
RAIRO-Oper. Res. 48 (2014) 1–24 RAIRO Operations Research

DOI: 10.1051/ro/2013045 www.rairo-ro.org

SIMULATED ANNEALING AND TABU SEARCH
FOR DISCRETE-CONTINUOUS PROJECT SCHEDULING

WITH DISCOUNTED CASH FLOWS

Grzegorz Waligóra
1

Abstract. Discrete-continuous project scheduling problems with posi-
tive discounted cash flows and the maximization of the NPV are consid-
ered. We deal with a class of these problems with an arbitrary number
of discrete resources and one continuous, renewable resource. Activities
are nonpreemptable, and the processing rate of an activity is a continu-
ous, increasing function of the amount of the continuous resource allot-
ted to the activity at a time. Three common payment models – Lump
Sum Payment, Payments at Activity Completion times, and payments
in Equal Time Intervals are analyzed. Formulations of mathematical
programming problems for an optimal continuous resource allocation
for each payment model are presented. Applications of two local search
metaheuristics – Tabu Search and Simulated Annealing are proposed.
The algorithms are compared on a basis of computational experiments.
Some conclusions and directions for future research are pointed out.

Keywords. Discrete-continuous project scheduling, discounted cash
flows, net present value, payment models, nonlinear programming,
metaheuristics, simulated annealing, tabu search.

Mathematics Subject Classification. 68M20, 90B35, 90C30,
90C59.

1. Introduction

In the classical well-known Resource-Constrained Project Scheduling Problem
(RCPSP) (see [3, 4, 6, 10, 11, 19, 23] for surveys), as well as in the RCPSP with
discounted cash flows (RCPSPDCF) (see [4,5,9,16]), discrete, renewable resources

Received April 4, 2013. Accepted September 17, 2013.
1 Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965
Poznan, Poland. grzegorz.waligora@cs.put.poznan.pl

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2013

http://dx.doi.org/10.1051/ro/2013045
http://www.rairo-ro.org
http://www.edpsciences.org

2 GRZEGORZ WALIGÓRA

are only considered. However, in practice continuous resources can appear very
often. They can be allotted to activities in arbitrary amounts from a given inter-
val, i.e. in real numbers of units. Discrete-continuous project scheduling problems
occur when activities of a project simultaneously require discrete and continuous
resources for their execution. In this paper a class of these problems is considered,
where the number of discrete resources is arbitrary, and there is one continuous,
renewable resource, whose total amount available at a time is limited. Activities
are nonpreemptable, and the processing rate of an activity is a continuous, in-
creasing function of the amount of the continuous resource allotted to the activity
at a time. A positive cash flow is associated with the execution of each activity,
and the objective is to maximize the Net Present Value (NPV) of all cash flows of
the project. Three common payment models are considered: Lump-Sum Payment
at the completion of the project (LSP), Payments at Activity Completion times
(PAC), and payments at Equal Time Intervals (ETI).

Discrete-continuous project scheduling problems with discounted cash flows
were considered in [27, 30]. In the former paper, an implementation of the Tabu
Search metaheuristic for the problems with the PAC model was presented. A per-
formance analysis of the proposed algorithm was done, on a basis of comparing
its results to the results generated by multi-start iterative improvement and ran-
dom sampling. The results presented in that paper are the only computational
results for discrete-continuous project scheduling problems with discounted cash
flows up to now. In the latter paper, several analytical results were given, includ-
ing analyses of other payment models. It was shown in those two papers that for
concave processing rate functions of activities local search algorithms, including
metaheuristics, can be applied to attack the considered problems. In this paper
we continue this research, and propose a comparison between two metaheuristics:
Tabu Search and Simulated Annealing. The goal of the paper is, firstly, to compare
those earlier results to results obtained by another efficient metaheuristic and, sec-
ondly, to extend the analysis by incorporating two other payment models (LSP
and ETI). As it is known, metaheuristic approaches have been successfully applied
over the years to many project scheduling problems, both in single- (see [17, 18]),
and in the multi-mode version (see [8,33]). We have applied Simulated Annealing
for comparison to Tabu Search since our implementations of SA proved to be very
efficient for discrete project scheduling, both to minimize the makespan [12] and
to maximize the NPV [21].

The paper is organized as follows. Section 2 contains the problem formulation.
Section 3 defines the payment models considered in the paper. In Section 4 the
methodology for solving the problems is described, and the formulations of the
mathematical programming problems finding optimal continuous resource alloca-
tions for the considered payment models are presented. Section 5 is devoted to the
local search approach, whereas Section 6 to the implementations of metaheuristics.
In Section 7 the computational experiment is described, and the analysis of the
obtained results is included. Some conclusions and directions for future research
are given in Section 8.

SIMULATED ANNEALING AND TABU SEARCH 3

2. Problem formulation

The Discrete-Continuous Resource-Constrained Project Scheduling Problem
with Discounted Cash Flows (DCRCPSPDCF) is defined as follows [30]. Given
is a project consisting of n precedence-related, nonpreemptable activities, which
require renewable resources of two types: discrete and continuous ones. We assume
that R discrete resources are available and ril, i = 1, 2, . . . , n; l = 1, 2, . . . , R, is
the (fixed) discrete resource request of activity Ai for resource l. The total num-
ber of units of discrete renewable resource l available in each time period is Rl,
l = 1, 2, . . . , R. The activities are subject to finish-to-start precedence constraints
of the type Ai → Aj with zero minimum time lags. The precedence constraints of
activity Ai with other activities are defined by two sets: set Predi of direct prede-
cessors of activity Ai, and set Succi of direct successors of activity Ai. One contin-
uous, renewable resource is available. The availability of the continuous resource
over time is constant and equal to 1. The resource can be allotted to activities in
(arbitrary) amounts from the interval [0,1]. The amount (unknown in advance) of
the continuous resource allotted to activity Ai at time t is denoted by ui(t), and
n∑

i=1

ui (t) = 1 for any t. The processing rate of activity Ai is defined by the resource

amount ui(t) allotted to the activity at time t, which is described by the following
equation:

ẋi (t) =
dxi(t)

dt
= fi [ui(t)] xi (0) = 0, xi (Ci) = x̃i (2.1)

where:

xi(t) is the state of activity Ai at time t;
fi is a continuous increasing function, fi(0) = 0;
ui(t) is the continuous resource amount allotted to activity Ai at time t;
Ci is the completion time (unknown in advance) of activity Ai;
x̃i is the processing demand (final state) of activity Ai.

There is a cash flow CF i associated with each activity Ai. Thus, each activity of
the project is characterized by its processing demand, processing rate function, dis-
crete resource requests, precedence constraints with other activities, and its cash
flow. It is assumed that all activities and resources are available from the start of
the project. The problem is to find a precedence- and discrete resource-feasible
schedule and, simultaneously, a continuous resource allocation, that maximize
the NPV. The continuous resource allocation is defined by a piecewise contin-
uous, nonnegative vector functionu (t) = [u1 (t) , u2 (t) , . . . , un(t)], whose values
u∗ = [u∗

1, u
∗
2, . . . , u

∗
n] are optimal continuous resource allocations corresponding to

NPV* – the optimal value of the NPV. Following the classification given in [4],
the notation of the general DCRCPSPDCF is m,1|cpm,cont,cj |npv. As we consider
positive cash flows in this paper, the notation of the problem can be specified as
m, 1|cpm, cont, c+

j |npv. All the problem parameters are summarized in Table 1.

