
RAIRO-Oper. Res. 46 (2012) 1–22 RAIRO Operations Research

DOI: 10.1051/ro/2012005 www.rairo-ro.org

SCHEDULING IN THE PRESENCE OF PROCESSOR
NETWORKS: COMPLEXITY AND APPROXIMATION

Vincent Boudet
1
, Johanne Cohen

2
, Rodolphe Giroudeau

1

and Jean-Claude König
1

Abstract. In this paper, we study the problem of makespan mini-
mization for the multiprocessor scheduling problem in the presence
of communication delays. The communication delay between two
tasks i and j depends on the distance between the two processors
on which these two tasks are executed. Lahlou shows that a simple
polynomial-time algorithm exists when the length of the schedule is at
most two (the problem becomes NP-complete when the length of the
schedule is at most three). We prove that there is no polynomial-time
algorithm with a performance guarantee of less than 4/3 (unless
P = NP) to minimize the makespan when the network topology is a
chain or ring and the precedence graph is a bipartite graph of depth
one. We also develop two polynomial-time approximation algorithms
with constant ratio dedicated to cases where the processor network
admits a limited or unlimited number of processors.

Résumé. Dans cet article, nous étudions le problème de la minimi-
sation de la longueur de l’ordonnancement pour un système multi-
processeur en présence de délais de communication. Le délai de com-
munication entre deux tâches i et j dépend de la distance entre les
processeurs exécutant ces deux tâches. Un algorithme simple, de com-
plexité polynomiale quand la longueur de l’ordonnancement est au
plus deux (le problème devient NP-complet quand la longueur de
l’ordonnancement est au plus trois) existe, voir [C. Lahlou, Ordonnan-
cement dans les réseaux de processeurs : complexité et approximation.
Ph.D. thesis, Université Paris VI (1998)]. pour ces deux résultats. Nous
démontrons qu’il n’existe pas d’algorithme polynomial ρ-approché avec

Received June 25, 2009. Accepted March 27, 2012.

1 LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, UMR 5055, France.
boudet@lirmm.fr; rgirou@lirmm.fr; konig@lirmm.fr

2 LORIA, 54506 Vandoeuvre-lès-Nancy Cedex, France. Johanne.Cohen@loria.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012005
http://www.rairo-ro.org
http://www.edpsciences.org

2 V. BOUDET ET AL.

ρ < 4/3 sous l’hypothèse que P �= NP pour la minimisation de la
longueur de l’ordonnancement dans le cas où le réseau de processeurs
admet pour topologie une châıne ou un anneau et le graphe de précé-
dence est un graphe biparti de profondeur un. Nous avons également
développé deux algorithmes d’approximation avec des garanties de per-
formance constantes pour les versions limitées et non limitées sur le
nombre de processeurs.

Keywords. Scheduling, non-approximability, processor network
model.

Mathematics Subject Classification. 68W25, 68Q17, 90B35.

1. Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to
activities over time. This topic, which is of obvious practical importance, has been
the focus of extensive research since the early 1950s and an impressive amount of
literature now exists. The theory of the design of scheduling algorithms is more
recent, but still has a significant history.

An application is scheduled on a parallel architecture and may be represented
by a directed acyclic graph (DAG) G = (V, E) (called a precedence graph) where
V designates the set of tasks to be executed on a set of m processors, and E
represents the set of precedence constraints. Every task i ∈ V has a processing
time denoted pi and its execution is subject to precedence constraints.

From the very beginning of the study of scheduling problems, models have kept
up with the changing and improving technology. Indeed, some models take into
account whether there are communication delays or not.

• In the PRAM model (Parallel Random Access Machine), inter-processor com-
munication delays are not taken into account. In other words, if a precedence
constraint between task i and task j exists (arc (i, j) ∈ E), then the starting
time of task j, denoted tj , cannot be less than the completion time of task i.
So, ∀(i, j) ∈ E, tj ≥ ti + pi.

The goal is therefore to find a partial order on the tasks and to minimize
an objective function. The frontier between scheduling problems that accept
polynomial-time algorithms and NP-completeness is based on the number of
processors. Indeed, when the number of processors is unlimited, the problem
of scheduling a set of n tasks under precedence constraints is polynomial. It is
sufficient to use the classical algorithm given by Bellman [3] as well as the two
techniques widely used in project management: CPM (Critical Path Method)
and PERT (Project/Program Evaluation and Review Technique). A contrario,
when the number of processors is limited, the problem becomes NP-complete
and there is a polynomial-time approximation algorithm with a ratio (2 − 1/m),

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 3

see [12], where m designates the number of processors. A list scheduling algo-
rithm with no priority is used3.

• In the homogeneous scheduling delay model, inter-processor communica-
tion delays are taken into account and the execution of tasks is subject to
precedence constraints and communication delays. In other words, if there is
a precedence constraint between task i and task j (arc (i, j) ∈ E), an integer
communication delay cij is introduced.
If task i starts its execution at time t on processor π, and if task j is a

successor of task i in G, then either task j starts its execution after time t + pi

on processor π, or after time t + pi + cij on another processor.
This model was first introduced by Rayward-Smith [22] for the simple case

∀i ∈ V, pi = 1 and ∀(i, j) ∈ E, cij = 1. In this model, we have a set of
identical processors that are able to communicate in an uniform manner. In
fact, the problem is to find a trade-off between the two extreme solutions,
namely, executing all tasks sequentially without communication, or trying to
use all potential parallelism degrees, but at the cost of increased communication
overhead.

These two models have been studied extensively over the past few years both
from the complexity and the (non)-approximability standpoints (see [4,14]). More-
over, several variants of these two problems have been extensively studied (see [1]
for presentation).

However, data in heterogeneous systems may be distributed across several pro-
cessors that are not necessarily neighbors. Thus, we must take into account these
characteristics to develop algorithms that are adapted to this new type of archi-
tecture. The heterogeneous characteristics may be based on the communication
delay [2] or concern the processing time [10].

Organization of the paper

This paper is organized as follows: in Section 2, problem definition and notations
are specified. Related works and our contributions are also described. Section 3 is
devoted to the computational complexity. In Section 4, we propose two polynomial-
time approximation algorithms with a limited or unlimited number of processors.

3One of the general approximation strategies most used for solving scheduling problems is
list scheduling, whereby a priority list of the tasks is given, and at each step the first available
processor is selected to process the first available task in the list. The accuracy of a given list
scheduling algorithm depends on the order in which tasks appear on the list. One of the simplest
algorithms is the LPT algorithm in which tasks are arranged to a non-increasing pj , see [13].

