RAIRO-Oper. Res. 47 (2013) 399-428 RATRO Operations Research
DOI: 10.1051/r0/2013049 WWW.Tairo-ro.org

A MULTI-DESTINATION DAILY CARPOOLING
PROBLEM AND AN ANT COLONY BASED
RESOLUTION METHOD

YUHAN GUo?, GILLES GONCALVES'? AND TIENTE Hsu!?

Abstract. The rising car usage deriving from growth in jobs and resi-
dential population causes air pollution, energy waste and consumption
of people’s time. Public transport cannot be the only answer to this
increasing transport demand. Carpooling, which is based on the idea
that sets of car owners pick up colleagues while driving to or from the
workplace, has emerged to be a viable possibility for reducing private
car usage in congested areas. Its actual practice requires a suitable in-
formation system support and, the most important, the capability of
effectively solving the underlying combinatorial optimization problem.
This paper describes an ant colony algorithm based hybrid approach
(HAC) for solving the multi-destination carpooling problem. Experi-
ments have been performed to confirm the efficiency and the effective-
ness of the approach.

Keywords. Transportation, vehicle routing, carpooling problem, ant
colony algorithm.
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1. INTRODUCTION

Nowadays, along with the increase of population and the dispersion of habita-
tion, public transport service is often incapable of effectively servicing the areas
where cost-effective transportation systems cannot be set up. As a result, more
and more people use private vehicles for their daily transportation. However, the
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high use of private vehicles combined with increased human mobility increases
the load on the environment and raises transportation issues such as congestion,
parking problem and low transfer velocity.

In order to ease these issues, different innovative mobility services are emerging.
Carpooling is a mobility service proposed and organized by large organizations,
such as large companies, public administrations and universities. These organiza-
tions encourage their employees or students to pick up or take back colleagues or
schoolmates while driving to or from a common site. The service tries to decrease
the number of private vehicles travel on the road by improving the average car
occupancy. In fact, the carpooling has existed for more than 60 years. It first be-
came prominent in the United States as a rationing tactic during World War II.
It was popular in the 1970s due to the 1973 oil crisis and the 1979 energy crisis.
At that time the first employee carpool programs were organized at Chrysler and
3M. However, since the 1970s carpooling has declined significantly all around the
world, it peaked in the 1980 with a commute mode share of 19.7%. But since the
1990s, affected by the increasing cost of petrol and rising number of private vehi-
cles, carpooling came back into the public eye. In the beginning of 20th century,
the popularity of the Internet and mobile phones has greatly helped carpooling to
expand by enabling people to find and contact carpool members more easily. With
such background, the carpooling service now is experiencing the most prosperous
time.

The reason why people join the carpooling system is that carpooling reduces
travel costs by sharing journey expenses such as fuel, tolls and car rental between
the travelers. It is also a more environmentally friendly and sustainable way to
travel, as sharing journey reduces carbon emission, traffic congestion and require-
ment for parking space. Carpooling can also decrease driving stress since each
driver has only to drive in one or two days during one week. It also creates in-
creased social interaction between friends, neighbors and colleagues. As a matter
of fact, it can enhance the sense of connectedness within the community as a small
social network.

After several years of fast development, carpooling has already been considered
as an important alternative transportation service throughout the world. As an
effort to reduce traffic and encourage carpooling, some countries have introduced
high occupancy vehicle (HOV) lanes where only vehicles with two or more passen-
gers are allowed to drive. In some countries it is also common to find parking spaces
that are reserved especially for carpoolers. Many companies and local authorities
have introduced carpooling schemes, often as part of wider transport programs.

Successful carpooling development has tended to be associated mainly with non-
urban areas such as suburbs and more recently universities and other campuses.
Currently, most of the carpooling programs are operated on daily basis, where a
number of users declare their availability for picking up or bringing back other
users to a common destination on one particular day [2,13]. Hence, these users are
considered as servers, and the other users being picked up or bringing back are
considered as clients. Then the problem becomes to assign clients to servers and to
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identify the routes to be driven by the servers. According to this definition, users
in a problem are required to go to the same destination. Thus, in the real-world
application, the organizer usually separates the users going to different destinations
into different carpool instances. Thus, in order to schedule the users with the
current daily carpooling system, it is necessary to divide users according to their
destinations, and each set of users going to the same destination are considered as
an individual instance.

Observed from the real-world application of the daily carpooling, we found that
lots of servers travel through their neighbors’ destinations before reaching their
own ones with available car capacity. However, these servers are not allowed to
pick up their neighbors because the neighbors go to different destinations. Dividing
users into different carpooling instances based on the destinations results that some
instances have redundant servers, while the other instances may lack of servers.

This situation greatly decreases the effectiveness of serving the clients and po-
tentially increased the travel cost of all the users in the daily carpooling, since
if a server can pick up and deliver the clients who go to the destinations other
than the server’s own, the total travel cost can be greatly saved. Thus, a daily
carpool model which includes multiple destinations in one instance is required in
the real-world application.

In order to respond to this need, a multi-destination daily carpooling model
is defined in this paper. In this model, the server can pick up and deliver clients
who go to different destinations as long as the server can accept the length of the
detour he/she has to make. A concept called “transfer point” is also defined in
this model, which means two carpool servers can meet at an intersection point,
where the clients can change vehicles in order to decrease the length of the detour
the servers have to make.

As abovementioned, in the Multi-destination Daily Carpooling Problem
(MDCPP), a number of users declare their availability for picking up or bring-
ing back other users on one particular day. These users are considered as servers,
then the other users are assigned to servers as clients and the routes to be driven
by the servers are identified. In each carpool group, the server and the clients can
have different destinations, and each client can be served by two servers during
the transition to the destination. Figure 1 shows the three situations of picking up
and delivery considered in our model: (a) a server picks up clients, and then they
go to a common destination; (b) a server picks up clients and then leads them to
their destinations before going to the server’s own destination; (c) a server picks
up clients and delivers them to a transfer point, and then another server picks
them up from this point and delivers them to their destination.

Based on the mathematical model defined for MDCPP, an efficient and effective
metaheuristic is developed to solve this problem in the real-world application. Our
Hybrid Ant Colony Algorithm (HAC) is based on the Ant Colony paradigm [4],
but we introduce new definitions to the concepts of pheromone and attractiveness.
Moreover, a Transfer Point Searching heuristic (TPS) and a local search proce-
dure are integrated into the algorithm in order to identify the transfer points and
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FIGURE 1. Situations of pickup and delivery in Multi-destination
Daily Carpooling.

to further optimize the best solutions obtained during iterations. Computational
results are reported to illustrate the effectiveness of our approach in solving MD-
CPP.

This paper proceeds as follows. Section 2 describes the MDCPP and its mathe-
matical model. Section 3 presents the HAC algorithm for MDCPP. Then, Section 4
illustrates the computational results obtained by our method. The last section gives
conclusions and perspectives.