4 GRZEGORZ WALIGÓRA

Table 1. Parameters of the DCRCPSPDCF.

Symbol Definition
n number of activities
Ai → Aj precedence constraint between activities Ai and Aj

Predi set of direct predecessors of activity Ai

Succi set of direct successors of activity Ai

R number of discrete renewable resources
Rl number of available units of discrete resource l
ril request for discrete resource l by activity Ai

fi processing rate function of activity Ai

x̃i processing demand of activity Ai

CF i cash flow of activity Ai

Si starting time of activity Ai

Ci completion time of activity Ai

3. Payment models

The payment model defines the method of payment going from the client (the
owner of the project) to the contractor (the executor) for the execution of the
project. The best situation for the client would be a single payment at the end of
the project. The contractor, on the other hand, would like to receive the whole
payment at the beginning of the project. They have to find a compromise between
these two polar approaches. Several payment models have been considered in the
project scheduling literature, like, e.g., Lump-Sum Payment at the completion of
the project (LSP), Payments at Activity Completion times (PAC), payments at
Equal Time Intervals (ETI), or Progress Payments (PP) (see [21,25]). The ETI and
PP models belong to the class of periodic payments, where the payment moments
do not depend on starting or completion times of activities but they are directly
related to time representing the progress of a project. It was shown in [30] that
the DCRCPSPDCF under the ETI and PP models has similar properties. For
that reason, the PP model will not be explicitly considered in this paper, whereas
the ETI model will represent the case of periodic payments. The three models
analyzed in the paper are briefly described in the next three subsections.

In financial analyses of a project, time value of money is taken into account by
discounting the cash flows. In order to calculate the NPV, a discount rate α has
to be chosen, which represents the return following from investing in the project.
Then β = (1 + α)−1 is the discount factor under the assumed discount rate.

3.1. Lump-sum payment

Lump-Sum Payment (LSP) represents the ideal situation for the client since, in
this case, the whole payment is paid by the client to the contractor at the moment
of the successful completion of the project. The total payment is calculated as

SIMULATED ANNEALING AND TABU SEARCH 5

the sum of the cash flows of all activities. As a result, the NPV is given by the
following formula:

NPV =

(
n∑

i=1

CF i

)
βCmax (3.1)

where Cmax is the completion time of the project (i.e. the project makespan).

It is easy to see that if all cash flows are positive,
n∑

i=1

CF i is a constant positive

value. Since β is always smaller than 1 (β < 1), then in this model the maximization
of the NPV is equivalent to the minimization of Cmax.

3.2. Payments at activity completion times

Payments at Activity Completion times (PAC) is a very practical payment
model, where the client pays the contractor for the completion of each activity of
the project. Once an activity is finished, the contractor gets the amount of money
equal to the cash flow associated with this activity. In this case, the NPV is given
by the following formula:

NPV =
n∑

i=1

CF iβ
Ci (3.2)

3.3. Equal time intervals

In the Equal Time Intervals (ETI) model the client makes H payments for the
execution of the project. The first H–1 payments are scheduled at equal time inter-
vals over the course of the project, and the last payment is made at its completion.
In this case the NPV can be given by:

NPV =
H∑

h=1

PhβTh (3.3)

where Ph is the payment at payment point h, h = 1, 2, . . . , H, and Th is the
occurrence time of payment point h. It must be stressed that, since the number
of payments is assumed a priori, the makespan Cmax has to be fixed in order to
calculate the payment period T . Then T can be calculated as the smallest integer
greater or equal to Cmax/H , and Th = h · T, h = 1, 2, . . . , H − 1. Obviously, for
the last payment point H , TH = Cmax. In order to compute the payments Ph

at successive payment points, partial cash flows (linearly proportional to activity
durations) of all the activities executed in the considered interval (i.e. since the
last payment point) are summed up. As a result, in general, each payment Ph can
be different since it depends on the cash flows of the relevant activities.

6 GRZEGORZ WALIGÓRA

4. Methodology

4.1. General methodology

The methodology for solving the DCRCPSPDCF critically depends on the form
of the processing rate functions of activities. It was proved in [30] that for pro-
cessing rate functions of activities fulfilling fi (ui)�ciui, ci = fi (1) , i = 1, 2, . . . , n
(i.e. including all convex functions), in an NPV-optimal schedule activities are
processed sequentially, each of them using the total available amount of the con-
tinuous resource. As a result, the problem reduces to a sequencing problem to find
an optimal order of activities in a sequential schedule. Several analytical results
concerning this class of functions were given in [30]. The case of convex functions
will not be considered in this paper. It was also shown in the latter paper that for
concave functions any regular performance measure is optimized by fully parallel
precedence- and discrete resource-feasible configuration of all activities, and a spe-
cial methodology based on feasible sequences has to be applied in this case. The
methodology, originally developed in [15] for discrete-continuous machine schedul-
ing, is of crucial importance, and will be briefly recalled below. As it is known, the
NPV maximization under positive cash flows is a regular performance measure,
and, consequently, the abovementioned methodology can be used here.

Let us start with the definition of a feasible sequence. Observe that each feasible
schedule can be divided into s � n intervals of lengths Mk, k = 1, 2, . . . , s, defined
by completion times of consecutive activities. Let Zk denote the combination of
activities processed in parallel in the kth interval. Thus, a sequence S of combina-
tions Zk, k = 1, 2, . . . , s, is associated with each feasible schedule. The feasibility
of such a sequence requires that:

• each activity appears in at least one combination;
• nonpreemptability of each activity is guaranteed which means that each activity

appears in exactly one or in successive combinations in S;
• precedence constraints between activities are satisfied;
• the number of units of each discrete resource l, l = 1, 2, . . . , R, assigned to all

activities in combination Zk, k = 1, 2, . . ., s, does not exceed Rl.

Example.

Consider an 8-activity project (n = 8). Assume that there is one discrete re-
source (R = 1) available in 4 units (R1 = 4). The resource requests of activities
are defined by vector r1 = [3,2,1,1,3,1,4,2]. For simplicity, let us associate each
activity with its index, i.e. activity Ai will be called shortly activity i. Assume
next that the precedence constraints are: 1 → 2, 1 → 3, 1 → 4, 2 → 5, 3 → 7,
4 → 6, 5 → 7, 5 → 8, and 6 → 7.

There are many feasible sequences for this exemplary project. One of them is,
e.g.:

S = {1}, {2, 3, 4}, {3, 4}, {3, 5}, {5, 6}, {6, 8}, {7}

SIMULATED ANNEALING AND TABU SEARCH 7

 4
 3 6

1 2 5 8 7
Z1 Z2 Z3 Z4 Z5 Z6 Z7

Figure 1. Schedule corresponding to feasible sequence S.

Z1 Z2 Z3 Z4 Z5 Z6 Z7

Figure 2. Demand division for feasible sequence S.