4 V. BOUDET ET AL.

2. Problem definition, notations, related works

and our contributions

2.1. Problem definition, notations and example

The processor network model is based on a relaxation of the structure of
the graph of processors proposed in the classical scheduling model (which
is highly constrained: the graph of processors is represented by a complete graph).
In this article, we consider a non-fully-connected graph of processors, denoted in
the following by G∗ = (V ∗, E∗). Therefore, we consider a scheduling model admit-
ting a distance function, denoted d(πl, πh). The distance function measures the
distance (the number of edges in the smallest path between πl and πh). In a chain,
πl (resp. πk) is the lth (resp. kth) vertex then d(πl, πh) = |l−h| (this first distance
function was introduced by Picouleau [20]).

Note that graph G∗ corresponds to the (undirected) graph of processors and
that graph G is the DAG graph corresponding to the task precedence graph.

The communication delay ci,πl,j,πh (this notation indicates that the value of the
communication delay between task i, which is assigned to processor πl and task j
which is executed on processor πh) is assumed to be cij = d(πl, πh), provided that
there is a precedence constraint exists between tasks i and j. So the starting time
of a task i, denoted ti, depends both on the communication delay given by the
precedence graph and on an allocation of task i and its predecessors on processors.

The distance function defined by Picouleau [20] can be justified as being ap-
propriate for linear array networks. For general network structures, a distance
between two processors may be defined as the length of the shortest path that
connects a pair of processors. Such a model has been considered [6]. El-Rewini and
Lewis [7] also considered a distance function, and they also took contention into
account. By contention4, they consider the event that two or more data transmis-
sions have to pass simultaneously through a single communication channel whose
limited capacity forces serial transmission. Other results were given by [8, 18].

Formally, the processor network model may be defined as:

∀(i, j) ∈ E, tj ≥ ti + pi + cijd(π�, πh)

where:

• π� (πh resp.) represents the processor on which task i (task j resp.) is scheduled;
• ti represents the starting time of task i;
• pi represents the processing time of task i;
• d(π�, πh) represents the shortest path in graph G∗ between π� and πh;
• cij is the communication delay if two tasks are executed on two neighboring

processors. Note that the precedence graph is weighted such that a weight of
arc (i, j) corresponds to the communication delay between tasks i and j.

4We refer the reader to the following position [23] for communication contention problems in
scheduling.

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 5

u

v

w

x

z

π0

π1

π2

π3

0 1 2 3 4 t.

u

v

w

x z

π0

π1

π2

π3

0 1 2 3 4 t.

u

v

w

x

z

precedence graph Diagram G1 for Diagram G2 for
P |prec; cij = 1; pi = 1|Cmax (P, chain)|prec; cij = d(πi, πj); pi = 1|Cmax

Figure 1. Difference between problems P |prec; cij = 1; pi =
1|Cmax and (P, chain)|prec; cij = d(πi, πj); pi = 1|Cmax.

Note that the previous definition is a generalization of the classic schedul-
ing model with communication delays (or homogeneous scheduling delay
model, [4,5]). For instance, consider that all distances in the network are equal to
one, i.e. d(π�, πh) = 1 for all processors π�, πh. In that case, the considered model
is exactly the classical scheduling communication delay model.

We consider the classic scheduling UET − UCT (Unit Execution Time-Unit
Communication Time, i.e. ∀i ∈ V, pi = 1, and ∀(i, j) ∈ E, cij = 1) problem on
a bounded number of processors, such that the processor network is a ring or a
chain (the graph is undirected). In these topologies, processors are numbered as
π0, π1, . . . , πn−1 and processor πk can communicate with processor πk′

with a
communication cost equal to d(πk, πk′

), where d(πk, πk′
) represents the shortest

path on graph G∗ between processor πk and πk′
.

In scheduling theory, a problem type is categorized by its machine environ-
ment, job characteristic and objective function. Thus, using the three field notation
scheme α|β|γ (where α designates the environment processors, β the characteristics
of the jobs and γ the criteria), proposed by Graham et al. [14],

we consider the problem of minimizing the makespan of a schedule (denoted
Cmax) with unitary task and unitary communication delay (UET −UCT) from a
precedence graph G on a network of processors having a chain (graph G∗) topology
such that the communication delay depends on the shortest path on graph G∗. This
problem is denoted (P, chain)|prec; cij = d(π�, πk); pi = 1|Cmax.

Example. Figure 1 shows the difference between the two problems P |prec; cij =
1; pi = 1|Cmax and (P, chain)|prec; cij = d(π�, πk); pi = 1|Cmax. The process-
ing time of the tasks and the communication delay between tasks are unitary
(UET −UCT problem). Gantt diagram G1 represents an optimal solution for the
P |prec; cij = 1; pi = 1|Cmax problem. Note that task z can be executed on any
processor at t = 2.

Moreover, Gantt diagram G2 represents an optimal solution for the problem
(P, chain)|prec; cij = d(π�, πk); pi = 1|Cmax. First, we assume that the graph of
processors is a chain C = (V, E), such that V = {πi : 0 ≤ i ≤ 3} and E =
{(πi, πi+1) : 0 ≤ i ≤ 2}. Second, we can see that task z may be executed on

6 V. BOUDET ET AL.

Table 1. Previous complexity results on the processor network model.

Topology Precedence graph Complexity Reference
Unbounded chain Tree NP-complete [20]

Anti − tree NP-complete
Star Tree NP-complete [20]
Star Prec ρ ≥ 6/5 [11]
Cycle Prec, bipartite of depth two ρ ≥ 4/3 [18]
Chain Prec, bipartite of depth two ρ ≥ 4/3 [18]

processor π2 at t = 2 only if task u (for example) is delayed by one unit of time
and executed on processor π2 that also executes task z.

2.2. Related works

2.2.1. Complexity results

To the best of our knowledge, the first complexity result was given by
Picouleau [20]. The considered problem was to schedule unit execution time tasks
with a precedence graph on an unbounded number of processors and on a chain or
star5 topology. Picouleau proved that this problem is NP-complete if the prece-
dence graph is a tree or an out-tree. Recently in [11], the authors proved that there
is no polynomial-time algorithm with a performance guarantee smaller than 6

5 for
the minimization of the makespan on a processor network represented by a star.
This model is close to the master-slave architecture.

Lahlou in [17], proves whether there is a schedule having the makespan less
than k on ring or on a chain network of processors for a precedence graph is
NP-complete for Cmax = 3 (the proof is not given in this article. The fact is that
Thm. 3.2 was proved by [18] with the same proof). The previous complexity results
are summarized by Table 1.

2.2.2. Approximation results

If the network is a ring there are two approximation results for Rayward-
Smith’s [22] algorithm:

• in the general case, the performance ratio is upper-bounded by m
2 + 3

2 − 1
m , and

there exists an instance for which the performance ratio is equal to m
8 + 1

2 [18];
• if the number of processors is even, the upper-bound can be improved to 1 +

3
8m− 1

2m , and there exists an instance such that the performance ratio is equal
to �√m� [17].