2. PROBLEM DEFINITIONS AND FORMULATION

The mathematical formulation of the MDCPP will be presented in this section.
The objective function and constraints to describe the MDCPP will be introduced
in detail manner.

2.1. MATHEMATICAL MODEL

The MDCPP can be modeled by means of a directed graph G = (UUDUO, A)
with n 4 o vertices, where set U = {1,...,m} is the set of vertices corresponding
to the users’ home, set D = {m+1,...,n} is the set of vertices associated with the
destinations, and A = {arc(i, j)/i,j € U U D} is the set of direct links connecting
nods ¢ and j where each arc(i,j) € A is associated with a positive travel cost
cost;; (equals to the distance d;; in our model) and a travel time ¢;;. The set U is
furthermore partitioned as U = Uy U Uy, where Us = {1,...,m} is the subset of
vertices associated with servers and U, = {m,+1,...,m} is the subset of vertices
associated with the clients. Let set O = {o(i, j,m,n)/i,j,m,n € UUD} be the set
of intersection points where o(%, j, m, n) is the intersection point of arc(, j) and
arc(m,n). These intersection points are considered as potential transfer points.
Each server s € Us enlisted in the multidestination daily carpooling specifies the
car capacity s and a maximal driving time T that the server is willing to accept
when picking up clients. Each user ¢ € U has to specify a destination d; € D, the
earlist time e; for leaving home and the latest time r; for arriving at destination.

The MDCPP is a multi-objective problem, requiring minimizing the total travel
cost of all servers and the amount of unserved clients. Note that the clients can
be left on the transfer point and wait for the next server. So, the waiting time has
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become a very important factor to maintain client’s satisfaction. Therefore, mini-
mizing the waiting time of all clients is also an objective in MDCPP. In spite of the
multiple objectives, it is possible to combine them into a single objective function
by using a penalty concept. We define a penalty p; representing the contribution
to the total cost in case a client is not picked up or a server does not pick up any
client and a penalty ¢; indicating the clients who have to wait in the transfer point.
The objectives of MDCPP then can be transformed into an integrated formulation
presented as follows.

Define a pool k of users and let user s be the server and a be the amount of
members in this pool. Server s of pool k will use his/her car to pick up the other
pool members and then deliver them before going to his/her own destination. The
driver thus has to find a Hamiltonian path that starts at his/her home, and then
passes through all his/her pool members’ homes and destinations or transfer points
exactly once then ends at his/her own destination. Let ham(s, k) be the shortest
above mentioned path, starting from s € poolk, connecting all pool members’
home j € pool k\{s} and transfer points or destinations of all pool members who
do not go to the same destination as server s and ending in the destination of
server s, with the constraint that destinations and transfer points must be visited
after the corresponding clients. The cost for a server driving directly from his/her
home to his/her destination is denoted by costsq (equals to the distance dsq in
our model), while p, is a penalty value incurred when the server travels alone,
and g¢; is the penalty for making the pool member j waiting on the transfer point
after getting off the car, whose calculation is based on the length of the waiting
time wt;. Then, the cost of pool k is defined to be:

cost (ham (s, k))+ >, qwt;, if |a] > 1,
€0Stpool (k) = jek\{s} (2.1)
costsq + ps, otherwise.

The cost for an unserved client ¢ is defined as equation (2.2), where p. is the
penalty value for client ¢ being not served.

COStunserved (C) = Pe- (22)

The total cost of a complete solution of the MDCPP is then defined to be the sum
of the costs of the pools in it plus the sum of the costs of the unserved clients.
This view optimizes at the same time the three objectives. In our mathematical
model, the penalty of a user driving alone is set to be much higher than the cost
when he/she drives directly from his/her home to the destination, so it is always
more convenient to pool users together than to leave them alone. And because of
the penalty for waiting at transfer point, if the client has to wait too long time
at the transfer point, it is better to deliver him by the current server instead of
changing vehicle.

The transfer points are designed to decrease the travel distance of the servers.
Although the transfer points can save the total travel costs, they also increase the
inconvenience of the servers and the clients. Moreover, it is very hard to implement
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the transfer point accurately in the real world application since the real world paths
are always not direct lines. Based on the abovementioned reasons, in our model,
we limit the amount of transfer point for each client to at most one.

MDCPP being NP can be easily proven since it is transformed from the DCPP
and the DCPP is NP-hard since in a special case it contains the Vehicle Routing
Problem with unit client demands [9], which is known to be NP-hard in the strong
sense.

2.2. OBJECTIVE FUNCTION

The problem can be translated in a four indices formulation considering:

e Decision variables:

zj;: binary variable equals to 1 if and only if arc(,j) is traveled by server s;
y;: binary variable equals to 1 if client 4 is not picked up by any server or server
i does not pick up any client;
p3: binary variable equals to 1 if and only if client ¢ is delivered to his/her
destination by server s;

is . binary variable equals to 1 if and only if client i is left on transfer point
of arc(m,n) by server s;
ol binary variable equals to 1 if and only if client i is picked up on transfer
point of arc(m,n) by server s;
S;: positive variable denoting the pickup time of client ¢ or the departure time
of server ;
F?: positive variable denoting the arrival time of user i at a destination d;
L;: positive variable denoting the arrival time of client ¢ on his/her transfer
point, equals to zero if the client does not visit any transfer point;
H;: positive variable denoting the pick-up time of client ¢ on his/her transfer
point;
Q’g“: a set denoting the clients that have been picked up until reaching each
point g of server k’s tour (including the clients being picked up at point g)
where g € Gy, is the set of all the points visited by server k.

e Constants:

¢iq: binary value equals to 1 if and only if client i’s destination is destination d;
N(m,n)(p,q): PINary value equals to 1 if and only if there is an intersection between
arc(m,n) and arc(p, q);
¢;j: positive value denoting the travel cost between users ¢ and j;
t;j: positive value denoting the travel time between users ¢ and j;
Qs: positive value denoting the car capacity of server s;
T: positive value indicating the maximum driving time specified by server s;
e;: positive value indicating the earliest time for leaving home of user ;
r;: positive value indicating the latest time for arriving at the destination of
user ;
p;: positive value indicating the penalty for drive alone server ¢ or unserved
client 7;
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q;: positive value indicating the penalty for client ¢ waiting on transfer point;
Us: index set of all servers;

U,.: index set of all clients;

U: index set of all users;

A: index set of all arcs;

D: index set of all destinations;

O: index set of all intersections.