The above form of a feasible sequence means that activity A1 is processed alone
in the first interval, and this interval ends with the completion of this activity.
The corresponding combination is Z1 = {1}. Then activities A2, A3, and A4 are
processed in parallel, and the completion of activity A2 ends the second interval.
The corresponding combination is Z2 = {2,3,4}. Next, only activities A3 and A4

are processed in the third interval, since the resource request of activity A5 does
not allow it to be executed in this interval (although all its direct predecessors are
finished). Thus, the corresponding third combination is Z3 = {3,4}. All the next
combinations also fulfill the precedence and resource constraints. The last interval
ends with the completion of activity A7, and this is the end of the schedule. The
resulting last combination is Z7 = {7}. A schedule corresponding to the considered
feasible sequence S is shown in Figure 1.

It is important to stress that at this moment the actual durations of activities are
still unknown, since the continuous resource has not yet been allocated. However,
the form of a feasible sequence gives the information which activities are processed
in parallel in consecutive intervals. The continuous resource will be allocated on a
basis on that information.

Next, for a given feasible sequence S, the processing demand x̃i of each ac-
tivity Ai, i = 1, 2, . . . , n, can be divided into parts x̃ik � 0 (unknown in ad-
vance) corresponding to particular time intervals (combinations), i.e. x̃ik is a
part of activity Ai processed in combination Zk. Such a division of processing
demands of activities among successive intervals (combinations) for a given fea-
sible sequence is called a demand division. The number of such divisions is, in
general, infinite. Figure 2 shows the demand division for the feasible sequence
S considered in the above example. Obviously, the sum of all parts of the pro-
cessing demand of an activity must be equal to its total processing demand, i.e.
x̃11 = x̃1, x̃22 = x̃2, x̃32 + x̃33 + x̃34 = x̃3, etc.

Now, a nonlinear mathematical programming problem can be formulated which
finds an optimal division of processing demands of activities x̃i, i = 1, 2, . . . , n,

8 GRZEGORZ WALIGÓRA

among combinations in S, i.e. a division that leads to an NPV-optimal schedule
from among all feasible schedules generated by S. Let M∗

k be the minimal length
of the part of the schedule generated by combination Zk ∈ S, k = 1, 2, . . . , s, as
a function of x̃k = {x̃ik}Ai∈Zk

. Let Ki be the set of all indices of Zk’s such that
Ai ∈ Zk. In the following subsections the nonlinear mathematical programming
problems are presented, originally formulated in [30], each of them finding an NPV-
optimal demand division (and, in consequence, an optimal continuous resource
allocation) for a given feasible sequence and an assumed payment model.

4.2. Lump-sum payment

For the LSP model the NPV is given by formula (3.1). In consequence, the
following mathematical programming problem can be formulated:

Problem PNPV−LSP

maximize

NPV =

(
n∑

i=1

CF i

)
βCmax (4.1)

subject to ∑
k∈Ki

x̃ik = x̃i , i = 1, 2, . . . , n (4.2)

x̃ik � 0 , i = 1, 2, . . . , n; k ∈ Ki (4.3)

Cmax =
s∑

k=1

M∗
k (x̃k) (4.4)

where M∗
k (x̃k) is the unique positive root of the equation:

∑
Ai∈Zk

f−1
i (x̃ik/Mk) = 1 (4.5)

Constraints (4.2) correspond to the condition of fulfilling the processing demands of
all activities, whereas constraints (4.3) ensure that the x̃ik’s are nonnegative. Cmax

is calculated in (4.4) as the sum of the lengths of all the intervals of the schedule.
Equation (4.5) allows to calculate the minimal length of the kth interval following
from an optimal continuous allocation [31]. It can be solved analytically for some
important cases, e.g. linear or power functions. From among them the ones in which
eq. (4.5) is an algebraic equation of an order � 4 are of special importance. This
is, e.g., the case of power processing functions of the form: fi (ui) = ciu

1/ai

i , ai ∈
{1, 2, 3, 4} , i = 1, 2, . . . , n. Using these functions we can model job processing rates
in a variety of practical problems, e.g. those arising in multiprocessor scheduling
with memory allocation (see [2,32]). Obviously, as stressed in Section 3.1, since β
<1 then in this case maximizing the NPV results in minimizing Cmax.

SIMULATED ANNEALING AND TABU SEARCH 9

4.3. Payments at activity completion times

In this case the NPV is given by formula (3.2), and the following mathematical
programming problem is formulated:

Problem PNPV−PAC

maximize

NPV =
n∑

i=1

CF iβ
Ci (4.6)

subject to ∑
k∈Ki

x̃ik = x̃i , i = 1, 2, . . . , n (4.7)

xik � 0 , i = 1, 2, . . . , n; k ∈ Ki (4.8)

Ci =
max{Ki}∑

k=1

M∗
k (x̃k) i = 1, 2, . . . , n (4.9)

where M∗
k (x̃k) is the unique positive root of equation (4.5).

Objective function (4.6) maximizes the NPV for the PAC model. Con-
straints (4.7) and (4.8) have already been discussed in Section 4.2. Completion
time of each activity is calculated according to equation (4.9) as the sum of the
lengths of all intervals from the first one up to the interval in which the considered
activity is finished.

4.4. Equal time intervals

Under the NPV given by formula (3.3), the following mathematical program-
ming problem arises:

Problem PNPV−ETI

maximize

NPV =
H∑

h=1

PhβTh (4.10)

subject to ∑
k∈Ki

x̃ik = x̃i, i = 1, 2, . . . , n (4.11)

xik � 0 , i = 1, 2, . . . , n; k ∈ Ki (4.12)

Cmax =
s∑

k=1

M∗
k (x̃k) (4.13)

T =
⌈

Cmax

H

⌉
(4.14)

10 GRZEGORZ WALIGÓRA

Th = h · T, h = 1, 2, . . . , H − 1; (4.15)

TH = Cmax

where M∗
k (x̃k) is the unique positive root of equation (4.5), H is the assumed

number of payments, T in (4.14) is the length of the interval between payments,
Th in (4.15) is the time point of the hth payment, and Ph is the payment at time
point Th.

Let us now explain how the values of Ph are calculated. After the allocation
of the continuous resource the actual starting time Si and completion time Ci of
each activity Ai can be defined. The values of Th determine the intervals in which
the partial cash flows of activities processed in those intervals are summed up. It
is easy to find in which such interval a particular activity is started, in which it is
processed, and in which it is completed. Then the partial cash flow Pih of activity
Ai at time point Th is calculated as:

a) Pih = Ci−Th−1
Ci−Si

· CF i ⇐⇒ (Si < Th−1 andTh−1 < Ci < Th) ;

b) Pih = Th−Th−1
Ci−Si

· CF
i
⇐⇒ (Si � Th−1 and Ci � Th) ;

c) Pih = CF i ⇐⇒ (Si � Th−1 and Ci � Th) ;
d) Pih = Th−Si

Ci−Si
· CF i ⇐⇒ (Th−1 < Si < Th and Ci > Th) .

where h = 1, 2, . . . , H, and T0 = 0.
In case a) activity Ai starts before interval 〈Th−1; Th〉 and finishes within it. In

case b) activity Ai is processed over the whole interval but may be started earlier
and/or completed later. Case c) concerns a situation where the entire activity is
executed within interval 〈Th−1; Th〉. Finally, in case d) activity Ai starts within
interval 〈Th−1; Th〉 but finishes beyond it. It is easy to see that the special case
when Si = Th−1 andCi = Th can be classified both as case b) and as case c),
however, both the situations lead to the same result Pih = CFi since the entire
activity Ai is processed within the considered interval.