Moreover, Hwang et al. [16] studied approximation list algorithms for scheduling
problems where the communication times depend on contention, on a distance
function for the tasks involved and on the processors that execute the tasks. The

5A star is a tree of diameter two.

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 7

Table 2. Complexity results for (P, topology)|bipartite; cij =
d(π�, πk); pi = 1|Cmax with topology ∈ {chain, ring}.

Type of precedence graph and Cmax

Topology Bipartite and Cmax = 2 Bipartite of depth one and Cmax = 3
Chain Poly. (Lem. 3.1) NPC (Cor. 3.13)
Ring Poly. (Lem. 3.1) NPC (Cor. 3.13)

authors examined a simple strategy called Extended List Scheduling, ELS, which is
a straightforward extension of list scheduling. They proved that the ELS strategy
is unsatisfactory, but improves a strategy called Earliest Task First. Lastly in [11],
the authors proposed a sophisticated polynomial-time approximation algorithm
with a ratio equal to four based on three steps for the problem for the makespan
minimization problem on a processor network forming a star.

2.3. Our contributions

First, we study the impact of the processor network hypothesis on the hardness
of approximation (hypothesis for which the potential communication delay be-
tween two tasks i and j depends only on the distance d(πi, πj) between processors
assigned to execute tasks i and j) for the UET −UCT problem in the presence of
a specified precedence graph (bipartite). Second, as far as we know, no result con-
cerning a lower bound for any approximation algorithm for this problem has been
determined. Thus, the challenge is to determine a threshold for any approximation
algorithm for the problem α|bipartite of depth one; cij = d(π�, πk); pi = 1|Cmax,
where α ∈ {(P, chain), (P, ring)}. In this paper, we show that there is no
polynomial-time algorithm with a performance guarantee smaller than 4/3 for
makespan minimization (unless NP = P). Lastly, we also develop two polynomial-
time approximation algorithms for a processor network with limited or unlimited
resources.

3. Computational complexity

In this section, we prove some non-approximability results by considering
the following scheduling problems: α|prec; cij = d(π�, πk); pi = 1|Cmax with
α ∈ {(P, chain), (P, ring)} and α|prec; cij = d(π�, πk); pi = 1, dup|Cmax with
α ∈ {(P, chain), (P, ring)}. The notation dup means that the task duplication is
allowed. In other words, a task can be executed by several processors.

We also notice that this problem becomes polynomial for the case Cmax = 2.
The results of this section are summarized in Table 2.

8 V. BOUDET ET AL.

3.1. Makespan minimization for general precedence graphs

3.1.1. A polynomial-time algorithm

Let us first focus on the problem where the makespan is less than or equal to
two.

Lemma 3.1. The problem of deciding whether an instance of α|prec; cij =
d(π�, πk); pi = 1|Cmax has a schedule of length two at most is polynomial with
α ∈ {(P, chain), (P, ring)}.
Proof. See [18]. �

The remainder of this section is devoted to proving Theorem 3.2.

3.1.2. NP-completeness proof

Recall that the result was given first in [18]. We propose a similar polynomial-
time transformation as [18]. We give the proof in order to simplify the under-
standing of the proof of Lemma 3.9.

Theorem 3.2. The problem of deciding whether an instance of (P, chain)|prec;
cij = d(π�, πk); pi = 1|Cmax has a schedule of length at most three is NP-complete.

Proof. The proof is established by a reduction of the 3-partition problem [9]:

Instance: a finite set A of 3M elements {a1, . . . , a3M}, a bound B ∈ IN+ and
a size s(a) ∈ IN for each a ∈ A such that each s(a) satisfies B/4 < s(a) < B/2
and such that

∑
a∈A s(a) = MB.

Question: can A be partitioned into M disjoint sets A1, . . . ,AM of A such that

for all i ∈ [1, . . . , M], B =
∑

a∈Ai

s(a) =
∑

a∈A s(a)
M

∈ IN?

3-partition is known to be NP-complete in the strong sense [9] (even if B is
polynomially bounded by the instance size, the problem is still NP-complete).

First, we construct two graphs Zi and W b depending on two natural numbers
i and b, and we describe the scheduling structure if graph Zi is the precedence
graph in our context. Second, we describe a polynomial-time reduction from 3-

partition, that is, we encode numbers {a1, . . . , a3M} by graphs Zi and each
element of partition A by graph WB.

3.1.2.1. Graphs Zi

Let i be an integer such that i > 1. Graph Zi consists of 4 × i vertices denoted
Zi[k, 0] and Zi[k, 1], where 0 ≤ k < 2i. The precedence constraints between these
tasks are defined as follows:

• arcs Zi[j, 0] → Zi[j, 1] for any j, 0 ≤ j ≤ 2i − 1;
• arcs Zi[2j, 0] → Zi[2j + 1, 1] for any j, 0 ≤ j ≤ i − 1;

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 9

Z2[0, 1] Z2[1, 1] Z2[2, 1] Z2[3, 1]

Z2[0, 0] Z2[1, 0] Z2[2, 0] Z2[3, 0]

Figure 2. Graph Z2.

• arcs Zi[2j, 0] → Zi[2j − 1, 1] for any j, 1 ≤ j ≤ i − 1.

Remark 3.3. Valid scheduling of length three for the case where the precedence
graph is Zi in a path of 2i processors is as follows, for any j, 0 ≤ j ≤ 2i − 1,

• tasks Zi[j, 0] and Zi[j, 1] are executed on πj ;
• tasks Zi[j, �] are executed at time �, for any � ∈ {0, 1}, if j is even;
• tasks Zi[j, �] are otherwise executed at time � + 1, for any � ∈ {0, 1}.

See Figure 2 for graph Z2 and Figure 4 for the valid scheduling described in
Remark 3.3.

3.1.2.2. Graph W b

Let b be an integer such that b > 0. Graph W b admits 2(b + 3) vertices and its
set of vertices is defined as follows:{

W b[k, j], k ∈ {0, 2b + 1} and j ∈ {0, 1, 2}} ∪ {W b[�, 0] with � ∈ {1, . . . , 2b}} .
The precedence constraints between these tasks are defined as follows:

• arcs W b[2j, 0] → W b[2j + 1, 0] for any j, 0 ≤ j ≤ b − 1;
• arcs W b[2j, 0] → W b[2j − 1, 0] for any j, 0 ≤ j ≤ b;
• arcs W b[0, 0] → W b[0, 1] and W b[0, 1] → W b[0, 2];
• arc W b[2b, 0] → W b[2b + 1, 2];
• arcs W b[2b + 1, 0] → W b[2b + 1, 1] and W b[2b + 1, 1] → W b[2b + 1, 2].