Objective function:

fmcpp = min Z Z cijy; + Zpiyi + Z qi(H; — L) (2.3)

s€U; (i,j)€A ieU i€U,
doay=> al i €Us,seU, (2.4)
JEU: JjeUe
Y ay<1deDsel, (2.5)
€U,
Y a,<1deDsel, (2.6)
€U,
> (qssd > xd> =0 seU, (2.7)
deD i€Uc
Z (¢sd Z l'fd> =1 s¢€ Us (28)
deD icU.
Soa=p+ Y, Uh,ic€U,seU (2.9)
jeU.uD m,nel.UD
Z ot < pii€U.,selU, (2.10)
m,ncU.UD
XY vy X ahicl 2.1)
s€Us m,neUUD keUs p,qeUUD
S lbia > x| =pi€Ue,sel, (2.12)
deD jeU.uD
(1= ea) Y a5y =(1—¢ea) ¥ a3 d €D,s €U, (2.13)
€U, €U,

s = Ui mun € UUD, s € Us,i € U, (2.14)
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5 >0 m,neUUD,seU,icU,

mn

YooY eh.<1liel,

seUs m,neUUD

o> oh.<1iel.

seUs m,neUUD

n(m’n),(P,q) (wﬁn) = 0—127]2 Z S Ucvmvnapvq S U U D,S, k S Us

Z Z x?j_zz xfdz%d <Q, s€eUs,ge Gy

i€eQ; jeQsZ D i€eQg deD x€Qg

Z Z xfj—i—yi:liGUc

seUs jeU.UD

Z .’Efjtij <T5 CRS US
(i,J)EA

Si>e 1eU

Sj—si>tij—M<1— foj> (i.j) € A

seUs

Si+tig<Fl<riicUdeD

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

S =M1 =2 V< Li <S4 tmn+ M1 =2 ) icUmecUnecUUD,s e U,

mn mn

(2.25)

F'—M1 9% )< Li < F" 4ty +M(1 =4 ) i€ U.m € D,n € UUD, s € U,

mn mn

(2.26)

Sy =M1 -0 <H < Sy+ty, + M1 —0*)icUpeUqeUUD,kel,

Pq pq

(2.27)

FP— M1 —0l)<H; <Fl +tyg+M(1—0lt)ic€UpeD,qeUUD, k€U,

pq

H,>L; 1eU,.

(2.28)

(2.29)
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r;; €{0,1} seUs,(i,j) € A (2.30)

y; €{0,1} ieU. (2.31)

p; €{0,1} i€ U.,seUs (2.32)

is €{0,1} i€U.,mnecUUD,scU, (2.33)
o €{0,1} i €Ue,p,g e UUD,k € U, (2.34)
S;>0icU, (2.35)
F,>0ieU. (2.36)
L;i>0i¢eU. (2.37)
H;>0i¢€U. (2.38)

Equation (2.4) is continuity constraint for visiting clients. Equation (2.5) forces
the server to go from each destination at most once, while equation (2.6) restricts
the server to go to each destination at most once. Equation (2.7) forces the server’s
path ends at server’s destination. Equation (2.8) makes sure each server’s destina-
tion must be visited. Equations (2.9) and (2.10) force each picked up client must
be delivered to the client’s destination. Equation (2.11) makes sure a client left on
a transfer point must be picked up eventually. Equation (2.12) restricts the client’s
destination must be visited if the client is served by a server. Equation (2.13) is
continuity constraint for visiting the destinations. Equation (2.14) restricts the
transfer point to leave a client must on the path of a server, while equation (2.15)
confirms the transfer point to pick up a client must on the path of a server, re-
spectively. Equation (2.16) forces a client can be left on the transfer point at most
once, and equation (2.17) restricts a client can be pickup at the transfer point at
most once, respectively. Equation (2.18) confirms there must be an intersection
between the paths of leaving and picking up a client. Equation (2.19) is car ca-
pacity constraint. Equation (2.20) forces each user to be served by only one server
or to be penalized, while equation (2.21) is maximum driving time constraints,
respectively. Equations (2.22) and (2.23), where M is a big constant, collectively
set feasible pick-up times, while equation (2.24) sets minimum and maximum val-
ues of feasible arrival times, respectively. Equations (2.25) and (2.26), where M is
a big constant, collectively set feasible time to leave a client on a transfer point,
while equations (2.27) to (2.29) set feasible time to pick up a client from a transfer
point, respectively. Constraints (2.30) to (2.34) are the binary constraints, and
constraints (2.35) to (2.38) are the positivity constraints.
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3. HYBRID ANT COLONY ALGORITHM FOR THE MDCPP

In this section, we explain in detail the concepts and the structure of our Hybrid
Ant Colony algorithm (HAC) for the MDCPP. The adaptation of the different
components for the MDCPP is described and examined.

3.1. RELATED WORKS

The interesting methods for solving the classic DCPP are presented as follows.
Some authors (7,10, 12, 14] define a few simple matching rules to build carpools
in order to obtain fast matching speed; however, a good solution quality cannot
be guaranteed. For instance, in the work of Kothari [10], a multi-agent carpooling
system called Genghis system is developed. The authors define a few fundamen-
tal constraints for choosing reasonable matches between clients and servers. An
algorithm is developed to generate route proposals for the users. The algorithm
picks a client only once and continues matching the client to proposed servers
until all the proposed servers are examined. The proposed server is selected based
on the distance between the client and the direct route from the server to the
server’s destination. For each client, the algorithm proposes a maximum 5 avail-
able drivers, then for each proposed driver, the algorithm matches him to the client
in a hierarchy of 4 Levels. Each level consists in a matching constraint, such as
user preference, distance constraint, time window constraint and cost constraint.
The client may be rejected at any level of the matching. The Genghis system is
designed for solving small size instances in an efficient way, but minimizing the
total travel cost is not taken into consideration in this system.

To obtain a good solution quality, other authors use heuristics and exact algo-
rithms to solve the DCPP. The interesting studies include a distributed geographic
information system [3] and an exact algorithm based on Lagrangian Column Gen-
eration [1]. In the distributed geographic information system the authors present
an integrated system for the organization of a carpooling service. The core of the
system is an optimization module which solves heuristically the specific routing
problem. The procedure includes a construction phase and a local optimization
phase. The algorithm starts with no employee routed and an idle fleet of vehicles.
A number of new routes equal to the number of servers are initialized as direct
paths from each server to the destination, then, as long as possible, single clients
are inserted into existing routes with a greedy algorithm. Then, from the initial
solution produced by the procedure described above, better ones are obtained by
means of a local search algorithm. In the study of the exact algorithm based on
Lagrangian Column Generation, authors propose an exact method for the carpool-
ing problem. This method is based on two integer programming formulations of the
DCPP. The first formulation is a commodity flow formulation using three-index
variables, while the second formulation models the DCPP as a set-partitioning
problem whose variables correspond to feasible paths or to clients to be left un-
served. A valid lower bound on the optimal DCPP cost is computed as the cost of
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a feasible dual solution of the LP relaxation [8] of the set-partitioning problem; the
solution is obtained by combining three different relaxations of the two formula-
tions. The dual solution and a valid upper bound obtained by a heuristic algorithm
based on the bounding procedure are then used to eliminate feasible paths that
cannot belong to any optimal solution; thus the resulting reduced set-partitioning
problem can be solved by a branch-and-bound algorithm. The main contributions
of this research are the new bounding procedures for computing a feasible dual so-
lution of the set-partitioning formulation and the method for generating a reduced
set-partitioning problem that is used to find an optimal solution.