5. Local search

As described in Section 4.1, the solution of Problem PNPV−X (X ∈ {LSP, PAC,
ETI}), allows to find an optimal continuous resource allocation for a given feasible
sequence an assumed payment model. Consequently, the DCRCPSPDCF can be
decomposed into two interrelated subproblems: (i) to construct a precedence- and
resource-feasible sequence of activities with respect to discrete resources only, i.e.
a feasible sequence as defined earlier, and (ii) to allocate the continuous resource
optimally among activities in the feasible sequence. As a result, the problem of
searching for an optimal solution may be seen as a problem of searching for an op-
timal feasible sequence over the whole set of feasible sequences. This brings down
the problem to a combinatorial optimization like problem, since its continuous
part can be solved optimally. However, as a whole, it is not a combinatorial op-
timization problem because its parameters, e.g. processing demands of activities,

SIMULATED ANNEALING AND TABU SEARCH 11

may be irrational numbers, and they cannot be coded by any reasonable encod-
ing scheme as a string of finite length. Moreover, solutions of the problem may
contain irrational numbers as well, since the continuous resource allocations can
be arbitrary numbers from the interval [0,1]. In general, in the continuous part of
the problem there appears a nonlinear objective function of continuous variables,
whose values may be irrational numbers. In consequence, the complexity of the
DCRCPSPDCF, as a whole, cannot be analyzed in terms of the P and NP classes.
What can only be surely stated is that it is at least as hard as the classical RCPSP,
since the existence of an additional continuous resource cannot make the problem
simpler.

It should be stressed that the decomposition of the DCRCPSPDCF into two
subproblems (as discussed above) is of huge importance. Firstly, the decomposition
into the discrete and the continuous part allows to incorporate some knowledge
on the properties of solutions to both the subproblems, and, in that way, identify
cases which are easier to solve. Secondly, notice that an optimal solution can
be found by solving Problem PNPV−X for all feasible sequences, and choosing
the one with the maximum NPV. This full enumeration approach can be applied
for small problem sizes, and guarantees finding an optimal schedule. However, in
general, the number of all feasible sequences grows exponentially with the number
of activities, and therefore, searching for an optimal feasible sequence may be
performed by various search algorithms, e.g. local search metaheuristics. In [27]
the Tabu Search metaheuristic for the PAC model was examined. In this paper
we propose a comparison between Tabu Search and Simulated Annealing for three
different payment models.

In this section we present the basic features of the proposed local search ap-
proach, i.e., representation of a feasible solution, calculation of the objective func-
tion, generation of a starting solution, neighbourhood generation mechanism, and
stop criterion.

5.1. Solution representation

A feasible solution for a local search algorithm corresponds to a feasible se-
quence, and is represented by two n-element lists. The first one is a precedence-
feasible permutation of activities, in which each activity has to occur after all its
predecessors and before all its successors. This structure is called the Sequence of
Activity Starts (SAS), and defines the order in which activities are started. The
second one is also a precedence-feasible permutation of activities, and defines the
order in which activities should be completed in order to fulfill the discrete re-
source constraints. This list is called the Sequence of Activity Completions (SAC).
Let us stress that SAC does not define the actual order in which activities will be
finished. It is used when introducing a new activity to a combination violates the
discrete resource constraints and, in order to maintain feasibility of the sequence,
some activities must be finished before this new one is started. In such a case,

12 GRZEGORZ WALIGÓRA

activities are finished according to the SAC list. This two-list representation was
previously used for the Tabu Search algorithm presented in [27].

A pair of lists (SAS, SAC) is then transformed to a feasible sequence S according
to the rule:

• in the first combination Z1 successive activities without predecessors from SAS
are inserted into this combination as long as the discrete-resource constraints
are satisfied;

• in every next combination Zk, k = 2, . . . , s, one successive activity Ai from
SAS is added, and first – all predecessors of activity Ai are removed from
Zk, and second – if adding activity Ai to Zk has caused a violation of the
discrete-resource constraints, then successive activities are removed from Zk in
the order defined by SAC until the discrete-resource constraints are satisfied
(in an extreme case, all activities previously occurring in Zk may be removed,
and Zk = {i}).

5.2. Objective function

The objective function for a feasible solution is defined as the maximum NPV
for the corresponding feasible sequence and the assumed payment model, obtained
as a solution of the relevant nonlinear mathematical programming problem.

5.3. Starting solution

Initial SAS and SAC lists are generated by setting activities on both the lists
in an ascending order.

5.4. Neighbourhood

Neighbours of the current solution are generated by swapping activities on lists
SAS and SAC. More precisely, an activity swap operator is used (already applied
in [27]), which swaps two activities on the list that may be swapped without
violating the precedence constraints. This operator can be applied to both the
SAS and the SAC list.

5.5. Stop criterion

The stop criterion has been defined as an assumed number of visited solutions,
i.e. an assumed number of the objective function calculations, in order to assure
a comparable computational effort for each search algorithm.

6. Metaheuristics

In this section we describe the implementations of the two applied metaheuris-
tics: Tabu Search and Simulated Annealing.

SIMULATED ANNEALING AND TABU SEARCH 13

6.1. Parameter settings

Let us first discuss briefly a few details concerning the implementations.

As mentioned in the Introduction, in [27] a Tabu Search algorithm was proposed
for the PAC model. During that research some preliminary experiments were car-
ried out concerning the influence of the length of the tabu list on the performance
of the algorithm. After those experiments a decision was made about this impor-
tant parameter, since its setting resulted in the average best performance over
the assumed numbers of activities. Since the aim of this work is to compare that
TS implementation with another efficient metaheuristic, we have kept the setting
undertaken there.

On the other hand, our SA algorithm was very carefully tuned for the experi-
ments concerning discrete project scheduling problems, described in [12, 21], with
similar numbers of activities. Apart from the problem specific decisions, we have
used the same cooling scheme with the same parameter settings in this work,
since both the mentioned implementations appeared to be very efficient for the
considered classes of problems. Below, in Sections 6.2 and 6.3, we address the
implementation issues of both the metaheuristics in more details.

6.2. Tabu search

Tabu Search (TS) is a metastrategy based on neighbourhood search with over-
coming local optimality. Unlike Simulated Annealing, TS works in a deterministic
way, trying to model human memory processes. Memory is implemented by the
implicit recording of previously visited solutions, using simple but effective data
structures. To this end, a tabu list of moves which have been performed in the re-
cent past of search is created, and these moves are forbidden for a certain number
of iterations. This helps to avoid cycling, and also serves to promote a diversi-
fied search over the set of feasible solutions. A comprehensive report of the basic
concepts and developments of TS was given in [7]. Implementations of the Tabu
Search metaheuristic have shown their good efficiency for several project schedul-
ing problems, including discrete-continuous ones, we have dealt with in the past
(see [13, 14, 21, 22, 27, 28]).

Neighbourhood

In the case of TS all possible activity swaps are performed on both the lists
SAS and SAC. As a result, a set of neighbouring solutions is created, each of them
differing from the current solution in two positions on SAS, or in two positions on
SAC.