Remark 3.4. Valid scheduling of length three for the case where the precedence
graph is W i in a chain of 2(b + 1) processors is as follows:

• tasks W b[0, j] are executed on π0, for any j, 0 ≤ j ≤ 2 at time j;
• tasks W b[2b + 1, j] are executed on π2b+1, for any j, 0 ≤ j ≤ 2 at time j;
• task W b[j, 0] is executed on πj for any j, 0 ≤ j ≤ 2b at time 0 if j is even,

otherwise at time 2.

In Figure 3 graph W b is represented, whereas in Figure 4 a valid scheduling for
this graph is described in Remark 3.4 for graph W b where b = 3.

10 V. BOUDET ET AL.

W b[1, 0] W b[3, 0]

W b[2, 0] W b[4, 0]

W b[0, 2]

W b[0, 1]

W b[0, 0]

W b[2b + 1, 2]

W b[2b + 1, 1]

W b[2b + 1, 0]
W b[2b, 0]

W b[2b − 1, 0]

. . .

Figure 3. Graph W b.

t0 1 2 3

Z2[0, 0] Z2[0, 1]

Z2[1, 0] Z2[1, 1]

Z2[2, 0] Z2[2, 1]

Z2[3, 0] Z2[3, 1]

t0 1 2 3

π0

π1

π2

π3

t0 1 2 3

W 3[0, 0]W 3[0, 1]W 3[0, 2]

W 3[1, 0]

W 3[2, 0]

W 3[3, 0]

W 3[4, 0]

W 3[5, 0]

W 3[6, 0]

W 3[7, 0]W 3[7, 1]W 3[7, 2]

π0

π1

π2

π3

π4

π5

π6

π7

Figure 4. Valid scheduling of length three for graphs Z2 and W 3.

From the definitions in graphs Zi and W b, we will proceed to the polynomial-
time reduction from 3-partition to the scheduling problem.

Consider an instance I of 3-partition, (A = {a1, . . . , a3M}, B), where∑
a∈A

s(a) = MB. For simplicity, we assume without loss of generality that ∀a ∈

A, s(a) ≥ 2.
Given an instance I of the 3-partition problem, we construct an instance I ′

of the scheduling problem (P, chain)|prec; cij = d(π�, πk); pi = 1|Cmax = 3, in the
following manner:

The precedence graph G is decomposed into two disjointed graphs, denoted W
and Z.

• Graph W has connected components Wi, i.e. W = ∪iWi, ∀i ∈ {1, . . . , M},
where Wi is a copy of graph WB (defined previously);

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 11

• graph Z is a collection of graphs Zs(aj) i.e. Z = ∪aj∈AZs(aj). Each element aj

of collection A is represented by a graph Zs(aj) in the precedence graph G (see
Fig. 2). Recall that all graphs Zs(aj) form graph Z and the number of tasks in
graph Zs(aj) is 4s(aj).

To complete this transformation, the chain consists of 2M(B +1) processors num-
bered π0, . . . , π2M(B+1)−1.

To sum up, precedence graph G is composed of M copies of graph WB having
(2B + 6) vertices, and of graph Zs(a) for each element a of collection A (having
4s(a) vertices). Thus, G admits (6B + 6)M vertices.

The size of the instance of our problem and of the instance of 3-partition are
thus polynomially related (see [9]). Note that the running time of this transfor-
mation depends on B. Since problem 3-partition

6 is NP-complete in the strong
sense, the whole transformation can be carried out in polynomial time.

Remark 3.5. With the defined precedence constraints, in any valid schedule of
length three, there is no idle time.

We will now prove that this transformation is a reduction.

• Let us assume that A = {a1, . . . , a3M} can be partitioned into M disjoint
subsets A1, . . . ,AM with each summing up to B. We will then prove that
there is a schedule of length three at most.
Let us construct this schedule;
Consider a partition Ai = {ai1 , ai2 , ai3} of A. The tasks of graphs ZAi =
∪a∈AiZ

s(a) are executed on 2B processors as described in Remark 1, denoted
πki+1 and πki+2B (for a fixed ki = (i − 1)(2B + 1), 1 ≤ i ≤ M . Concerning
a widget Wi, paths of length two must be executed on the same processors,
so we execute Wi[0, j] (resp. Wi[2B + 1, j]) at t = j, j ∈ {0, 1, 2} on processor
πki (resp. on πki+2B+1). The other tasks of Wi are scheduled as described in
Remark 2.

• Let us assume now that there is a schedule S of length at most three. We
will prove that A = {a1, . . . , a3M} can be partitioned into M disjoint subsets
A1, . . . ,AM with each summing up to B.

Lemma 3.6. In any valid schedule of length three, for any i, 1 ≤ i ≤ M , tasks
from a widget Wi are processed by processors πk, . . ., πk+(2B+1), where task
Wi[0, 0] is executed on πk or on πk+(2B+1), for a fixed k.

Proof. We suppose, that task Wi[0, 0] is executed at t = 0 on processor πk

for a fixed k. Task Wi[0, 1] (resp. Wi[0, 2]) is thus allotted at t = 1 (resp.
t = 2) on processor πk. Task Wi[1, 0] is processed at t = 2 on processor πk+1 or
πk−1. Without loss of generality, we consider the case πk+1, as the other case
is similar.

Assume that task Wi[2, 0] is scheduled on processor πk+1. Since this task
allows two successors (Wi[1, 0] and Wi[3, 0]), then this task is executed at t = 0.

6The numbers of the instance are naturally represented in unary.

12 V. BOUDET ET AL.

Remark 3.7. Task Wi[3, 0] cannot be processed on processor πk+1. If that
were the case, then it would be executed at t = 1 and this task has another
predecessor (task Wi[4, 0]). This is not possible due to the communication delay.

On processor πk+1, tasks Wi[2, 0] and Wi[1, 0] are actually scheduled at t = 0
and t = 2. So only one task of graph Zs(aj) may be executed on processor πk+1.
This is impossible since there is no isolated task in graph Zs(aj). Thus, task
Wi[2, 0] is allotted on processor πk+2 at t = 0.
By recurrence, it is easy to see that all tasks Wi[2l, 0] (resp. Wi[2l + 1, 0]) are

executed at t = 0 on processors πk+2l (resp. at t = 2 on processor πk+2l+1).
Therefore, task Wi[2B + 1, 1] (resp. Wi[2B + 1, 2]) is scheduled at t = 1 (resp.

t = 2) on processor πk+2B+1.
Note that two different graphs Wi and Wi′ cannot be interlaced. Indeed, let

π (resp. π′) be the processor on which task Wi[0, 1] (resp. Wi[2B + 1, 2]) is
executed. Between π and π′, we know there is no processor with three idle
times. Since widget Wi′ admits two paths of length three, then no path of
length three may be scheduled between processor π and π′, and so two widgets
cannot be interlaced.
In conclusion, all tasks from widget Wi in any valid schedule of length three

are scheduled between processors πk and πk+(2B+1).
This concludes the proof of Lemma 3.6. �

Supposing that Wi[0, 0] is allotted on processor πk and Wi[0, 2B +1] is sched-
uled on πk+j (with j = 2B+1 or j = −(2B+1). Since there is no idle time, if a
task from graph Zs(aj) is executed between these two processors, then all other
tasks from graph Zs(aj) must also be executed between these two processors.
Next, we will construct a partition {A1, . . . ,AM} with the desired properties

from schedule S of length three.
Since there are 2M(B + 1) processors, it follows from Lemma 3.6 and the

remark above that for any widget Wi there are exactly three graphs Zj1 , Zj2

and Zj3 executed between the two three-task paths of Wi. The three elements
in correspondence with Zj1 , Zj2 and Zj3 make Ai.