3.2. MAIN STRUCTURE

Our HAC approach for solving MDCPP is based on the Ant Colony Optimiza-
tion paradigm [5,6]; the approach tries to assign clients to servers during the ants
making their tour. The HAC consists in four components, a pre-sorting process, an
ant colony optimization based metaheuristic, a transfer point searching heuristic
for determining the transfer points and a local search for further optimizing the
solutions. The ultimate goal of this approach is to solve the MDCPP efficiently
and obtain a good solution with limited exploration to the search space.

The pre-sorting procedure is designed to partition servers and clients according
to several constraints defined based on the servers’ convenience, in order to aid and
facilitate the future approaches. In this procedure, the servers will be divided into
two subsets based on their availability to pass other destinations before going to
their own ones: servers who are able to visit other destinations; and servers who can
only go to their own destinations. The two subsets are used as the start points to
build carpools for the ants in the ant colony optimization based metaheuristic. In
the same manner, the clients will also be grouped according to their destinations,
in order to narrow down the candidates for the ants to assign to a server.

On the basis of the pre-sorting procedure, the ant colony based metaheuristic
is then applied. The approach is based on the Ant Colony Algorithm, but its con-
cepts of pheromone information and attractiveness are redefined. The pheromone
is replaced by a preference mechanism which is designed as the tendencies of as-
signing a client to a server, while the attractiveness between a client and a server
is defined according to the linear distance between the client and the straight line
connecting the server and the destinations he/she has to visit.

The preference and attractiveness information are used to guide the client as-
signment behavior of the ants, in order to achieve the carpool construction. The
first step of the ant colony based metaheuristic is to initialize the preference
information. Then, when the ant starts to construct a solution, it will first select
a server from the server subsets as the start point to start a new carpool, and
then if the car capacity and time window constraints are satisfied, it will continue
searching for clients, whose destinations are available to the server, to assign to
the server. The probability for the ant to select a client to visit and assign him to
a server is based on the preference information and the attractiveness value be-
tween the client and the server. During the construction of the carpool, if pooling
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a client violates the time window constraints, the ant will try to select another
client. If the maximum number of times of selection is exceeded, the ant will end
the carpool, and stochastically select another server as a new start point of a new
carpool.

After a solution has been constructed by an ant, the Transfer Point Searching
heuristic (TPS) is applied to create transfer points for carpools. The heuristic
proceeds as follows: suppose server s makes a relatively long detour to visit client
1’s destination, the heuristic will then try to locate another server k that is going to
the same destination as client 4, and create a transfer point for server s to transfer
client 7 to server k, so the total travel cost can be decreased.

When all ants finish their tours, several best solutions are selected based on
the objective function. A local search is then applied to further optimize these
selected solutions. The main structure of the local search consists in a loop applying
sequentially two operators, and it stops when no improvement made during x loops.

At the end of iteration, the composition of the best solutions will be used to
update the preference information, and the ancient preference values will decrease
with an evaporate rate, in order to enlarge the influence of the new preference
information obtained in the current iteration.

The general structure of the HAC is specified as following Algorithm 3.1.

Algorithm 3.1: Hybrid ant colony algorithm

/* Pre-sorting process */
Partition the servers according to their ability to pass to other destinations;
Partition the clients according to their destinations;

/* Ant colony optimization based metaheuristic */
Initialize preference and attractiveness.
While the stop criteria are not met
For k=1, k < the number of ants do
Repeat
Select start point for ants based on the partition of servers;
Assign clients to servers based on preference attractiveness
and the availability of the server for the clients’ destinations;
Until all servers are selected;
Apply TPS to decide the transfer points;
End for
Select the best m solutions;
Apply local search to the selected solutions;
Update the preference based on the composition of selected solutions;
End while

3.3. SOLUTION REPRESENTATION

The aim to design a representation for the solution is to build a suitable mapping
between our problem and the solution generated by the algorithm. Although both
direct and indirect coding have been proven to be applicable for the representation
of vehicle routing related problem, we favor to select the direct coding for the
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FIGURE 2. An example of the solution representation.

MDCPP, since the time-consuming encoding and decoding phase of the indirect
coding can be avoided. The representation is designed with two layers. The first
layer presents the match between servers and clients, as well as the pickup order
of the clients and the visit orders of destinations and transfer points. The second
layer records the departure time of the servers, the pickup time of clients and their
arrival time at the destinations or the transfer points.

Therefore, the first layer of the proposed representation consists in a set of
clusters Rep = {R1, Rs, ..., R,,}, and each cluster R; = {S;,Cy,...,Cp,L;, D}
is a ordered sequence, started with the server of this cluster S; and followed with
clients Cy or transfer point (L; indicates the transfer points to leave the clients
on, P; refers the transfer points to pick up clients from) or destinations D, based
on the order they are visited by this server. Note that the representation of each
cluster may have different length, since the length is based on the number of clients
and destinations visited by the server.

Then in the second layer, for each server S; and client Cj, in each cluster, the
departure time 7} or pickup time T}, are associated. For each destination D, a
value arv, indicating the arrival time of the server at this destination and a set
off, including the clients who get off the vehicle at this destination are associated.

Note that some clients may correspond to a transfer point; the detail representa-
tion concerning this situation will be introduced in Section 3.7. This representation
provides all the information of a user in the Multi-destination Daily Carpooling
Problem. It offers and contributes in a clear manner to design multi-destination
daily carpooling problem solutions. An example of the solution representation is
shown in Figure 2.

3.4. PRE-SORTING

Pre-sorting categorizes both servers and clients, it is designed as a preparation
procedure for the ant colony optimization based metaheuristic. Two constraints
are defined to aid the categorizations of servers and clients.

The servers are divided into two subsets, the M-server subset which contains
the servers who are able to visit more than one destination within their maximum
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//@ Available Destinations: D2, D3

» M-Servers __|

Available Destinations: D1, D2, D3

/,@ Available Destinations: D2
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» S-Servers

Available Destinations: D1

F1GURE 3. Categorization of servers in pre-sorting procedure.

driving time, and the S-server subset which consists in the servers who can only go
to their own destinations. The selection of the members of each subset is performed
by constraints (3.1) and (3.2). The evaluation takes place between each server and
each destination except the server’s own one

disg,, + dispm < 2 X diSgm
t«S’I’L + tnm < TS

—
w w
[N

where dis,, is the distance between server s and his/her own destination m, ts,
is the travel time between server s and another destination n, t,,, is the travel
time between destination n and destination m, z is a parameter set to adjust the
maximum detour length the server can afford, and T is the maximum driving
time a server willing to accept respectively.