14 GRZEGORZ WALIGÓRA

A move is represented by the following three attributes:

(position, activity removed, activity inserted)

where position denotes the position of the replaced activity on the merged list
[SAS, SAC], i.e. positions from 1 to n concern SAS, positions from n+1 to 2n
concern SAC. From among two activities involved in the swapping operation, the
smaller value of position is taken, i.e. concerning the activity occurring closer to
front of the list.

Assume that activity A2 in position 3 is swapped with activity A6 in position 8
(position number < n, thus swapping is performed on SAS), then the attributes of
the performed move are (3,2,6) which means that in position 3 activity A2 has been
replaced by activity A6. In consequence, the reverse move should forbid activity
A2 to go back into position 3, and has the form of the couple (3,2).

Tabu list management

The tabu list is managed by the Tabu Navigation Method (TNM) [24]. The tabu
list (TL) is a queue of a given length. Whenever a move is performed, its reverse
is added to the TL in order to avoid going back to a solution already visited, and,
at the same time, the oldest existing move is removed from the front of the TL
(according to the FIFO policy). Each move existing on the TL is tabu. The TL
length has been set at 7, as it has been justified in Section 6.1.

Aspiration critrion

In the case of the TNM, it may happen that a move existing on the TL does
not allow to reach a solution that has not been visited yet. In order to avoid
a situation where a good solution is overlooked, an aspiration criterion has been
applied which allows the algorithm to move to a tabu solution (perform a tabu
move) if this solution is better than the best found so far. If this is the case, the
tabu move performed is removed from the TL (the oldest move stays on the TL),
and the reverse move is added to the end of the TL. Obviously, performing such a
move cannot lead to a solution visited in the past, because in this case the obtained
objective function value would already have been known.

6.3. Simulated annealing

Simulated Annealing (SA) is a well-known local search metaheuristic which
belongs to a class of the threshold algorithms, and can be viewed as a special
case of the First Fit Strategy, where the next solution is accepted with a certain
probability. Its idea was originally used to simulate a physical annealing process,
and was applied to combinatorial optimization for the first time in the 1980’s.
Most adaptations of the SA algorithm use its homogeneous version [26]. As men-
tioned in Section 6.1, the implementation of the Simulated Annealing algorithm
described below is based on the ones previously applied to discrete multi-mode
project scheduling problems presented in [12, 21].

SIMULATED ANNEALING AND TABU SEARCH 15

Neighbour solution

A neighbour of the current solution is generated by randomly choosing one of
the lists SAS and SAC, and performing the activity swap on two randomly selected
activities on the chosen list.

Cooling scheme

The adaptive cooling scheme, known as polynomial-time [1], is used to con-
trol the cooling process of the SA algorithm. The only exception introduced into
this implementation of SA is the stop criterion, set at a fixed number of visited
solutions.

The initial value T0 of the control parameter is calculated during the initializa-
tion phase from the following equation:

T0 =
Δ̄f

(+)

ln
(

m2
m2·χ0−m1(1−χ0)

) (6.1)

where χ0 is the initial acceptance ratio (the assumed proportion between tran-
sitions accepted and all the transitions generated for T0); m1 is the number of
cost-nondecreasing transitions and m2 is the number of cost-decreasing transi-
tions from among m0 (m0 = m1 + m2) trial transitions generated to determine
the initial value T0 of the control parameter. Δ̄f

(+) is the average difference in
cost over the m2 cost-decreasing transitions. We have assumed that χ0 = 0.95 and
m0 = 50.

The next value Tk+1 of the control parameter calculated during the cooling
process depends on the mean and the standard deviation σTk

for the values of the
objective function for the kth Markov chain. The value Tk+1 is calculated using
the following formula:

Tk+1 =
Tk

1 + Tk·ln(1+δ)
3·σTk

, k = 0, 1, . . . (6.2)

where δ is a real number denominating the distance parameter. Usually, smaller
values of this parameter lead to better solutions but also increase the computation
time. We have assumed that δ = 0.5.

The length of the Markov chain in the homogeneous version of SA determines
the number of transitions for a given value of the control parameter. It is assumed
that this value is constant, and depends on the problem size. The length of kth
Markov chain is calculated according to the rule:

Lk = L = n (n/2) , k = 0, 1, . . . (6.3)

where n is the number of activities.

16 GRZEGORZ WALIGÓRA

7. Computational experiment

In this section we present the results of a computational experiment concerning
the implementations of the two metaheuristics for the considered DCRCPSPDCF.
The implementations were coded and compiled in C++ and ran on an SGI Altix
3700 machine with 128 64-bit Intel Itanium2 processors and 768 GFlops overall
computing power, installed in the Poznan Supercomputing and Networking Center.

As mentioned before, for each solution visited in the solution space, the corre-
sponding NPV-optimal schedule was found by solving the suitable mathematical
programming problem. In this step specially adapted solver CFSQP 2.5 – “A C
Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization
Problems, Generating Iterates Satisfying All Inequality Constraints” [20] was ap-
plied. The solver stopped when the absolute difference in consecutive values of the
objective function was less than or equal to 10−3. As mentioned in Section 5.5, in
order to ensure a comparable computational effort devoted to both the algorithms,
the stop criterion was defined as a number of solutions visited. This number was
set at 1000. The experiment was carried out for processing rate functions of activi-
ties of the form fi = u

1/ai

i , where the values of ai from the set {1,2}were generated
randomly with equal probability. Processing demands of activities were generated
as integers from the interval [1,100], whereas their cash flows as integers from the
interval [1,1000], each time with a uniform distribution. Precedence constraints
between activities were also set randomly. The average density of the precedence
graph was 0.5.

The experiment is divided in two parts.

In the first experiment a comparison to optimal solutions is made. To this end,
instances with optimal solutions known, used for the research presented in [27],
were applied again. These are 50 instances for n = 10 activities, one discrete
resource with R1 = 5 available resource units, and the PAC model. Additionally,
a second group of 50 instances with the same parameters but for n = 8 activities
have been generated and solved to optimality by the full enumeration method.
In these two cases the results produced by SA and TS are compared to optimal
solutions. Finding optimal solutions for a larger number of activities would require
an unreasonable computational effort, and is, in fact, unrealistic in practice.

The second experiment was performed for n = 12, 15, and 20 activities. In
this experiment three different payment models described in Section 3.1–3.3 were
examined. Also one discrete resource was considered (R = 1) but various num-
bers of its available units were tested: R1 ∈ {2,5,10}. The values of ri1 (discrete
resource requests of activities) were generated randomly as integers from the in-
terval [0, R1/2]. Also different values of the discount rate α were assumed – α
∈{0.01, 0.02, 0.05}. For each set of problem parameters (i.e. set of values of
n, R1, α), 100 instances were generated, characterized by the values of x̃i, ai,
ri1, CF i, i = 1, 2, . . . , n. For the periodic payment model (ETI) also different val-
ues of the H parameter were tested. The number of payments H was assumed to

SIMULATED ANNEALING AND TABU SEARCH 17

Table 2. Results of the experiment – comparison to optimal solutions.

SA TS
n α # ARD [%] MRD [%] # ARD [%] MRD [%]
8 0.01 44 0.07 0.41 31 0.17 0.83

0.02 43 0.08 0.51 31 0.15 0.79
0.05 41 0.10 0.59 35 0.10 0.71

10 0.01 39 0.09 0.56 30 0.18 0.92
0.02 40 0.10 0.64 32 0.16 0.81
0.05 38 0.10 0.69 37 0.11 0.77

be equal to 2, 3, and 5. In the second experiment optimal solutions are not known,
thus, the relative solution is the best one found.

