ W ′). As pointed out in Section 2, the values27
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of {fw

ij}w∈W
′
, {i,j}∈E define recommended routes such that

∑
{i,j}∈E dijf

s(w)

ij ≤ 1

μupri
w ∀w ∈ W , but they are not necessarily routes of minimum length in G from 2

ow to dw for each w ∈ W . Obviously, one way for determining such routes is to solve 3

the following problem (Pw) ∀w ∈ W
′
(notice that (f

w

ij){i,j}∈E , (εw
i )i∈V \{ow,dw} 4

is a feasible solution to (Pw), and, consequently, it could be taken as a starting 5

solution for solving this): 6

Minimize zw =
∑

{i,j}∈E

dijf
w
ij

subject to:∑
j∈Γ (i),j>i

fw
ij +

∑
j∈Γ (i),j<i

fw
ji =

{
1 if i ∈ {ow, dw}
2εw

i otherwise ∀i ∈ V

fw
ij ∈ {0, 1} ∀{i, j} ∈ E

εw
i ∈ {0, 1} ∀i ∈ V \ {ow, dw}.

(Pw)

For each w ∈ W
′
, let (f̂w

ij ){i,j}∈E , (ε̂w
i )i∈V \{ow,dw} be an optimal solution to 7

problem (Pw). 8

From now on it will be assumed that the users follow the routes defined by the 9

values of {f̂w
ij}w∈W

′
, {i,j}∈E . For simplicity of notation, we define f̂w

ji = f̂w
ij ∀w ∈ 10

W
′
, ∀{i, j} ∈ E. 11

Let W i = {w ∈ W | i /∈ {ow, dw}, ε̂s(w)
i = 1} ∀i ∈ V , 12

let tj(i) =
∑

w∈W i,f̂
s(w)
ij =1

gw ∀i ∈ V , ∀j ∈ Γ (i), and let tk(i, j) = 13∑
w∈W j ,f̂

s(w)
ij +f̂

s(w)
jk =1

gw ∀i ∈ V , ∀j ∈ Γ (i), ∀k ∈ Γ (j) \ {i} (notice that W i is 14

the set of origin-destination pairs of locations whose users pass through location 15

i, tj(i) is the number of transfers at location i made by the users that utilize the 16

link joining i with j, provided that i is an endpoint of the line that links i and j, 17

and tk(i, j) is the number of transfers at location j made by the users that utilize 18

one and only one of the links joining i with j, and j with k, provided that these 19

links belong to the same line). 20

The algorithm below is a modification of Algorithm 1 that incorporates a greedy 21

rule for reaching the nodes, thus resulting in a greedy heuristic procedure that 22

attempts to minimize the estimated total number of required transfers. This greedy 23

rule is applied in Step 3 for choosing the second node of the sequence, as well as 24

in Step 6 for choosing the subsequent nodes of the sequence. (Notice that we are 25

imposing that each node with odd degree in G is an endpoint of exactly one line, 26

and each node with even degree in G is an endpoint of no line; see the beginning 27

of Sect. 3). 28

Once the starting node i0 has been chosen in Step 3, the criterion for selecting 29

the next node j of the sequence depends on whether |Γ (i0)| is even or odd. If 30

|Γ (i0)| is even, then i0 cannot be an endpoint of any of the lines that will be 31

defined later on; therefore, we can choose any node j ∈ Γ (i0). If |Γ (i0)| is odd, 32

then i0 has to be an endpoint of exactly one of the lines that will be defined later 33
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on, hence, in order to attempt to reduce the number of transfers made at i0, we1

choose a node j ∈ Γ (i0) with minimum value of tj(i0).2

Given the two last nodes i and j that have been added to the sequence so far, in3