Constraint (3.1) restricts that the length of a server’s detour cannot be longer
than z times of the distance he/she travels to his/her own destination. Con-
straint (3.2) confirms that travel to destination n will not exceed the server s’s
maximum driving time. If server s is able to satisfy the two constraints when
he/she travels to any destination other than his/her own, he/she will be catego-
rized into the M-server subset. Otherwise, the server will be put in the S-server
subset. For each processed server, his/her available destinations will be recorded
with him, shown in Figure 3.

These two subsets will be both considered as the start points for building car-
pools for the ants in the ant colony optimization based metaheuristic, but they
are given different priorities when ants process them. The servers in the M-server
subset must be processed before the ones in the S-server subset, only after all
servers in the M-server subset have been assigned with carpool members, the ants
start to process the servers in the S-server subset. By defining this concept, we
achieve the favor to the servers who can travel to multiple destinations, as they
can serve more clients than the servers who go to only their own destinations.
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Preference matrix in HAC

Ci|C|Cs|Csa| .. |Cn

Si 0 |05 |11 0 |05] 0

S 05| 0 14107 | 0 0

1.0 | 0.2 0 0 0 0

Sm 0 |07 | 0 0 | 08| 12

FIGURE 4. The preference information matrix in HAC.

The clients are also divided into several subsets; the number of subsets is based
on the number of destinations of an instance. The clients going to the same desti-
nations are organized into the same subset. In the ant colony optimization based
metaheuristic, when an ant searches clients to assign to a server, only the clients
going to the available destinations of the server are visible to the ant. That is,
only the clients with the destinations the server can reach without violating the
constraints (3.1) and (3.2) are candidates for the ant to select. By applying this
mechanism, the amount of candidates for an ant has been significantly decreased.

3.5. PREFERENCE INFORMATION

In our metaheuristic, the pheromone concept of the classic Ant Colony Algo-
rithm is replaced by a preference concept, which is defined between each server
and each client. The preference information is stored in an m x n matrix where
m is the number of servers and n is the number of clients in an instance. The
preference values of the matrix indicate the tendency level to assign a client to a
server, as shown in Figure 4. These values are experiences gained from the best
solutions obtained in each iteration, and are used to guide the ant for constructing
carpools in future iterations.

In the initialization of the preference information, several time window con-
straints are pre-checked between the servers and the clients whose destinations are
available for the servers. The preference values between the server and the clients
whose destinations are not feasible for the servers are set to be zero. Let ds be
the destination of server s, d; be the destination of client 4, ¢;; be the travel time
between two locations, respectively. Constraints (3.3) and (3.4) examine whether
server s and client ¢ can both be able to arrive on time, if server s picks up
client ¢ before going to the destination. Constraint (3.5) checks if the pickup time
of client i is too late for server s to arrive at the destination on time. Note that,
if client ¢ has a different destination from server s, the server must deliver the



414 Y. GUO ET AL.

client first, and then go to his/her own destination. If pooling server s and client 4
together cannot satisfy the abovementioned constraints, the preference value wy; is
set to zero, which indicates there is no probability that client ¢ will be assigned to
server s by ants. By applying this procedure, we are able to remove some carpool
combinations which do not belong to any feasible solution, so the computing time
for the ants to search for carpool members is further decreased.

es +tsi +tid, +tda, <Ts (3.3)
€s +tsi +tig, <7
€; +tid; +td,d, < Ts- (3.5)

Then, if the constraints are satisfied, the preference values between each server
and each client are initialized by the geographic distance difference between server
s going to his/her destination directly and server s picking up and delivering the
client ¢ before going to his/her own destination, and their earliest departure time
difference, shown as equation (3.6).

Wegg =axX D4+ xE

1 . 1
D— { disgi+disin +dispm —dissm if disgi+disin +dispm —dissm z0

o otherwise

1 : 1
if >0
es +tsi—e; es +tsi—ei] &
E= { . b ol “! (3.6)

o otherwise

where disg;, disin, disy, and disg, are the geographical distances between server s
and client i, between client ¢ and i’s destination n, between client ¢’s destination n
and server s’s destination m, and between server s and s’s destination m, respec-
tively. ts; are the travel time between server s and client i. e5 and e; are the earliest
departure time of server s and client i. o and [ are weight factors. Equation (3.6)
indicates that the shorter the detour the server s has to make to pick up client 1,
the higher the initial preference between them. If the arrival time of server s at
client ¢’s home is close to client i’s earliest departure time, they will also obtain a
higher preference value between them. Note that the constants in the abovemen-
tioned equation have both distance unit and time unit, so the factors o and (§ are
designed to adjust these values. Moreover, the two denominators in equation (3.6)
are limited to a minimum value o, which replaces the denominators if their val-
ues are less than o. This mechanism is designed to avoid generating too large
preference values.

In each iteration, an ant starts its tour from a server s, selected stochastically
from the M-server set obtained in pre-sorting procedure. Then the ant tries to
assign clients to server s. The probability for the ant to select a client 7 to visit
and assign to server s is based on the preference information and attractiveness
between client ¢ and server s. The attractiveness will be introduced in detail in next
section. The probability for the ant to select a client 4 is performed by a roulette
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F1GURE 5. The procedure of ant searching for carpool members.

wheel selection procedure, as shown in equation (3.7). As abovementioned, only
the clients with the destinations can be visited by server s without violating the
constraints have positive preference values, which indicates they are visible for the

ant to select.
Probability,, = —(2%1) (f‘”) . (3.7)
> (ws;)" (ns5)

JjEH

where wy; is the preference value between server s and client ¢, while 7g; is the
attractiveness value, respectively. H is the set of visible candidates of server s, who
have not been assigned to any carpool yet, while a and b are adjusting parameters,
respectively.

If the client selected by the ant can satisfy the time window constraints of the
server and the existing clients in the carpool, the selected client will be added into
the carpool. Otherwise, the selection is considered as failed and the ant will try
to select another client until the maximum number of times of failed selection y is
exceeded. When a new client is assigned to the carpool, the new order of pickup
and delivery of the clients will be updated. The update is based on the calculation
of the attractiveness, which will be presented in Section 3.6.

When the current constructing carpool reaches its car capacity or exceeds the
maximum number of times of failed selection, the carpool will be closed. And then
the ant will select stochastically another server from the M-server, or S-server if
the servers in M-server subset are all processed, then continue to assign clients to
the server as shown in Figure 5.

After a solution has been constructed by an ant, the Transfer Point Searching
heuristic (TPS) is applied to create the transfer points. The TPS will be presented
in detail in Section 3.7. When the transfer point is built, the waiting time of
client 7 on the transfer point is calculated and associated to him, in order to aid
the evaluation at the end of iteration.