The results of the experiment are presented in Tables 2–5. For each algorithm
the following numbers are shown:

• # – the number of instances for which the algorithm found a solution equal to
the best solution known;

• ARD – the average relative deviation from the best solution known;
• MRD – the maximal relative deviation from the best solution known.

where in Table 2 the best solution known is an optimal solution, whereas in Ta-
bles 3–5 it is the best solution found by either of the algorithms tested.

The average CPU times (in seconds) for the considered problem sizes and pay-
ment models are given in Table 6. The presented values are times needed by the
relevant algorithm to solve one instance of the corresponding problem (i.e. to visit
1000 feasible solutions). As can be seen, the computational times of the compared
algorithms are very similar, since the overwhelming majority of the computational
effort was devoted to calculating the objective function, i.e. finding a solution of
the appropriate nonlinear programming problem by the CFSQP solver. However,
it can also be noticed that SA is slightly faster.

On the basis of the obtained results, the following observations can be made.
As to the comparison to optimal solutions for 8 and 10 activities, the results

obtained by both the metaheuristics are very promising, although it is visible
that SA performs better. However, 30–40 instances out of 50 solved to optimality,
keeping the average relative deviation from optimum below 0.1% for SA and 0.2%
for TS, may suggest that both the proposed implementations can be quite effective
for the considered problems.

Analyzing all the obtained results, we can draw the following conclusions:

a) SA performs better for smaller number of activities. Along with the growth of
the problem size, TS becomes more and more competitive, and starts to achieve
some advantage for the problems with 20 activities. This is an interesting ob-
servation which suggests that the TS implementation is rather predisposed for
larger DCRCPSPDCF problems.

18 GRZEGORZ WALIGÓRA

Table 3. Results of the experiment for the LSP model.

SA TS
n R1 α # ARD [%] MRD [%] # ARD [%] MRD [%]
12 2 0.01 80 0.04 0.10 23 0.14 0.37

0.02 78 0.04 0.11 24 0.12 0.35
0.05 76 0.06 0.15 28 0.11 0.34

5 0.01 81 0.03 0.11 25 0.15 0.38
0.02 79 0.05 0.11 26 0.11 0.35
0.05 78 0.06 0.14 28 0.10 0.35

10 0.01 81 0.04 0.09 24 0.16 0.35
0.02 80 0.05 0.12 27 0.12 0.32
0.05 76 0.06 0.14 27 0.11 0.29

15 2 0.01 71 0.06 0.18 39 0.11 0.29
0.02 68 0.06 0.19 41 0.09 0.28
0.05 67 0.08 0.21 42 0.08 0.24

5 0.01 70 0.05 0.19 40 0.10 0.28
0.02 70 0.06 0.19 42 0.08 0.27
0.05 65 0.07 0.25 43 0.07 0.25

10 0.01 69 0.04 0.20 38 0.10 0.28
0.02 68 0.05 0.21 40 0.07 0.26
0.05 64 0.07 0.22 41 0.07 0.22

20 2 0.01 58 0.07 0.24 50 0.08 0.25
0.02 57 0.08 0.25 51 0.08 0.25
0.05 52 0.10 0.27 54 0.07 0.24

5 0.01 56 0.07 0.26 51 0.09 0.28
0.02 55 0.09 0.28 53 0.07 0.27
0.05 51 0.11 0.29 53 0.06 0.25

10 0.01 59 0.09 0.24 52 0.10 0.25
0.02 57 0.10 0.25 53 0.08 0.24
0.05 53 0.12 0.26 56 0.07 0.22

b) The results produced by TS get better with the growth of the discount
rate, whereas SA is better for smaller values of α. A similar observation was
made in [21] for the MRCPSPDCF (Multi-Mode Resource-Constrained Project
Scheduling Problem with Discounted Cash Flows). Increasing the discount rate
results in bigger differences in the objective function between different solu-
tions, which is advantageous for Tabu Search since, as known, TS does not
prefer a flat objective function.

c) SA is significantly better for the LSP model. This results can be explained by
the fact that, as mentioned before, under positive cash flows the NPV maxi-
mization is equivalent to the minimization of Cmax. Since our SA implementa-
tion is known to be one of the most effective for the makespan minimization
project scheduling problems, it has also produced very good results for the
LSP model. For the PAC model both the algorithms are rather comparable,
taking into account remarks a) and b) pointed above. The same concerns, in
fact, the ETI model, however, in this case another interesting regularity can be

SIMULATED ANNEALING AND TABU SEARCH 19

Table 4. Results of the experiment for the PAC model.

SA TS
n R1 α # ARD [%] MRD [%] # ARD [%] MRD [%]
12 2 0.01 71 0.05 0.12 33 0.12 0.34

0.02 71 0.05 0.14 34 0.11 0.32
0.05 68 0.06 0.18 37 0.11 0.30

5 0.01 70 0.04 0.13 34 0.13 0.35
0.02 69 0.06 0.13 36 0.10 0.35
0.05 65 0.07 0.17 39 0.09 0.33

10 0.01 69 0.05 0.11 31 0.12 0.31
0.02 69 0.06 0.15 32 0.10 0.30
0.05 61 0.07 0.16 37 0.08 0.27

15 2 0.01 55 0.07 0.21 54 0.09 0.26
0.02 53 0.07 0.22 54 0.07 0.22
0.05 52 0.08 0.25 58 0.06 0.21

5 0.01 54 0.06 0.21 55 0.07 0.24
0.02 54 0.06 0.20 56 0.07 0.24
0.05 49 0.08 0.28 59 0.06 0.22

10 0.01 52 0.05 0.22 54 0.08 0.23
0.02 51 0.06 0.23 55 0.07 0.21
0.05 48 0.08 0.26 57 0.05 0.20

20 2 0.01 38 0.09 0.30 69 0.05 0.17
0.02 35 0.09 0.30 69 0.05 0.16
0.05 31 0.11 0.33 72 0.04 0.13

5 0.01 37 0.08 0.29 68 0.06 0.15
0.02 32 0.09 0.31 69 0.05 0.15
0.05 31 0.12 0.32 70 0.05 0.12

10 0.01 35 0.10 0.28 67 0.06 0.14
0.02 33 0.11 0.29 69 0.06 0.11
0.05 32 0.12 0.32 74 0.04 0.09

noticed. We can see that the growth of the number of payments H improves
the performance of TS, whereas SA is better when the payments are made less
often. This fact confirms the rule that the more the problem approaches its
makespan minimization version (by decreasing the number of payments), the
better results are produced by SA. Theoretically, for H = 1 we would obtain
the LSP model in which SA achieves the most significant advantage.

d) Remarks a) – c) hold generally for all values of R1. We can state that the
number of available discrete resource units does not have any vital impact on
the results when the number of activities is fixed. The explanation seems to be
quite simple. Both the metaheuristics search over the set of feasible sequences,
in which the discrete resource constraints have to be already fulfilled. Thus,
parameter R1 is only taken into account during the phase of transformation
a pair of the list (SAS, SAC) into a feasible sequence which transformation is
identical for both the algorithms and does not make any important difference.