Step 6 we have to decide whether to continue or stop adding nodes to the current4

iteration sequence, and, if we decide to continue, then we have to choose the next5

node k. For this purpose, and in order to attempt to reduce the number of transfers6

made at j, we determine a node k ∈ Γ (j) with minimum value of tk(i, j). If |Γ (j)|7

is odd, then j cannot be an endpoint of any of the lines that will be defined later8

on; thus, we have to continue adding nodes to the sequence, and we choose k as the9

next one. If |Γ (j)| is even, then j has to be an endpoint of exactly one of the lines10

that will be defined later on, hence we can either continue or stop adding nodes11

to the sequence. In order to make this decision, we compare the values of tk(i, j)12

and ti(j). If tk(i, j) > ti(j), it can be expected that the number of transfers made13

at j if we continue adding nodes will be greater than if we stop; consequently,14

we decide to stop adding nodes, i.e., we set the value of j0 and go to Step 7 to15

start defining the noncircular line L(l). Otherwise, we continue adding nodes to16

the sequence, and we choose k as the next one.17

Algorithm 2.18

Step 1. Set p(i) = 0 ∀i ∈ V and l = 0.19

Step 2. If |Γ (i)| = 0 ∀i ∈ V , STOP.20

Step 3. If |Γ (i)| is even ∀i ∈ V , choose i0 ∈ V such that |Γ (i0)| > 0 and21

j ∈ Γ (i0); otherwise, choose i0 ∈ V such that |Γ (i0)| is odd and set22

j = arg min{tj′(i0) | j′ ∈ Γ (i0)}. Set l = l + 1, L(l) = ∅, p(i0) = i023

and i = i0.24

Step 4. Set Γ (i) = Γ (i) \ {j} and Γ (j) = Γ (j) \ {i}. If p(j) > 0, set j0 = j and25

go to Step 7.26

Step 5. If |Γ (j)| = 0, set j0 = i0 and go to Step 7.27

Step 6. Set k = argmin{tk′(i, j) | k′ ∈ Γ (j)}. If |Γ (j)| is even and tk(i, j) > ti(j),28

set j0 = i0; otherwise, set p(j) = i, i = j, j = k and go to Step 4.29

Step 7. Set L(l) = L(l)∪{{j, i}}. If i �= j0, set j = i, i = p(i), p(j) = 0 and repeat30

Step 7.31

Step 8. If j0 = i0, set p(i0) = 0 and go to Step 2.32

Step 9. Set l = l + 1, L(l) = ∅, j = i, i = p(i), p(j) = 0 and go to Step 5.33

Remark 3.3. If |Γ (i0)| is even, then Step 5 can be skipped, since it will always34

be |Γ (j)| > 0.35

The flowchart for Algorithm 2 is given in Appendix C.36

Example 3.4. Consider the graph G = (V , E) from Example 3.2, and let us37

assume that W = W and that the route of minimum length between each origin-38

destination pair of locations and the demands {gw}w∈W are those given in Table 1.39

Therefore, we get that W 1 = ∅, W 2 = ∅, W 3 = {(1, 5), (5, 1)}, W 4 =40

{(2, 3), (2, 5), (3, 2), (5, 2)} and W 5 = ∅.41
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Table 1. Shortest routes and demands for the pairs w ∈ W .

ow dw
Shortest route

between ow and dw
g(ow,dw) g(dw,ow)

1 2 {{1, 2}} 1 1
1 3 {{1, 3}} 1 1
1 4 {{1, 4}} 1 1
1 5 {{1, 3}, {3, 5}} 2 2
2 3 {{2, 4}, {4, 3}} 3 3
2 4 {{2, 4}} 1 1
2 5 {{2, 4}, {4, 5}} 2 2
3 4 {{3, 4}} 1 1
3 5 {{3, 5}} 1 1
4 5 {{4, 5}} 1 1

Algorithm 2 proceeds as follows: 1

Step 1. p(1) = p(2) = p(3) = p(4) = p(5) = 0, l = 0 2

Step 3. i0 = 1, t2(1) = 0, t3(1) = 0, t4(1) = 0, j = 2, l = 1, L(1) = ∅, p(1) = 1, i = 1 3

Step 4. Γ (1) = {3, 4}, Γ (2) = {4} 4

Step 6. t4(1, 2) = 0, k = 4, p(2) = 1, i = 2, j = 4 5

Step 4. Γ (2) = ∅, Γ (4) = {1, 3, 5} 6

Step 6. t1(2, 4) = 10, t3(2, 4) = 4, t5(2, 4) = 6, k = 3, p(4) = 2, i = 4, j = 3 7