This concludes the proof of Theorem 3.2. �

It is easy to extend the result given by Theorem 3.2 to the ring topology, in
which processor πm−1 is connected to processors πm−2 and π0.

Proposition 3.8. The problem of deciding whether an instance of
(P, ring)|prec;cij = d(π�, πk); pi = 1|Cmax has a schedule of length at most
three is NP-complete.

3.2. Makespan minimization for bipartite graphs of depth one

The construction suggested previously can be easily adapted to obtain a bipar-
tite graph of depth one. For that purpose, we consider the graph shown in Figure 5.
The polynomial-time construction is proposed below.

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 13

W b[1, 0] W b[3, 0]

W b[2, 0] W b[4, 0]

W b[0, 2]

W b[0, 1]

W b[0, 0]

W b[2b + 1, 2]

W b[2b + 1, 1]

W b[2b + 1, 0]
W b[2b, 0]

W b[2b − 1, 0]

. . .

Figure 5. Graph W ′b for problem (P, chain)|bipartite of depth
one; cij = d(π�, πk); pi = 1|Cmax.

Figure 5 illustrates a new graph W ′B that will be used to prove Lemma 3.9 and
Corollary 3.11. Graph W ′B is the same as graph WB, except that:

• There is no arc between W ′B [0, 1] and W ′B[0, 2], and between W ′B[2b + 1, 1]
and W ′B [2b + 1, 2];

• There is an arc from W ′B[0, 0] to W ′B[0, 2], and between W ′B[2b + 1, 0] and
W ′B[2b + 1, 2].

As the proof of Theorem 3.2, the precedence graph contains M copies of graph
W ′B denoted W ′B

1 , W ′B
2 , . . . , W ′B

M . We add some precedence constraints: for every
integer i between 1 and M −1, there are one arc from W ′B

i+1[0, 0] to W ′B
i [2B +1, 2]

and one from W ′B
i [2B + 1, 0] to W ′B

i+1[0, 2]. The graph obtained by this procedure
is denoted W ′.

Lemma 3.9. For every integer � between 1 and M − 1, for every integer j ∈
{0, 2B + 1}, the three tasks W ′B

i+1[j, k] with k ∈ {0, 1, 2} must be executed on the
same processor.

Proof. First, we consider the tasks executed on processor π0. From Remark 3.5,
in any valid schedule of length three, there are three tasks executed on it.

Note that there is no valid schedule (with no idle time) of length three where
all three tasks executed on processor π0 belong to a graph of type Zα (see Fig. 6).

So there exists at most one task of graph W ′ executed on processor π0. Only
tasks in W ′B

1 and W ′B
M can be executed on it (due to the definition of W ′). Without

loosing generality, we assume that task W ′B
1 can be executed on π0 (otherwise,

the index of processors can be reversed).

• Assume that task W ′B
1 [1, 0] is allotted on processor π0 at t = 2. By communi-

cation delay, task W ′B
1 [2, 0] is scheduled at t = 0 on a processor π.

– If π = π1 then task W ′B
1 [0, 0] have to be executed on π0 at t = 0. Therefore

one of the both successor tasks (W ′B
1 [0, 1] and W ′B

1 [0, 2]) of W ′B
1 [0, 0] must

be executed on π1 at t = 2. It is impossible because there is a idle time at
t = 1 on π1;

14 V. BOUDET ET AL.

t0 1 2 3

Zα[0, 0] Zα[0, 1] Zα[1, 1]

Zα[1, 0]

Zα[2, 0] Zα[2, 1]

Zα[3, 0] Zα[3, 1]

t0 1 2 3

π0

π1

π2

π3

t0 1 2 3

Zα[0, 0] Zα[0, 1] Zα[1, 1]

Zα[1, 0]

Zα[2, 0]

Zα[2, 1]

Zα[3, 0] Zα[3, 1]

t0 1 2 3

π0

π1

π2

π3

t0 1 2 3

Zα[2α − 2, 0]Zα[2α − 1, 0]Zα[2α − 1, 1]

Zα[2α − 2, 1]Zα[2α − 3, 0]

Zα[2α − 4, 0]Zα[2α − 4, 1]Zα[2α − 3, 1]

π0

π1

π2

π3

Figure 6. How to schedule graph Zα in order to have a schedule
of length three.

– if π = π0, then it is impossible since on π0 there is a idle time at t = 1 (the
precedence graph admits none isolated tasks);

– if π = πj where j ≥ 2, then it is impossible due to the communication delay.
So, in any case, it is impossible that task W ′B

1 [1, 0] is allotted on processor π0

at t = 2.
• Assume now that task W ′B

1 [1, 0] is allotted on processor πj with j ≥ 2 at
t = 2. So task W ′B

1 [0, 0] (resp. W ′B
1 [2, 0]) is scheduled at t = 0 on πj−1 (resp.

on πj+1). Thus on πj−2 (resp. πj−1) there are three (resp. none) idle slots or on
πj−2 (resp. πj−1) there two (resp. one) idle slots. This case is also impossible.

Therefore, task W ′B
1 [1, 0] is allotted at t = 2 on processor π1. It is impossible

that W ′B
1 [0, 0] or W ′B

1 [2, 0] can be executed in processor π1 (otherwise there is an
idle time on processor, if the communication constraint is respected).

Suppose that W ′[2, 0] is processed on π0 at t = 0:

• suppose that W ′[3, 0] is processed on π0 at t = 2. Impossible, there is a idle
time at t = 1 on π0;

• now, W ′[3, 0] is scheduled on π0 at t = 2. Impossible by the remark given at
the beginning of the proof.

Thus, W ′[2, 0] is processed on π1 at t = 0. So tasks W ′B
1 [0, 0] and W ′B

1 [2, 0] are
processed at t = 0 on π0 and π2. The other successor tasks of W ′B

1 [0, 0] (W ′B
1 [0, 1]

and W ′B
1 [0, 2]) are scheduled on π0 from t = 1 to t = 3.