When all ants finish their tour, an evaluation is performed to all the solutions
generated by the ants; the evaluation is given by equation (2.3), which is the ob-
jective function of the MDCPP. After the evaluation, the first m best-fit solutions
are selected to be applied with a local search, in order to further optimize the
solution.
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Pheromone matrix before updating Pheromone matrix after updating

Ci | C2|Cs| Ca Cn Ci | Ca| Cs| Ca Cn

0 0.5 1.1 0 0.5 0 Solution k :
(S1C2C3)(S2C1C4)...

0.5 0 14 | 0.7 0 0 053| 0 |134(072| 0 0

1.0 | 0.2 0 0 0 0 095|019 0 0 0 0

F1GURE 6. Updating the preference matrix in HAC.

Then, before updating the preference values with these solutions, all weight
values wg; in the preference information matrix will decrease with an evaporate
rate i, as shown in equation (3.8), where w;/i is the preference value of the previ-
ous iteration, in order to enlarge the influence of the new preference information
obtained in current iteration. Afterwards, for each selected solution s, the pref-
erence values between the server and the clients in the same carpool consist in
an augmentation, as shown in equation (3.9), where w;l is the preference after
evaporation, fave is the average fitness of the whole ant colony, fi is the fitness of
current selected solution s, S is the set of all selected solutions, and factor A is a
weight factor, respectively. For the clients who have been transferred during the
travel, only the preference value between the clients and their original servers are
updated.

wy; = p X Wy (3-8)
wsi:w;ﬁAZLg_‘f&- (3.9)

ses ave

3.6. ATTRACTIVENESS

The paradigm of the ant colony optimization (ACQO) involves the movement of a
colony of ants through the different states influenced by two local decision policies,
pheromone and attractiveness. In our ant colony optimization based metaheuristic,
the attractiveness is considered as the level a client is attracted by the theoretical
shortest path of the server. Therefore, the attractiveness between client i and
server s is defined as the reciprocal of smallest linear distance between client ¢ and
the straight lines connecting server s and the destinations the server has to pass.

During the ant colony optimization based metaheuristic, when the ant is search-
ing client ¢ for server s, a “standard path” is designed for calculating the attrac-
tiveness. The standard path is a Hamilton path starts from server s and connects
sequentially the destinations the server has to visit to deliver his/her current car-
pool members as well as client i, as shown in Figure 7. Thus the standard path is
modified if client i goes to a different destination.
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1. Only Server S1 in the car pool. 2. Try toinsert C1 into the car pool.

() @

3. C1 has been assigned to the car pool, try to insert C2 into the car pool.

()
OI®

F1GURE 7. The modification of the standard path.

For instance, in Figure 7, server s’s destination is dy, and the two clients are
with destination d.; and d.o. Then, in the beginning of a carpool construction,
the standard path is the section of line connecting the server s and the server s’s
destination. When the ant tries to insert client ¢; with different destination into
the carpool, the standard path is changed to the Hamilton path starting from the
server, passing the destination of ¢; and ending at server s’s destination. In the
same manner, when the ant tries to insert client co into the carpool the standard
path of this carpool is the Hamilton path starts from server’s home connecting d;
and d.o, ends at ds.

As the standard path is the shortest path to go through the destinations for
the server, if the server picks up the clients close to this path, he/she will make
only relatively short detour. Thus, the standard path is used as the guide line to
calculate the attractiveness for guiding the ants; the concept is designed to ensure
that the distribution of selected clients vibrates around the standard path with a
narrow width.

When ant makes its tour, the attractiveness is calculated according to the stan-
dard path of the server. We calculate the linear distance between the candidate
client ¢ and each section of the standard path before reaching ¢’s destination, and
then choose the reciprocal of shortest one as the attractiveness value of this client
to the server, as shown in Figure 8. Note that if the projection point of the client
is not on the corresponding section of the standard path, an extra distance will be
added to the attractiveness distance. The extra distance is calculated as the linear
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FicURE 8. The distance between a client and the standard path.

distance between the projection point and the closest end of the section of the
standard path. In Figure 8, server s’s destination is dg, candidate client ¢’s desti-
nation is d., and d, is the destination of an existing client in server s’s carpool.
de_mn Indicates the linear distance from client ¢ to the section between node m
and node n, and P refers to the projection points of client ¢ on each section of the
standard path. In the example, the distances between ¢ and the standard paths
are de_sdy and de_ggdc + dpe2dq- Thus, the attractiveness value between ¢ and s is
calculated as the reciprocal of d._s4., since d._sq, is shorter than dc_gzac + dpeade -

Note that only the distances between client ¢ and the sections of the standard
path before reaching ¢’s destination can be calculated and used. In Figure 8 client
¢ can only have the projection point on the section sd, and d,d. of the standard
path since his/her destination is d.. The distance between client ¢ and the sections
d.ds of the standard path is not calculated because, even if the distance was the
shortest, the server has to travel to an opposite direction to deliver the client. This
is usually inconvenient and expensive for the server, thus it is better to leave the
client to other servers.

At last, according to the section of the standard path selected to calculate the
attractiveness and the location of the corresponding projection point, we are able
to obtain the position for a client to be inserted in the server’s pickup and delivery
sequence. For instance, in Figure 8, client ¢ will be inserted in the pickup and
delivery sequence between s and d,, since the attractiveness of ¢ is calculated
based on the distance to section sd.

Therefore, the distance dat. for calculating the attractiveness is calculated as
equation (3.10). By connecting client ¢ to the two ends of section mn of the

standard path, we can obtain a triangle. If cmn and enm are acute-angles or
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right-angles, dat. simply equals to the distance d._,, between client ¢ and sec-
tion mn. Otherwise, dat. is added with an extra distance min(dp,, dpn).

dat, — {dc_mn if emn and cim < 90° (3.10)

de_mn + min(dpm, dpy,) otherwise

where d._,, indicates the linear distance from client ¢ to the section between m
and n, while dp,, and d,,, indicates the linear distances from projection point p of
client ¢ to m and n.

And the attractiveness for client ¢ to a server s will be:

1

min(dat.) (3:-11)

Nse =
where dat. indicates all possible distances from client ¢ to the sections of the
standard path.

When a new client is assigned to a carpool, according to its projection point
on the standard path, the pickup and delivery sequence will be updated. The
client with the projection point closer to the server will be picked up first. The
attractiveness is essential in our ant colony optimization based metaheuristic. Its
role is not only a factor for ants to select clients to assign to servers, but also to
indicate the position where the client should be located in the pickup and delivery
sequence.

3.7. TRANSFER POINT SEARCHING HEURISTIC

After a solution has been constructed by an ant, the Transfer Point Searching
heuristic (TPS) is applied to create the transfer points. As mentioned in the math-
ematical model, the transfer point can increase the inconvenience of the servers
and the clients. Thus, in our model, we limit the number of transfer points to at
most one for each client.

In TPS, we define a parameter to decide whether a detour of a server is con-
sidered to be long. In a solution, if server s is confirmed to make a long detour to
deliver client 4, the heuristic will try to locate another server k that is going to
the same destination as client ¢ and has available car capacity, then try to create
a transfer point for server s to transfer client i to server k, in order to decrease
the total travel cost.