Step 4. Γ (4) = {1, 5}, Γ (3) = {1, 5} 8

Step 6. t1(4, 3) = 4, t5(4, 3) = 4, k = 1, t4(3) = 0, j0 = 1 9

Step 7. L(1) = {{3, 4}}, j = 4, i = 2, p(4) = 0 10

Step 7. L(1) = {{3, 4}, {4, 2}}, j = 2, i = 1, p(2) = 0 11

Step 7. L(1) = {{3, 4}, {4, 2}, {2, 1}} 12

Step 8. p(1) = 0 13

Step 3. i0 = 1, j = 3, l = 2, L(2) = ∅, p(1) = 1, i = 1 14

Step 4. Γ (1) = {4}, Γ (3) = {5} 15

Step 6. t5(1, 3) = 0, k = 5, p(3) = 1, i = 3, j = 5 16

Step 4. Γ (3) = ∅, Γ (5) = {4} 17

Step 6. t4(3, 5) = 0, k = 4, p(5) = 3, i = 5, j = 4 18

Step 4. Γ (5) = ∅, Γ (4) = {1} 19

Step 6. t1(5, 4) = 4, k = 1, p(4) = 5, i = 4, j = 1 20

Step 4. Γ (4) = ∅, Γ (1) = ∅, j0 = 1 21

Step 7. L(2) = {{1, 4}}, j = 4, i = 5, p(4) = 0 22

Step 7. L(2) = {{1, 4}, {4, 5}}, j = 5, i = 3, p(5) = 0 23

Step 7. L(2) = {{1, 4}, {4, 5}, {5, 3}}, j = 3, i = 1, p(3) = 0 24

Step 7. L(2) = {{1, 4}, {4, 5}, {5, 3}, {3, 1}} 25

Step 8. p(1) = 0 26

Consequently, one noncircular line L(1) = {{3, 4}, {4, 2}, {2, 1}}, and one cir- 27

cular line L(2) = {{1, 4}, {4, 5}, {5, 3}, {3, 1}} have been defined. 28
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Figure 2. Graphic representation of G = (V, E).

It can easily be verified that the estimated number of transfers required for the1

line designs obtained by Algorithms 1 and 2 (see Ex. 3.2) is 14 and 4, respectively.2

4. Computational experience3

We consider an extension of network R2 from [14] (R2 was also considered in [5]),4

consisting of twenty nodes and forty-five edges. Figure 2 shows its underlying graph5

G = (V, E).6

The station construction costs {ai}i∈V , the linking construction costs7

{cij}{i,j}∈E , the distances {dij}{i,j}∈E , the demands {g(i,j)}i,j∈V, i�=j and the gen-8

eralized costs {upri
(i,j)}i,j∈V, i�=j can be found in [6].9

The implementation platform has been Microsoft Visual C++ 2005, CPLEX10

v11.2 and Pentium 4, 3.00 GHz, 1.00 Gb RAM.11

In order to solve the model stated in Section 2 by using the optimization engine12

CPLEX, it is necessary to convert it into a linear integer programming model.13

Given that the unique nonlinear expressions in the model are of the form yowydw ,14

where w ∈ W ′, we have defined the variables15

δij =
{

1 if yi = 1 and yj = 1
0 otherwise ∀i, j ∈ V such that i < j16



DESIGNING RAPID TRANSIT NETWORKS REDUCING TRANSFERS 329

(notice that we are considering W ′ = {(i, j) ∈ V × V | i < j}), we have appended
to the model the following constraints, which impose that δij = yi yj ∀i, j ∈
V such that i < j:

δij ≤ yi ∀i, j ∈ V such that i < j

δij ≤ yj ∀i, j ∈ V such that i < j

δij ≥ yi + yj − 1 ∀i, j ∈ V such that i < j

δij ∈ {0, 1} ∀i, j ∈ V such that i < j,

and we have replaced constraints (2.6)–(2.8) with constraints (4.1)–(4.3) below, 1

respectively. 2

εw
i ≤ δow,dw ∀w ∈ W ′, ∀i ∈ V \ {ow, dw} (4.1)