Figure 7 gives an illustration of Lemma 3.9 first part proof.
Using the same arguments as previously, it is clear that tasks W ′B

1 [2B + 1, 0],
W ′B

1 [2B + 1, 1] and W ′B
1 [2B + 1, 2] are allotted to the same processor π2B+1.

Moreover, we can deduce that task W ′B
2 [0, 0] (resp. W ′B

2 [2, 0]) is executed on
π2B+2 at time 0 (resp. at time 2) because there is an arc from W ′B

2 [0, 0] (resp.
W ′B

1 [2B + 1, 0]) to W ′B
1 [2B + 1, 2] (resp. W ′B

2 [2, 0]). So W ′B
2 [1, 0] is executed on

π2B+2 at time 1 (since there is no idle time in any valid schedule) and W ′B
2 [0, 1] is

executed on π2B+3 at time 2. Using the same arguments as previously, it is clear
that tasks W ′B

2 [2B + 1, 0], W ′B
2 [2B + 1, 1] and W ′B

2 [2B + 1, 2] are allotted to the
same processor. We can apply the same reasoning by replacing by W ′B

2 by W ′B
�

(by adapting also the index of the processor).

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 15

π0 π1 π2 π3 π4

. . .

W B
1 [0, 0]

W B
1 [1, 0]

W B
1 [0, 1]

W B
1 [0, 2]

W B
1 [2, 0]

W B
1 [3, 0]

W B
1 [4, 0]

0

1

2

3

Figure 7. Illustration of the Lemma 3.9 first part proof.

Therefore, for every integer � between 1 and M − 1, for every integer j ∈
{0, 2B + 1}, the three tasks W ′B

i+1[j, k] with k ∈ {0, 1, 2} must be executed on the
same processor. �

Remark 3.10. With the previous lemma, an allocation of the W ′-tasks on the
processors are identical as W -tasks related to Theorem 3.2 and the same assertions
remain valid. Therefore, we get an identical schedule for W ′ as W .

Moreover, from the proof of Theorem 3.2, we can derive the following corollary:

Corollary 3.11. The problem of deciding whether an instance of α|bipartite
of depth one; cij = d(π�, πk); pi = 1|Cmax has a schedule of length at most three

is NP-complete with α ∈ {(P, chain), (P, ring)}.

The proof of Theorem 3.2 therefore implies that the problem where the tasks
can be duplicated is also NP-complete.

Corollary 3.12. The problem of deciding whether an instance of α|bipartite
of depth one; cij = d(π�, πk); pi = 1, dup|Cmax has a schedule of length at most

three is NP-complete with α ∈ {(P, chain), (P, ring)}.

Proof. The proof comes directly from Theorems 3.2 and 3.11. In fact, Lemma 3.5
implies that no task can be duplicated (the number of tasks is equal to the threefold
the number of processors). �

Moreover, a non-approximability result can be deduced.

16 V. BOUDET ET AL.

Corollary 3.13. No polynomial-time algorithm exists with a performance guaran-
tee bound of less than 4

3 unless P = NP for the problems α|bipartite of depth one;
cij = d(π�, πk); pi = 1|Cmax and α|β; cij = d(π�, πk); pi = 1, dup|Cmax with
α ∈ {(P, chain), (P, ring)}.

Proof. The proof of Corollary 3.13 is an immediate consequence of the impossibility
theorem, see page 4 of [5]. �

Remark 3.14. Note that in case the topology is a cycle or a path (oriented ver-
sion of ring and chain), the problem of deciding whether an instance α|β; cij =
d(π�, πk); pi = 1|Cmax with α ∈ {(P, cycle), (P, path)} and β ∈ {prec, bipartite}
has a schedule of at most two is polynomial. It is sufficient to use the same ar-
gument as proof of Lemma 3.1. It seems that it is at least as difficult, in the
complexity theory sense, to schedule a precedence graph on a cycle/chain as on
a ring/chain. Nevertheless, the polynomial-time transformation proposed in the
proof of Theorem 3.2 cannot be easily extended to the case where the processor
graph topology is an oriented graph (cycle or chain).

4. Polynomial-time approximation algorithms

We design two polynomial-time approximation algorithms with limited or un-
limited resources. The classic polynomial-time approximation algorithm for the
scheduling problem P̄ |prec; cij = 1; pi = 1|Cmax proposed by Munier and König
(see [19]) is used. In [19], Munier and Köning develop a polynomial-time (4/3)-
approximation algorithm for the scheduling problem with a precedence graph with
unitary tasks and unitary communication time.

The principle of our polynomial-time approximation algorithms is the following.
We determine a feasible schedule for problem P̄ |prec; cij = 1; pi = 1|Cmax using the
polynomial-time (4/3)-approximation algorithm (see [19]). Note that our problem
is different from the problem P̄ |prec; cij = 1; pi = 1|Cmax because in our prob-
lem, the communication delay depends on the distance between the processors
performing tasks. From this solution, we derive a solution for the problem taking
into account the communication delays. This solution is a

√
n-approximation solu-

tion for problem (P̄ , chain)|prec; cij = d(π�, πk); pi = 1|Cmax. For the case where
the number of processors is limited, we adapt this solution with this additional
constraint.

For the remaining section, we give some notations:

• For P̄ |prec; cij = 1; pi = 1|Cmax problem, σ∞ (resp. C∞
max) designates

the schedule obtained by the polynomial-time (4/3)-approximation algorithm
(resp. its length). The length of the optimal schedule is denoted C∞,opt

max .
• For (P̄ , chain)|prec; cij = d(πl, πk); pi = 1|Cmax problem, σchain,∞ (resp.

Cchain,∞
max) designates the schedule obtained by our approximation algorithm

(resp. its length) when the number of processors is unlimited. The length of
the optimal schedule is denoted Cchain,∞,opt

max). When there are m processors,

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 17

Cchain,m
max (resp. Cchain,m,opt

max) represents the length of the schedule computed by
our approximation algorithm (resp. the optimal length).

Definition 4.1. We consider two tasks x and y in σ∞. We say that x and y
are matched in σ∞, if x and y are executed on the same processor such that the
starting time of x is just after the completion of y and there is an arc from x to y
in the precedence graph or conversely.

Theorem 4.2. There is a
√

n-approximation for the problem (P̄ , chain)|prec;
cij = d(π�, πk); pi = 1|Cmax and it exists a instance which for the ratio is strictly
less than 2

√
n

3 .

Proof. Let I be the instance of the problem (P̄ , chain)|prec; cij = d(π�, πk); pi =
1|Cmax. We split our proof into two parts. The first part considers the instances
where the length of the optimal scheduling is less than three. And the second case
deals with all other instances.

