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A DEA MODEL FOR TWO-STAGE PARALLEL-SERIES
PRODUCTION PROCESSES

Alireza Amirteimoori
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Abstract. Data envelopment analysis (DEA) has been widely used to
measure the performance of the operational units that convert multiple
inputs into multiple outputs. In many real world scenarios, there are
systems that have a two-stage network process with shared inputs used
in both stages of productions. In this paper, the problem of evaluating
the efficiency of a set of specialized and interdependent components that
make up a large DMU is considered. In these processes the first stage
consists of two parallel components which are connected serially with
the process in the second stage. The paper develops a DEA approach for
measuring efficiency of decision processes which can be divided into two
stages. This application of parallel-series production process involves
shared resources and the paper determines an optimal split of shared
resources among two components.

Keywords. Data envelopment analysis, efficiency, production,
two-stage.
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1. Introduction

In the past few years, the data envelopment analysis (DEA) approach has be-
come increasingly popular in the practice and research of efficiency analysis. Many
DEA applications and research have led to new developments in concepts and
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methodologies related to the DEA-efficiency analysis. Traditional DEA models
consider DMUs with multiple inputs and multiple outputs (see [3]). However, as
discussed in many DEA studies, DMUs can have a two-stage structure where the
first stage uses inputs to produce outputs that then become the inputs to the sec-
ond stage. The second stage thus consumes these first stage outputs to produce
its outputs.

The issue of network DEA has been extensively studied. Recently, impor-
tant steps toward the development of two-stage DEA have been taken by Färe
and Grosskopf [10], Seiford and Zhu [16], Lothgern and Tambour [15], Färe and
Grosskopf [11], Cook et al. [8], Hoopes et al. [13], Zhu [18], Chen and Zhu [5],
Kao [14], Chen et al. [4, 6], Tone and Tsutsi [17], Chen et al. [7], Cook et al. [9]
and Amirteimoori [1]. Seiford and Zhu [16] introduced the two-stage processes
and applied the standard DEA model to each stage. However, as noted in [5, 18],
such an approach may conclude that two inefficient stages lead to an overall effi-
cient DMU with the inputs of the first stage and outputs of second stage. Golany
et al. [12] developed an efficiency measurement framework for systems composed
of two subsystems arranged in series. Their approach expands the technology sets
of each subsystem by allowing each to acquire resources from the other in ex-
change for delivery of the appropriate products, and to form composites from
both subsystems.

Kao (2008) developed a parallel DEA model to measure the efficiency of the
system which is composed of parallel production units. Chen et al. [4] proposed
an additive efficiency decomposition approach wherein the overall efficiency is ex-
pressed as a weighted sum of the efficiencies of the individual stage. Chen et al. [6]
examined relations and equivalent between the existing DEA approaches for mea-
suring the performance of two-stage processes. Tone and Tsutsui (2009) proposed
a network DEA model based on the weighted slack-based measure approach which
accounts for the importance of each component. Chen et al. [7] developed a set of
DEA models for measuring the performance of two-stage network processes with
non splittable shared inputs. Additive efficiency decomposition for the two-stage
network process was presented. Cook et al. [9] examined the more general problem
of an open multistage process. In their paper, some outputs from a given stage may
leave the system while others become inputs to the next stage. As well, new inputs
can enter at any stage. They represented the overall efficiency of such a structure
as an additive weighted average of the efficiencies of the individual components or
stages that make up that structure. Chen et al. [7] developed a set of DEA models
for measuring the performance of two-stage network processes with non splittable
shared inputs.

This paper develops a parallel-series DEA model for measuring efficiency of
decision processes which can be divided into two stages. In these processes, the first
stage consists of two parallel production lines connected serially with the process
in an assembly line. The two production lines use their own inputs and a shared
input to generate two types of outputs which become inputs to the assembly line.
The assembly line is then fed by a mixture of these two outputs and its own inputs
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Figure 1. The production system.

to produce the final products. The structure in the current paper is different from
those two-stage processes in the papers mentioned above, and the previous models
are not suitable here. Additive efficiency decomposition for production lines and
the assembly line is presented. The model proposed in this paper, determines a
best resource split to optimize the additive efficiency of the whole system. We show
herein that the presence of shared resources leads to a linear model rather than a
nonlinear model.