20 GRZEGORZ WALIGÓRA

Table 5. Results of the experiment for the ETI model.

SA TS
n R1 α H # ARD [%] MRD [%] # ARD [%] MRD [%]
12 2 0.01 2 75 0.06 0.13 34 0.13 0.35

3 74 0.07 0.14 36 0.12 0.32
5 71 0.07 0.16 37 0.12 0.31

0.02 2 74 0.06 0.15 35 0.11 0.33
3 74 0.08 0.16 37 0.10 0.33
5 72 0.09 0.18 37 0.10 0.30

0.05 2 70 0.07 0.17 38 0.11 0.31
3 70 0.08 0.17 39 0.11 0.30
5 67 0.08 0.19 40 0.10 0.30

5 0.01 2 70 0.05 0.14 35 0.12 0.34
3 70 0.07 0.16 38 0.11 0.32
5 66 0.08 0.18 39 0.10 0.30

0.02 2 68 0.06 0.13 36 0.10 0.34
3 67 0.07 0.15 38 0.09 0.33
5 66 0.09 0.16 40 0.09 0.29

0.05 2 65 0.07 0.18 38 0.08 0.33
3 64 0.07 0.19 39 0.08 0.31
5 61 0.09 0.19 41 0.08 0.30

10 0.01 2 67 0.05 0.12 34 0.12 0.32
3 65 0.06 0.14 37 0.11 0.29
5 64 0.08 0.15 41 0.10 0.29

0.02 2 67 0.07 0.16 38 0.09 0.30
3 66 0.08 0.17 40 0.09 0.28
5 63 0.09 0.18 41 0.08 0.27

0.05 2 62 0.07 0.17 39 0.09 0.28
3 62 0.07 0.19 41 0.08 0.27
5 60 0.08 0.20 42 0.08 0.26

15 2 0.01 2 56 0.08 0.22 51 0.09 0.25
3 55 0.09 0.23 52 0.09 0.24
5 55 0.10 0.25 54 0.08 0.22

0.02 2 54 0.08 0.21 55 0.08 0.21
3 54 0.08 0.22 55 0.08 0.21
5 52 0.09 0.24 56 0.07 0.20

0.05 2 53 0.09 0.24 56 0.07 0.21
3 51 0.10 0.25 56 0.07 0.20
5 51 0.10 0.25 57 0.07 0.20

5 0.01 2 55 0.07 0.20 51 0.08 0.25
3 54 0.08 0.22 52 0.08 0.24
5 52 0.09 0.24 53 0.07 0.23

0.02 2 55 0.08 0.23 52 0.08 0.23
3 54 0.09 0.24 54 0.07 0.23
5 51 0.10 0.25 54 0.07 0.22

0.05 2 51 0.09 0.28 55 0.07 0.22
3 50 0.10 0.28 55 0.06 0.21
5 50 0.11 0.29 57 0.06 0.20

SIMULATED ANNEALING AND TABU SEARCH 21

Table 5. Continued.

SA TS
n R1 α H # ARD [%] MRD [%] # ARD [%] MRD [%]

10 0.01 2 53 0.06 0.21 52 0.08 0.24
3 52 0.08 0.22 54 0.08 0.22
5 51 0.10 0.24 54 0.07 0.21

0.02 2 50 0.08 0.24 53 0.07 0.22
3 50 0.09 0.24 55 0.06 0.22
5 49 0.09 0.25 56 0.06 0.20

0.05 2 49 0.08 0.27 55 0.06 0.20
3 48 0.09 0.28 55 0.06 0.20
5 48 0.10 0.29 57 0.05 0.19

20 2 0.01 2 37 0.10 0.31 70 0.06 0.18
3 36 0.11 0.33 71 0.06 0.17
5 34 0.11 0.34 73 0.05 0.15

0.02 2 34 0.10 0.32 70 0.05 0.15
3 34 0.10 0.34 71 0.05 0.15
5 32 0.12 0.34 73 0.05 0.14

0.05 2 32 0.12 0.33 72 0.04 0.13
3 30 0.12 0.34 73 0.04 0.13
5 30 0.13 0.35 75 0.04 0.12

5 0.01 2 38 0.09 0.29 69 0.06 0.16
3 37 0.10 0.30 70 0.05 0.15
5 35 0.11 0.32 72 0.05 0.14

0.02 2 33 0.09 0.33 69 0.06 0.16
3 32 0.11 0.34 71 0.05 0.15
5 31 0.11 0.34 72 0.04 0.15

0.05 2 30 0.13 0.35 72 0.05 0.13
3 30 0.13 0.35 72 0.05 0.13
5 29 0.14 0.36 73 0.04 0.12

10 0.01 2 36 0.11 0.30 68 0.06 0.15
3 35 0.12 0.32 69 0.06 0.14
5 33 0.13 0.34 72 0.05 0.13

0.02 2 34 0.11 0.29 68 0.06 0.10
3 33 0.11 0.30 70 0.05 0.10
5 32 0.13 0.32 71 0.05 0.09

0.05 2 31 0.13 0.32 75 0.04 0.09
3 31 0.13 0.34 75 0.04 0.09
5 30 0.14 0.36 76 0.04 0.08

Table 6. CPU times [s].

SA TS
n LSP PAC ETI LSP PAC ETI
8 998.47 1011.82 1013.24 1007.33 1016.51 1019.16
10 1592.44 1609.90 1613.88 1600.05 1612.72 1618.03
12 2989.89 2995.16 3001.93 2993.17 2998.84 3002.06
15 6027.51 6034.05 6036.22 6026.62 6033.06 6035.78
20 16 235.18 16 271.53 16 302.07 16 223.54 16 259.23 16 288.45

22 GRZEGORZ WALIGÓRA

e) Finally, let us stress that the differences between results obtained by both the
metaheuristics are very small because of the optimal continuous resource alloca-
tion done at the stage of calculating the objective function value for a given fea-
sible sequence. The specificity of discrete-continuous problems is such that solv-
ing optimally the continuous part can make many solutions of the discrete part
close in terms of quality, although they are different feasible sequences. Those
differences in results will become more significant when heuristic procedures for
allocating the continuous resources are applied as it was done for problems with
makespan minimization in [13, 28, 29], and is planned for NPV-maximization
in the future research.

8. Conclusions

In this paper discrete–continuous project scheduling problems with positive dis-
counted cash flows and the maximization of the NPV have been considered. Three
common payment models – Lump Sum Payment (LSP), Payments at Activity
Completion times (PAC), and payments in Equal Time Intervals (ETI) have been
analyzed. Formulations of mathematical programming problems for an optimal
continuous resource allocation for each payment model have been presented. Ap-
plications of two local search metaheuristics – Tabu Search and Simulated Anneal-
ing have been proposed. The algorithms have been compared on a basis of some
computational experiments.

The results show that, generally, SA performs better for smaller problems and
smaller values of the discount rate, whereas TS is more efficient for bigger numbers
of activities as well as for larger discount rates. Moreover, for periodic payments
TS gets better when the number of payments grows, whereas SA prefers when
payments are made more rarely, and becomes most effective for one payment at
the end (LSP model).