Two conditions are used to select servers: (1) the server must travel through
multiple destinations; (2) the server’s travel distance exceeds w times of the direct
travel distance from his/her home to his/her destination. The servers satisfying
both of these two conditions are put into a list. The list is organized in decrease
order of the length of the servers’ detours, and the server with longer detour will
be processed first. Then, all the servers in the list proceed with the following
procedures, as shown in Figure 9.

Suppose s is a server with destination dg, then for every other destination d;
server s has to visit (in the case of Fig. 9, d; is the other destination server has to
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FIGURE 9. Construction of a transfer point.

visit), if there is no existing transfer point on the paths linking d; (in Fig. 9, the
paths are cod; and dyds) and no client going to d; has been transferred before, we
remove d; from the original path to construct a conjecture path, and the clients
going to d; are marked to be transferred in the next step. Otherwise, we skip d;
and process the next destination. Then, we select randomly a server who goes
through destination d; and examine the availability to construct a transfer point.
The process for destination d; continues until a transfer point is created or all
possible servers who go through destination d; are checked.
A server k must satisfy the following constraints to create a transfer point:

(1) there must be an intersection between server k’s path and server s’s conjecture
path;

(2) the intersection must be on the part of the conjecture path which is visited
after picking up the clients of server s who need to be transferred;

(3) serverk must have available car capacity to serve the clients transferred from
server s;

(4) calculate the coordinates of the transfer point, and then check the arrival time
of both servers at the transfer point. The time for server k to pick up the
clients must be later than the time for server s to leave the clients.

The constraints are examined sequentially; the next constraint is examined only
if the previous constraint is satisfied. Note that, the coordinates calculated in the
fourth constraint are memorized, so the repetitive calculation can be avoided in
the future iterations.

Since the verification of the constraints is time consuming, we apply the first
improvement policy. That is, the transfer point is confirmed as soon as the total
cost of the two carpools decreases. Note that, the path of server s will be modified
to be same as the conjecture path after the creation of the transfer point.
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FIGURE 10. Representation of a transfer point.

The representation of the transfer point in a solution is introduced in Figure 10
The transfer point to leave clients is named with L;, while the transfer point to pick
up the corresponding clients is named with P;. Each transfer point i is associated
with set SL; of clients being left or set SP; of clients being picked up, the distance
dis and travel time tim between the previous visited node and transfer point 7,
and the time arv of the server arriving at this transfer point.

3.8. LOCAL SEARCH PROCEDURE

As abovementioned, when all ants have finished their tours and the TPS is
applied, several best solutions are selected to be improved by a local search pro-
cedure. The main structure of local search consists in a loop applying sequentially
two operators. The local search stops when no improvement made during = loops.

Algorithm 3.2: Local search in HAC

Local_Search_Operators[] = {Swap, Move}
Create the forbidden list;
Repeat
For each operator in Local_Search_Operators do
Select carpools for operator;
For selected carpools do
Apply the operator;
If solution is improved, update the solution;
End for
End for
Until the stop criteria of the local search is met.
Clear the forbidden list.

The two operators are designed specifically based on the characteristic of the
MDCPP. The main structures of the operators are similar. For each operator, we
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FIGURE 11. An example of the operation of swap operator.

first select several carpools according to the selection rules defined by each oper-
ator. Then, for each operation performed by an operator, we apply the operator
and see whether there is an improvement obtained. If the solution is improved, we
update the solution.

Swap operator

The operator first stochastically selects u servers who make long detours. The
server satisfying both of the following two conditions: 1) the server must travel
through multiple destinations; 2) the server’s travel distance exceeds v times of
the direct travel distance from his/her home to his/her destination, is considered
making a long detour. The length of detour is calculated as the distance difference
between the server’s travel distance and the distance from server’s home directly
to his/her destination. The selection is performed by a roulette wheel selection
based on the length of the detour made by the server. The probability of server s
to be selected is calculated by equation (3.12).

detour

- >~ detoury
kEK

Pd, (3.12)

where detour is the length of detour of server s and K is the set of all servers.

For each selected server s, the operator tries to swap every existing carpool
member of server s with any client j whose destination is visited by s and has
positive preference value to s. The move is confirmed as soon as an improvement
is obtained.

Note that, the clients being transferred cannot be swapped, in order to avoid
affecting the schedule of the carpool where the clients being transferred from or
to. An example of the operation of the swap operator is presented in Figure 11.

Move operator

The move operator tries to move a client from a selected carpool to a server
with available car capacity. It first selects ¢ servers who make long detours. The
selection is performed by a roulette wheel selection still based on equation (3.12).

For each selected server s, the operator attempts to move every carpool mem-
ber i to any server who passes i’s destination, and has positive preference value to 4
and available car capacity, as shown in Figure 12. The move is confirmed as soon
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FIGURE 12. An example of the operation of move operator.

as an improvement is obtained. Following the same manner as the swap operator,
the clients corresponding to the transfer points cannot be moved.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. BENCHMARKS

Computational experiments have been conducted to examine the performance
of the proposed approach. Since no literature can be found on MDCPP, we created
three new sets of instance. The benchmark used in our experiments includes three
sets of structurally different problem instances. Two of them are transformed from
the benchmark of a similar problem and the other one is obtained based on the
real-world case.

The first two sets of instances were originally derived from the Pickup and De-
livery Problems with Time Windows (PDPTW) instances by Li and Lim [11]. We
added and modified a few values in order to transfer them into MDCPP instances.
Both of the two sets are composed of 9 instances with users from 100 to 400. The
clients in the first set are distributed close to the center, so the set is named with C.
The second set has the clients and servers allocated randomly, therefore is named
with R. The last set of instances is obtained by real-world case, the data is col-
lected from the car pooling program participants of the Artois University by using
the car pooling platform Figure 13 shows a general idea of the user distributions
in MDCPP instances.

4.2. CONFIGURATION

Parameter setting for the presented HAC algorithm is specified as follows:

pre-sorting: z = 1.5;

number of ants: 9;

initialization parameters: « = 0.9, 3 =0.1, 0 = 1;

probability parameters: a =2, b= 1, y = 3;

preference updating parameters: A = 0.1, g = 0.95, n = 10;

penalty parameters: p = 2x user’s direct travel cost to the destination, ¢ = 2;
TPS parameters: w = 1.3;

local search: u =t = 20% of the amount of all carpools, z = 2, v = 1.2.
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FIGURE 13. Different user distributions in MDCPP instances.

Given limited computational resources and combinatorial complexity, parameter
values were determined empirically over a few intuitively selected combinations,
choosing the one that yielded the best average output.