The structure of the paper is organized as follows. The next section presents
the proposed two-stage model. Section 3 applies the new approach to the 17 pre-
fabricated cabin plants. Conclusions follow in Section 4.

2. A two stage model

Consider a two-stage production process shown in Figure 1. Suppose we have
n DMUs and each DMUp : p = 1, . . . , n consists of two parallel production
lines and an assembly line. The first and second production lines use their own
inputs z

(1)
p = (z(1)

1p , z
(1)
2p , . . . , z

(1)
Dp)

T and z
(2)
p = (z(2)

1p , . . . , z
(2)
2p , . . . , z

(2)
Hp)

T , respec-
tively. We also assume that DMUp has m inputs xp = (x1p, x2p, xmp)T that
should be shared among the two production lines. The observed shared input
to production lines 1 and 2 are respectively, x

(1)
p = (x(1)

1p , x
(1)
2p , . . . , x

(1)
mp)T and

x
(2)
p = (x(2)

1p , x
(2)
2p , . . . , x

(2)
mp)T and obviously we have xp = x

(1)
p +x

(2)
p . In optimality,

some portion 0 ≤ α
(1)
i < 1 of the shared inputs xip is allocated to the first line, and

the remainder 0 ≤ α
(2)
i < 1 is allocated to the second line with α

(1)
i +α

(2)
i = 1. So,

the first component uses inputs α
(1)
i xip: i = 1, 2, . . . , m and z

(1)
dp : d = 1, 2, . . . , D

to produce k
(1)
lp : l = 1, 2, . . . , L and the second line uses α

(2)
i xip: i = 1, 2, . . . , m

and z
(2)
hp : h = 1, 2, . . . , H to produce k

(2)
bp : b = 1, 2, . . . , B. The assembly line is fed

by a mixture of inputs k
(1)
p , k

(2)
p and an external input fp = (f1p, f2p, . . . , fQp)T
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and the final product is yp = (y1p, y2p, . . . , ysp)T . Let α(d) = (α(d)
1 , α

(d)
2 , . . . , α

(d)
m )T :

i = 1, 2.
Our object is to determine the relative efficiencies of the two production lines

and assembly line along with an overall efficiency of the whole system. An Algebraic
representation of the production possibility set of technology under consideration
for the production line d : d = 1, 2 in constant returns to scale environment is
defined as:

Td =

{(
α(d)diag(x), z(d), k(d)

)
:
(
α(d)diag(x)

)T

≥
n∑

j=1

λjx
(d)
j , z(d) ≥

n∑
j=1

λjz
(d)
j ,

k(d) ≤
n∑

j=1

λjk
(d)
j , 0 ≤ α(d) ≤ eT , λj ≥ 0, j = 1, 2, . . . , n

}

in which diag(x) is a diagonal matrix with diagonal elements x1, x2, . . . , xm and
eT = (1, 1, . . . , 1).

The symbol diag(x) is used to define the products α
(d)
i xi in matrix form as

follows:

α(d)diag(x)=
(
α

(d)
1 , α

(d)
2 , . . . , α(d)

m

)⎡⎢⎢⎣
x1 0 . . . 0
0 x2 . . . 0
...

...
...

...
0 0 . . . xm

⎤
⎥⎥⎦=
(
α

(d)
1 x1, α

(d)
2 x2, . . . , α

(d)
m xm

)
.

Also, the superscript t in (α(d)diag(x))t is used to transpose of the matrix
α(d)diag(x). Now, let TA be the production possibility set of technology under
consideration for the assembly line. TA is defined as follows:

TA =

{(
k(1), k(2), f, y

)
: k(1) ≥

n∑
j=1

λjk
(1)
j , k(2) ≥

n∑
j=1

λjk
(2)
j ,

f ≥
n∑

j=1

λjfj, y ≤
n∑

j=1

λjyj, λj ≥ 0, j = 1, 2, . . . , n

}
.