The future research can be carried out in three directions. Firstly, further im-
provements of the proposed metaheuristics are certainly possible and/or imple-
menting other (also hybrid) metaheuristic approaches. Secondly, generalizing the
considered problem can be done in several ways, e.g. by incorporating negative
cash flows which would make the problem more general on one hand, but also
much more computationally complex on the other. Finally, heuristic procedures
for allocating the continuous resource should be developed, in order to shorten the
computational times, as well as to analyze larger problem instances.

Acknowledgements. This research was partially supported by the Polish National Science
Centre.

References

[1] E.H.L. Aarts and J.H.M. Korst, Simulated annealing and Boltzmann machines: A stochastic
approach to combinatorial Optimization and Neural Computing., Wiley, Chichester (1989).

[2] L.A. Belady and C.J. Kuehner, Dynamic space sharing in computer systems. Commun.
ACM 12 (1968) 282–288.

SIMULATED ANNEALING AND TABU SEARCH 23

[3] P. Brucker, A. Drexl, R. Möhring, K. Neumann and E. Pesch, Resource-constrained project
scheduling: notation, classification, models and methods. Eur. J. Oper. Res. 112 (1999)
3–41.

[4] E.L. Demeulemeester and W.S. Herroelen, Project Scheduling – A Reseach Handbook.
Kluwer, Boston (2002).

[5] L.E. Drezet, (2008) RCPSP with financial costs, in C. Artigues, S. Demassey and E. Néron,

Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applica-
tions, ISTE-Wiley, London (2002) 213–226.

[6] S.E. Elmaghraby, Activity nets: a guided tour through some recent developments. Eur. J.
Oper. Res. 82 (1995) 383–408.

[7] F. Glover and M. Laguna, Tabu Search. Kluwer, Norwell (1997).
[8] S. Hartmann and D. Briskorn, A survey of variants and extensions of the resource-

constrained project scheduling problem. Eur. J. Oper. Res. 207 (2010) 1–14.
[9] W.S. Herroelen, P. Van Dommelen and E.L. Demeulemeester, Project network models with

discounted cash flows: a guided tour through recent developments. Eur. J. Oper. Res. 100
(1997) 97–121.

[10] W.S. Herroelen, B. De Reyck and E.L. Demeulemeester, Resource-constrained project
scheduling: a survey of recent developments. Comput. Oper. Res. 25 (1998) 279–302.

[11] O. Icmeli, S.S. Erengüç and C.J. Zappe, Project scheduling problems: a survey. Inter. J.
Oper. Production Manag. 13 (1993) 80–91.

[12] J. Józefowska, M. Mika, R. Różycki, Waligóra, G. and Wȩglarz, J. Simulated annealing for
multi-mode resource-constrained project scheduling problem. Annal. Oper. Res. 102 (2001)
137–155.

[13] J. Józefowska, M. Mika, R. Różycki, G. Waligóra and J. Wȩglarz, A heuristic approach to
allocating the continuous resource in discrete-continuous scheduling problems to minimize
the makespan. J. Schedul. 5 (2002) 487–499.

[14] J. Józefowska, G. Waligóra and J. Wȩglarz, (2002) Tabu list management methods for a
discrete-continuous scheduling problem, Eur. J. Oper. Res. 137 288–302.

[15] J. Józefowska and J. Wȩglarz, (1998) On a methodology for discrete-continuous scheduling,
Eur. J. Oper. Res. 107 338–353.

[16] A. Kimms, Mathematical Programming and Financial Objectives for Scheduling Projects.
Kluwer, Dordrecht (2012).

[17] R. Kolisch and S. Hartmann, (2000) Experimental evaluation of state-of-the-art heuristics
for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127 (2001)
394–407.

[18] R. Kolisch and S. Hartmann, Experimental investigation of heuristics for resource-
constrained project scheduling: An update. Eur. J. Oper. Res. 174 (2006) 23–37.

[19] R. Kolisch and R. Padman, An integrated survey of deterministic project scheduling.
OMEGA Int. J. Manag. Sci. 29 (2001) 249–272.

[20] C. Lawrence, J.L. Zhou and Tits A.L. Users guide for CFSQP Version 2.5, http://www.

aemdesign.com/download-cfsqp/cfsqp-manual.pdf (1997) (Accessed 2nd April 2013).
[21] M. Mika, G. Waligóra and J. Wȩglarz, Simulated annealing and tabu search for multi-mode

resource-constrained project scheduling with positive discounted cash flows and different
payment models. Eur. J. Oper. Res. 164 (2005) 639–668.

[22] M. Mika, G. Waligóra and J. Wȩglarz, Tabu search for multi-mode resource-constrained
project scheduling with schedule-dependent setup times. Eur. J. Oper. Res. 187 (2008)
1238–1250.

[23] L. Özdamar and G. Ulusoy, A survey on the resource-constrained project scheduling problem.
IIE Trans. 27 (1995) 574–586.

[24] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem. ORSA J. Com-
put. 2 (1990) 33–45.

[25] G. Ulusoy, F. Sivrikaya-Şerifoğlu and Ş. Şahin, Four payment models for the multi-mode
resource constrained project scheduling problem with discounted cash flows. Annal. Oper.
Res. 102 (2001) 237–261.

http://www.aemdesign.com/download-cfsqp/cfsqp-manual.pdf
http://www.aemdesign.com/download-cfsqp/cfsqp-manual.pdf

24 GRZEGORZ WALIGÓRA

[26] P.J.M. Van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory Appl., Reidel, Dor-
drecht (1987).

[27] G. Waligóra, Discrete-continuous project scheduling with discounted cash flows – a tabu
search approach. Comput. Oper. Res. 35 (2008) 2141–2153.

[28] G. Waligóra, Tabu search for discrete-continuous scheduling problems with heuristic contin-
uous resource allocation. Eur. J. Oper. Res. 193 (2009) 849–856.

[29] G. Waligóra, Heuristic approaches to discrete-continuous project scheduling problems to
minimize the makespan, Comput. Optim. Appl. 48 (2011) 399–421.

[30] G. Waligóra, (2011) Discrete-continuous project scheduling with discounted cash inflows and
various payment models – a review of recent results. Annal. Oper. Res.
DOI: 10.1007/s10479-011-1014-0.

[31] J. Wȩglarz Time-optimal control of resource allocation in a complex of operations framework.
IEEE Trans. Systems, Man and Cybernetics 6 (1976) 783–788.

[32] J. Wȩglarz, Multiprocessor scheduling with memory allocation – a deterministic approach.
IEEE Trans. Comput. 29 (1980) 703–709.

[33] J. Wȩglarz, J. Józefowska, M. Mika and Waligóra and G. Project scheduling with finite
or infinite number of activity processing modes – a survey, Eur. J. Oper. Res. 208 (2011)
177–205.

	Introduction
	Problem formulation
	Payment models
	Lump-sum payment
	Payments at activity completion times
	Equal time intervals

	Methodology
	General methodology
	Lump-sum payment
	Payments at activity completion times
	Equal time intervals

	Local search
	Solution representation
	Objective function
	Starting solution
	Neighbourhood
	Stop criterion

	Metaheuristics
	Parameter settings
	Tabu search
	Neighbourhood
	Tabu list management
	Aspiration critrion

	Simulated annealing
	Neighbour solution
	Cooling scheme

	Computational experiment
	Conclusions
	References