4.3. RESULTS OBTAINED WITH HAC

The HAC algorithm was implemented in JAVA, under Eclipse 6, and all results
were obtained running the code on a Windows Operating System with Intel Core
i7 740QM 2.9 GHz CPU and 4 GB of RAM. The algorithm has been executed
30 times for each instance, where each execution is given 1000 iterations.

In order to evaluate the gain of solving users with multiple destinations together
in our first set of experiments, we compare the results obtained by our MDCPP
model with the ones generated by classic daily carpooling problem (DCPP) model.
We divide each instance into sub problems according to the destination of users.
Therefore each sub problem includes only one destination, which transforms the
instance into a classic DCPP one. Since the DCPP is less complex than the LTCPP
and MDCPP, so it is possible to obtain a good solution to an instance of 100 users
by using CPLEX with several hours of computing. Thus, we divide each DCPP
instance again into smaller ones with around 100 users. At last, the total costs,
as well as the traveled alone servers and unserved clients of each sub problem are
summed up and compared with the results provided by HAC with the MDCPP
model. By the comparison, we are able to examine the benefits of considering an
instance as a MDCPP instead of several DCPPs.

In the result tables, Size with the format [number of users (number of
servers/number of clients)], refers to the amount of users, servers and clients in
each instance, respectively. N indicates the number of destinations in an instance.

In Table 1, we compared the experimental results of the MDCPP model with the
ones generated by the DCPP model. The MDCPP model with HAC outperforms
the DCPP model with CPLEX on all instances.
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TABLE 2. Solution quality comparison.

Size  Set C instances Set R instances Set W instances

100 24.6% 17.9% 18.6%
200 27.7% 23.5% 27.8%
400 32.0% 25.8% 26.2%
Avg 28.1% 22.4% 24.2%

TABLE 3. Comparison with the results obtained without TPS.

Size N Set C instances Set R instances Set W instances

With TPS No TPS With TPS No TPS With TPS No TPS

100(20/80) 2 1641.3 1835.4 1989.7 2157.2 886.0 915.0

100(20/80) 2 1542.7 1813.1 2097.2 2252.8 798.2 837.8
100(20/80) 2 1715.0 1905.0 2165.5 2495.0 1040.0 1138.8
200(40/160) 2 2413.1 2921.5 3454.0 4149.1 1464.0 1738.9
200(40/160) 2 2883.5 3386.3 4082.1 4311.7 1358.2 1635.3
200(40/160) 2 3879.5 4504.1 2843.1 3459.5 1229.5 1465.3
400(80/320) 3 5049.6 6051.3 5953.7 6846.3 2404.5 2715.9
400(80/320) 3 4091.4 4716.4 4958.0 5833.7 3097.4 3586.1
400(80/320) 3 5267.2 6406.9 6298.0 7160.9 4538.8 5064.8
Total 28483.3  33540.0 33841.3 38666.1 16816.6 19097.8

TABLE 4. Solution quality comparison with the results obtained without TPS.

Size  Set C instances Set R instances Set W instances

100 11.8% 9.3% 5.5%
200 15.4% 13.3% 16.3%
400 15.9% 13.4% 11.8%
Avg 14.4% 12.0% 11.2%

Table 2 shows the percentage MDCPP model solved by HAC outperforms the
DCPP model solved by CPLEX on the three sets of instances, in the aspect of aver-
age solution quality. The computing time is not listed. Since the CPLEX approach
costs several hours to generate the result, it is obvious that the HAC is significantly
faster. For each instance, the outperforming percentage is calculated as (CPLEX’s
value — HAC’s value) /CPLEX’s value. Each value in Table 2 is obtained by aver-
aging the outperforming percentages of the three same-size instances. According
to our experiments, the MDCPP can improve the DCPP’s results by 28.1%, 22.4%
and 24.2% on three different sets of instances.

According to Tables 1 and 2, we believe that, solving the instances as a MDCPP
can provide better solutions than solving the instance as several DCPPs. The total
cost is decreased significantly. Therefore, the comparison reveals the effectiveness
MDCPP model and the efficiency of the HAC in solving the MDCPP.
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TABLE 5. Evaluation of the accuracy of the HAC.

C set instances R set instances W set instances
Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%)
100 1616.4 1633.0 85 1.0 2064.5 2084.1 11.3 0.9 902.5 908.1 3.6 0.6
200 3016.9 3058.7 17.2 1.4 3395.8 3459.7 27.9 1.8 1331.1 1350.6 11.7 1.4
400 4673.4 4802.7 65.8 2.7 5579.5 5736.6 93.4 2.7 3248.8 3346.9 76.4 2.9
Avg 3102.2 3164.8 31.8 1.7 3680.0 3760.1 44.2 1.8 1827.5 1868.5 30.6 1.7

Size

Tables 3 and 4 show the improvement given by the Transfer Points Search
heuristic (TPS). The average solution quality of HAC has been compared with
the one obtained by disabling the TPS mechanism. According to the tables, all
the solutions benefit from the TPS approach. The total cost of all instances has
been decreased by this procedure. The improvements vary from the size of the
instances. The large size instances, such as 200 and 400, obtain the most significant
improvements.

The accuracy of the HAC is examined by calculating the standard error (column
Std) of the solutions obtained in 30 runs of each instance. The solution quality
difference (column Diff) between the best found solution quality and the average
solution quality of each instance in the previous tables is also calculated. Table 5
shows the average of the abovementioned values of the three same-size instances.
The average differences between the best found solution and the average solution
of the three sets of instances are 1.7%, 1.8% and 1.7%, respectively, which indicates
the HAC approach can be considered to be accurate for a metaheuristic.

5. CONCLUSION AND PERSPECTIVES

In this paper we defined a new carpooling problem model, Multi-destination
Daily Carpooling Problem (MDCPP). The mathematical formulation has been
introduced in detail manner. Then, we introduced the HAC algorithm, a Hybrid
Ant Colony Algorithm to solve the MDCPP. We presented in detail the four com-
ponents of HAC algorithm, a pre-sorting procedure, an ant colony optimization
based metaheuristic, a heuristic process designed inside the ant colony structure for
determining the transfer point and a local search for further optimize the solutions.

The presented approach has been applied successfully for solving the MDCPP.
The experiments of the HAC have been performed on three sets of structurally dif-
ferent instances. Each set includes large scale instances. The experimental results
are compared with a CPLEX based decomposition approach, and the comparison
has proven that solving the instances as a MDCPP can provide better solutions
than solving the instance as several DCPPs. Experiments also have been performed
to confirm the effectiveness of the Transfer Point Searching heuristic. Thus, it has

been demonstrated that the HAC algorithm is an effective approach for solving
the MDCPP.
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The MDCPP can be further studied as well as the HAC algorithm. The con-
struction of the transfer points may be embedded into the behavior of the ants
instead of using a separate heuristic. In this case, the solution quality of the algo-
rithm could be further improved. However, the computational speed may decrease
by this modification, which raises the issue of balancing the solution quality and
processing time.
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