First, we consider the instances where the the length of the optimal scheduling
is less than 3 i.e: Cchain,∞,opt

max < 3. There are two simple cases :

• if Cchain,∞,opt
max = 1 then it is easy to find an optimal schedule;

• if Cchain,∞,opt
max = 2 then C∞,opt

max = 2. Therefore, since the algorithm proposed
in [19] is a 4

3 -approximation algorithm, this algorithm finds an optimal solu-
tion. Indeed, the gap between a feasible solution given by the Munier-König
algorithm and an optimal solution is at most 4/3 and (4/3 ∗ 2 < 3).

Second, we consider the instances where Cchain,∞,opt
max ≥ 3. Now, for the problem

(P̄ , chain)|prec; cij = d(π�, πk); pi = 1|Cmax, we construct a schedule σchain,∞

from the schedule σ∞. A polynomial-time (4/3)-approximation algorithm (see [19])
returns a feasible schedule σ∞ for problem P̄ |prec; cij = 1; pi = 1|Cmax. . Note
that C∞

max ≤ 4/3C∞,opt
max) by definition of the (4/3)-approximation algorithm.

For the remaining of the proof, we introduce some notations. We denote by m′

the maximal numbers of processors used (at the same time) by σ∞ and by Xi the
set of tasks executed at step ti by σ∞.

Recall that n is the number of tasks in the schedule.
From σ∞, we describe the construction of schedule σchain,∞ according to the

values of m′ and n. To explain this construction,

(1) If m′ ≤ √
n then we keep schedule σ∞ and we add m′ − 2 idle times between

the Xi-tasks and Xi+1-tasks with i even (see Fig. 8 for an illustration). The
obtained schedule respects all constraints of problem (P̄ , chain)|prec; cij =
d(π�, πk); pi = 1|Cmax since there is, in σ∞, at most a matching between Xi

and Xi+1-tasks.
Moreover, the distance between the starting time of Xi-tasks and Xi+2-tasks

is at least m′ − 1 as the distance between any pair of processors by definition
of parameter m′.

18 V. BOUDET ET AL.

A
t

m
ost √

n

X1
X3 X5X4X2 X6

m − 2m − 2

m − 1

m − 1

. . .

Figure 8. Feasible schedule for σchain,∞ for the case where m′ ≤ √
n.

Therefore the length of σchain,∞ is at most the length of σ∞ plus the length of
σ∞ multiplied by the factor (m′−2)

2 .

Cchain,∞
max ≤ C∞

max +
(m′ − 2)

2
C∞

max

≤ m′

2
C∞

max

≤ 2m′

3
C∞,opt

max (since C∞
max ≤ 4/3C∞,opt

max)

≤ 2m′

3
Cchain,∞,opt

max

≤ √
nCchain,∞,opt

max .

(2) Otherwise (m′ >
√

n), we apply the same way to transform set Xi for all
i = 1, . . . , C∞

max (See Fig. 9 for an illustration). The Xi tasks are split into
max

(⌈
|Xi|√

n

⌉
, 1

)
pairwise disjoint subsets. The unit time i of schedule σ∞ cor-

respond to max
(⌈

|Xi|√
n

⌉
, 1

)
σchain,∞ unit times of schedule σchain,∞. In other

words, all of these tasks in Xi are executed within max
(⌈

|Xi|√
n

⌉
, 1

)
time units

in σchain,∞. As expressed previously, we add
√

n − 2 idle times between Xi-
tasks and Xi+1-tasks for i even. Moreover, let us have two sets of tasks Xi1 and
Xi1+1 with i1 ≥ 1 odd. Let p be the size of the matching between Xi1 -tasks
and Xi1+1-tasks. So we have |Xi1 | ≥ p and |Xi1+1| ≥ p. We first execute the
matched tasks on the same processors, and other tasks as soon as possible.

Cchain,∞
max ≤

n∑
i=1

⌊
|Xi|√

n

⌋
+ C∞

max +
(
√

n − 2)
2

C∞
max

≤ √
n + C∞

max +
(
√

n − 2)
2

C∞
max

≤ √
n +

2
√

n

3
C∞,opt

max .

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 19

X1X1X1 X3

X3 X4

X2

X2 . . .

√
n

√
n − 2

Figure 9. Feasible schedule for σchain,∞ for the case where m′ >
√

n.

Since 3 ≤ Cchain,∞,opt
max (by assumption), we have,

Cchain,∞
max ≤

√
n

3
Cchain,∞,opt

max +
2
√

n

3
Cchain,∞,opt

max

≤ √
nCchain,∞,opt

max .

Therefore, the theorem follows.

Quasi-Tightness of the bound:
Now, we will construct the instance for which the ratio is strictly less than 2

√
n

3 .
First, we will focus on the instance where for a given integer x, the precedence

graph G′ = (V ′, E′) is as follows : V ′ = {ui, vi, si, ux+1 : 1 ≤ i ≤ x} and E′ =
{(ui → vi), (ui → si), (vi → ui+1), (si → ui+1) : 1 ≤ i ≤ x}.

For the problem (P̄ , chain)|prec; cij = d(π�, πk); pi = 1|Cmax, an optimal
scheduling solution corresponds to execute all tasks on the same processor and
Cchain,∞,opt

max = 3x + 1.
For the problem P̄ |prec; cij = 1; pi = 1|Cmax, the Munier-König algorithm

returns a feasible solution such that for any i, 1 ≤ i ≤ x+1, ui is executed at time
4(i− 1)+ 1. For any i, 1 ≤ i ≤ x, vi and si are executed at time 4(i− 1) + 3. This
schedules uses 2 processors. Thus, C∞

max = 4x + 1.
Second, we consider an instance where the graph precedence is

√
n

2 copies of
graphs G′ where x is equal to 2

√
n (see Fig. 10). Using the same argument as

previously, the schedule uses
√

n processors. We get Cchain,∞,opt
max = 6

√
n + 1 and

C∞
max = 8

√
n + 1. From these equalities, this implies that the algorithm described

in the first part of the proof returns a schedule such that Cchain,∞
max = 4n+

√
n

2 . �

Remark 4.3. We conjecture that the ratio is strictly less than 2
√

n
3 .

Now we focus on the problem where the number of processors is limited.

Theorem 4.4. There is a (1+ 2m
3)-approximation algorithm with m representing

the number of processors for the problem (P, chain)|prec; cij = d(π�, πk); pi =
1|Cmax and the bound is tight.

20 V. BOUDET ET AL.

u1

u1 u2

s2

s2

v2

v2

u3

u3

v1

v1

s1

s1

ux

ux

ux

ux

vx

vx

ux+1

ux+1

y
=

√
n 2

x = 2
√

n

. . .

. . .

...

Figure 10. Instance for which the ratio is strictly less than 2
√

n
3 .