3∑
j∈Γ (i),j>i

fw
ij +

∑
j∈Γ (i),j<i

fw
ji =

{
δow,dw if i ∈ {ow, dw}
2εw

i otherwise ∀w ∈ W ′, ∀i ∈ V (4.2)

4
pw ≤ δos(w),ds(w) ∀w ∈ W. (4.3)

We have run the CPLEX mixed integer optimizer by using the default rules, 5

except that the relative and absolute optimality tolerances have been set to zero, 6

a time limit of one hour has been imposed and, in the branching process, the 7

priorities for the variables {Δi}i∈V , {fw
ij}w∈W ′,{i,j}∈E , {xij}{i,j}∈E and {pw}w∈W 8

have been set to 1, 2, 3 and 4, respectively. The reason for imposing this time 9

limit is that the main goal of our computational experience is to compare the 10

performance of Algorithms 1 and 2; the tightening of the model proposed for the 11

first stage and the development of a more efficient method to solve this are areas 12

of future research. 13

Table 2 shows the computational results obtained by considering several values 14

for the available budget b. 15

The columns headed “ z ”, “Nodes” and “Time 1” give, respectively, the value 16

of the objective function at the optimal or incumbent solution, the number of 17

branch-and-cut nodes evaluated and the CPU time expressed in seconds related 18

to the solving of the linearization of the model stated in Section 2 taking μ = 1. 19

The column headed “Time 2” gives the CPU time expressed in seconds required 20

for solving the problems {(Pw)}w∈W
′ by taking (f

w

ij){i,j}∈E , (εw
i )i∈V \{ow,dw} as the 21

starting feasible solution for each w ∈ W
′
. 22

We have followed two different strategies for choosing the nodes i0 and j in 23

Steps 3 and 4 of Algorithm 1, and the nodes i0, j and k in Steps 3 and 6 of 24

Algorithm 2. The first strategy is to choose each one of these nodes as the minimum 25

of its possible values. The second strategy is to choose each one of them randomly 26

and uniformly distributed over the set of all of its possible values. 27

The columns headed “Trans. 1” give the estimated total number of transfers 28

required for the line design obtained by applying once Algorithms 1 and 2 follow- 29

ing the first strategy above (the CPU times have been inappreciable for all the 30

instances). 31
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The columns headed “Trans. 2” and “Line design” give, respectively, the mini- 1

mum estimated total number of required transfers and the associated line design 2

obtained by applying Algorithms 1 and 2 for 15 seconds each, following the sec- 3

ond strategy above (each lth line is denoted as Ll and defined by the sequence of 4

locations to which it goes). We have also increased the time limit to 10 minutes, 5

but the results have not varied. 6

Given a line design obtained by Algorithm 1 or Algorithm 2, for each e ∈ E 7

let l̂(e) denote the unique value of l verifying that edge e has been assigned to 8

line L(l). Moreover, for each i ∈ V with |Γ (i)| ≥ 3 and each w ∈ W i, let j1(i, w) 9

and j2(i, w) denote the two unique nodes in Γ (i) such that f̂
s(w)
i,j1(i,w) = 1 and 10

f̂
s(w)
i,j2(i,w) = 1 (see problem (Pw) in Sect. 3.2). 11

The estimation for the total number of required transfers that has been con- 12

sidered for computing the values for “Trans. 1” and “Trans. 2” is given by 13∑
i∈V ,|Γ(i)|≥3

∑
w∈Ŵi

gw, where Ŵi = {w ∈ W i | l̂(e1(i, w)) �= l̂(e2(i, w))} and 14

ek(i, w) =
{ {i, jk(i, w)} if i < jk(i, w)
{jk(i, w), i} if i > jk(i, w)

∀k ∈ {1, 2}. 15

In addition to the values for b considered in Table 2, we have performed the 16

computational experiments for b ∈ {10, 20, . . . , 140}. However, for b ∈ {10, 20, 30} 17

it is possible to define only one line in the resulting graph G, hence these instances 18

are not significant. For b ∈ {40, 50, . . . , 140}, the values for “Trans. 1” obtained by 19

Algorithm 1 are greater or equal to the ones obtained by Algorithm 2 (the equality 20

holds for b ∈ {40, 90, 110}), whereas both algorithms achieve the same values for 21