Proof. We use the same algorithm as that given in proof of Theorem 4.2 case (4)
by replacing

√
n by m. So we obtain

Cchain,m
max ≤

n∑
i=1

⌊
|Xi|
m

⌋
+ C∞

max +
(m − 2)

2
C∞

max

Since
∑n

i=1� |Xi|
m
 ≤ C∞,opt

max , we have:

Cchain,m
max ≤ C∞,opt

max +
4
3
× m

2
C∞,opt

max (from [19])

≤ Cchain,m,opt
max +

4
3
× m

2
Cchain,m,opt

max

≤
(

1 +
2
3
m

)
Cchain,m,opt

max .

Therefore, the theorem follows.

Tightness of the bound: now, we will construct the instance for which the
ratio is 1 + 2m

3 . We consider the graph G having (m
2 + 1) copies of graph G′

with x = 1
3 (2n

m+2 − 1) described in the proof of Theorem 4.2. So using the same
argument using in the proof of Theorem 4.2, we get Cchain,∞,opt

max = 2n
m+2 and

C∞
max = 4

3 (2n
m+2 − 1) + 1. This implies that the algorithm described in the first

part of the proof returns a schedule such that Cchain,m
max = (2m + 3)x + 1. So we

obtain ρ. �

SCHEDULING IN THE PRESENCE OF PROCESSOR NETWORKS 21

5. Conclusion

We proved that the problem of deciding whether an instance of α|bipartite of
depth one; cij = d(π�, πk); pi = 1|Cmax with α ∈ {(P, chain), (P, ring)} has a
schedule of length at most three is NP-complete. The complexity result is an
extension of [18]. This result may be compared to that in [15], which states that
P |prec; cij = 1; pi = 1|Cmax = 4 is NP-complete (they use a reduction from the
NP-complete problem Clique), whereas Picouleau [21] develops a polynomial-time
algorithm for Cmax = 3. Their result implies that there is no ρ-approximation
algorithm with ρ < 4

3 , unless P = NP .
The previous results have been extended to the case where the duplication is

allowed.
Lastly, we complete our complexity results by developing a polynomial-time al-

gorithm for (P̄ , chain)|prec, cij = d(πl, πk) = 1,pi = 1|Cmax (resp. (P, chain)|prec,
cij = d(πl, πk) = 1, pi = 1|Cmax) with a worst-case relative performance of

√
n

(resp. 1 + 2m
3).

An interesting question for further research is to find a polynomial-time approx-
imation algorithm with a constant ratio for the scheduling problem on a limited
number of processors.

Acknowledgements. The authors would like to thank the three anonymous referees and
D. Manley for their helpful corrections and suggestions which improved the readability
of this article. We also want to thank C. Lahlou for pointing out reference [18].

References

[1] J. B�lażewicz, K. Ecker, E. Pesch, G. Schmidt and J. Wȩglarz, Handbook on Scheduling.

Springer (2007).
[2] E. Bampis, A. Giannakos and J.C. König, On the complexity of scheduling with large

communication delays. Eur. J. Oper. Res. 94 (1996) 252–260.
[3] R.E. Bellman, On a routing problem. Quart. Appl. Math. 16 (1958) 87–90.
[4] B. Chen, C.N. Potts and G.J. Woeginger, Handbook of Combinatorial Optimization, in

A review of machine scheduling: Complexity, algorithms and approximability 3. Kluwer
Academic Publishers (1998).

[5] P. Chrétienne and C. Picouleau, Scheduling Theory and its Applications, in Scheduling with
Communication Delays: A Survey. Chapt. 4, John Wiley & Sons (1995).

[6] K.H. Ecker and H. Hodam, Heuristic algorithms for the task scheduling under consideration
of communication delays. Technical Report, T.U. Clausthal (1996).

[7] H. El-Rewini and T.G. Lewis, Scheduling parallel program tasks onto arbitrary target
machines. J. Parallel Distribut. Comput. 9 (1990) 138–153.

[8] L. Finta and Z. Liu, Complexity of task graph scheduling with fixed communication capacity.
Int. J. Found. Comput. Sci. 8 (1997) 43–66.

[9] M.R. Garey and D.S. Johnson, Computers and Intractability, a Guide to the Theory of
NP-Completeness. Freeman (1979).

[10] A. Giannakos, Algorithmique pour le parallélisme : certains problèmes d’ordonnancement
de tâches et algorithmes de couplage. Ph.D. thesis, Université de Paris-XI Orsay (1997).

[11] R. Giroudeau, J.C. König and B. Valéry, Scheduling UET-tasks on a star network: com-
plexity and approximation. Quart. J. Oper. Res. 9 (2011) 29–48.

22 V. BOUDET ET AL.

[12] R.L. Graham, Bounds for certain multiprocessing anomalies. Bell System Tech. J. 45 (1966)
1563–1581.

[13] R.L. Graham, Bounds on the performance of scheduling algorithms, Computer and job-shop
scheduling theory. E.G. Coffman edition, John Wiley Ltd. (1976).

[14] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and ap-
proximation in deterministic sequencing and scheduling theory: a survey. Ann. Discrete

Math. 5 (1979) 287–326.
[15] J.A. Hoogeveen, J.K. Lenstra and B. Veltman, Three, four, five, six, or the complexity of

scheduling with communication delays. Oper. Res. Lett. 16 (1994) 129–137.
[16] J.-J. Hwang, Y.C. Chow, F.D. Anger and C.-Y. Lee, Scheduling precedence graphs in

systems with interprocessor communication times. SIAM J. Comput. 18 (1989) 244–257.
[17] C. Lahlou, Scheduling with unit processing and communication times on a ring network:

Approximation results, in Proceedings of Europar. Springer-Verlag (1996) 539–542.
[18] C. Lahlou, Ordonnancement dans les réseaux de processeurs : complexité et approximation.

Ph.D. thesis, Université Paris VI (1998).
[19] A. Munier and J.C. König, A heuristic for a scheduling problem with communication delays.

Oper. Res. (1997) 145–148.
[20] C. Picouleau, UET − UCT schedules on arbitrary networks. Technical Report, LITP, Blaise

Pascal, Université Paris VI (1994).
[21] C. Picouleau, New complexity results on scheduling with small communication delays. Disc.

Appl. Math. 60 (1995) 331–342.
[22] V.J. Rayward-Smith, UET scheduling with unit interprocessor communication delays. Disc.

Appl. Math. 18 (1987) 55–71.
[23] O. Sinnen, Task Scheduling for Parallel System. Chap. 7, Wiley (2007).

	Introduction
	Organization of the paper

	Problem definition, notations, related works and our contributions
	Problem definition, notations and example
	Related works
	Complexity results
	Approximation results

	Our contributions

	Computational complexity
	Makespan minimization for general precedence graphs
	A polynomial-time algorithm
	NP-completeness proof
	Graphs Zi
	Graph Wb

	Makespan minimization for bipartite graphs of depth one

	Polynomial-time approximation algorithms
	Conclusion
	References