“Trans. 2” in each instance. Thus, we are not presenting here the related results. 22

We can observe from Table 2 that the values for “Trans. 1” obtained by Al- 23

gorithm 1 are much greater than those obtained by Algorithm 2. With regard to 24

the values for “Trans. 2”, Algorithm 2 obtains smaller values than Algorithm 1, 25

except for b ∈ {150, 160}, where the opposite occurs. Therefore, given the little 26

computational effort required by these algorithms, we propose to apply both of 27

them for a certain time period following the second strategy, and choose a line 28

design with the smallest estimated total number of required transfers. 29

Given that for some of the values of b considered in Table 2 we are dealing with 30

an incumbent (non-optimal) solution to the linearization of the model stated in 31

Section 2, we have not performed a sensitivity analysis of the parameters. 32

Figures 3 and 4 depict the best line design obtained for b = 150 and b = 240, 33

respectively. 34

5. Conclusions 35

In this paper we have presented some improvements on a two-stage approach 36

that we described elsewhere for solving a modification of the extended rapid transit 37

network design problem to allow the definition of circular lines. We have introduced 38

several modifications in the model considered in the first stage for selecting the 39

stations and links to be constructed to guarantee that the resulting rapid tran- 40
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Figure 3. Graphic representation of the best line design obtained for b = 150.
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Figure 4. Graphic representation of the best line design obtained for b = 240.
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sit network will be connected. Furthermore, we have proposed a greedy heuristic 1

procedure for solving the line design problem of the second stage that attempts 2

to minimize an estimation of the total number of transfers that should be made 3

by the users of the rapid transit network. This procedure and the one that we de- 4

scribed elsewhere are valid for any set of stations and links to be constructed, not 5

necessarily obtained by solving the model considered in the first stage, hence they 6

could also be used for redesigning the lines of existing rapid transit networks. The 7

reported comparative computational experience between both procedures shows 8

that, for the considered instances with a bigger number of links to be constructed, 9

our greedy procedure significantly reduces the estimated number of transfers, but 10

this performance does not remain true for the rest of the instances. Consequently, 11

it is likely that the greedy procedure will achieve better line designs for large-size 12

instances. Nevertheless, given the computational efficiency of these procedures, it 13

will be possible to apply both of them and choose the best line design obtained. 14
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Appendix A. Model 2 in [5] 19

The Model 2 proposed in [5] is as follows: 20

Maximise z =
∑

w∈W

gwpw

subject to:∑
j∈Γ (i),j>i

xij +
∑

j∈Γ (i),j<i

xji = 2Δi + γi ∀i ∈ V (10)

∑
i∈V

ai (Δi + γi) +
∑

{i,j}∈E

cijxij ≤ b (11)

∑
j∈Γ (i),j>i

fw
ij +

∑
j∈Γ (i),j<i

fw
ji =

{
1 if i ∈ {ow, dw}
2εw

i otherwise ∀w ∈ W ′, ∀i ∈ V (12)

∑
{i,j}∈E

dijf
s(w)
ij − μ upri

w − Mw(1 − pw) ≤ 0 ∀w ∈ W (13)

f
s(w)
ij + pw − 1 ≤ xij ∀w ∈ W, ∀{i, j} ∈ E (14)

xij ∈ {0, 1} ∀{i, j} ∈ E

fw
ij ∈ {0, 1} ∀w ∈ W ′, ∀{i, j} ∈ E

pw ∈ {0, 1} ∀w ∈ W
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εw
i ∈ {0, 1} ∀w ∈ W ′, ∀i ∈ V \ {ow, dw}

γi ∈ {0, 1} ∀i ∈ V

Δi ∈ {0, . . . , r(i)} ∀i ∈ V,

where Mw =
∑

{i,j}∈E dij − μ upri
w ∀w ∈ W .1

Appendix B. Flowchart for Algorithm 12

The flowchart for Algorithm 1 in Section 3.1 is as follows:3

4
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Appendix C. Flowchart for Algorithm 2 1

The flowchart for Algorithm 2 in Section 3.2 is as follows: 2

3
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