In applying the model described herein, attention is paid to additive model. In the
assessment of production lines 1 and 2, the output measures k(1) and k(2) should
be increased. On the other hand, these measures are considered as inputs to the
assembly line and they should be decreased. If we treat the system’s operation as
a black-box, ignoring the intermediate measures may yield to an efficient DMU
with inefficient production lines and/or assembly line. In model we proposed, the
intermediate measures k(1) and k(2) are considered to be free variables, and they
will be increased or decreased to make the whole system as efficient. To provide
for a realistic picture of DMU’s performance, some restrictions are imposed on the

variables α(1) and α(2). Ratio constraints of the form l
(α)
i ≤ α

(1)
i

α
(2)
i

≤ u
(α)
i on the
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portion variables α
(1)
i and α

(2)
i are imposed. These constraints reflect the relative

importance of the shared resources that are split between two production lines.
Consider the assessment of DMUp : p ∈ {1, 2, . . . , n} in additive form. Taking

in to consideration the forms of T1, T2 and TA and considering α
(1)
i + α

(2)
i = 1 :

i = 1, 2, . . . , m, this is obtained as the optimal value of the following model:

Max Ep = eT s(x(1)) + eT s(x(2)) + eT s(k1) + eT s(z1) + eT s(z2) + eT s(k2)

+ eT s(f) + eT s(y)

s.t.

Line 1 :
n∑

j=1

λjx
(1)
j + s(x(1)) =

(
α(1)diag

(
x(1)

p + x(2)
p

))t

,

n∑
j=1

λjz
(1)
j + s(z(1)) = z(1)

p ,

n∑
j=1

λjk
(1)
j + s(k(1)) = k(1)

p .

Line 2 :
n∑

j=1

λjx
(2)
j + s(x(2)) =

(
α(2)diag

(
x(1)

p + x(2)
p

))t

,

n∑
j=1

λjz
(2)
j + s(z(2)) = z(2)

p ,

n∑
j=1

λjk
(2)
j + s(k(2)) = k(2)

p .

Assembly Line : (1.1)
n∑

j=1

λjk
(1)
j + s(k(1)) = k(1)

p ,

n∑
j=1

λjk
(2)
j + s(k(2)) = k(2)

p ,

n∑
j=1

λjfj + s(f) = fp,

n∑
j=1

λjyj − s(y) = yp.

General constraint :

l
(α)
i ≤ α

(1)
i

α
(2)
i

≤ u
(α)
i ,

α(1) + α(2) = e,

α(1), α(2), λj ≥ 0, for all j,

s(x(1)), s(z(1)), s(x(2)), s(z(2)), s(f), s(y) ≥ 0.
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Theorem 2.1. The LP model (1) is feasible.

Proof. Clearly,

λp = 1, λj = 0, j = 1, 2, . . . , n, j �= p,

s(x(1)) = s(z(1)) = s(k(1)) = s(x(2)) = s(z(2)) = s(k(2)) = s(f) = s(y) = 0,

α
(1)
i =

x
(1)
ip

x
(1)
ip + x

(2)
ip

, i = 1, 2, . . . , m,

α
(2)
i =

x
(2)
ip

x
(1)
ip + x

(2)
ip

, i = 1, 2, . . . , m,

is a feasible solution to this problem. �

Definition 2.2. DMUp is said to be additive efficient if and only if Ep = 0.

Definition 2.3. DMUp is said to be additive efficient in stage 1 if and only if
E

(1)
p = eT s(x(1)) + eT s(k1) + eT s(z1) = 0.

Definition 2.4. DMUp is said to be additive efficient in stage 2 if and only if
E

(2)
p = eT s(x(2)) + eT s(z2) + eT s(k2) = 0.

Definition 2.5. DMUp is said to be additive efficient in assembly line if and only
if E

(A)
p = eT s(k1) + eT s(k2) + eT s(f) + eT s(y) = 0.

For an inefficient production line d : d = 1, 2, we have E
(d)
p > 0. In this case, we

must have

x(d)
p =

n∑
j=1

λjx
(d)
j + s(x(d)) +

[
x(d)

p − α(d)diag
(
x(1)

p + x(2)
p

)]
,

z(1)
p =

n∑
j=1

λjz
(1)
j + s(z(1)),

k(1)
p =

n∑
j=1

λjk
(1)
j + s(k(1)),
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When E
(A)
p > 0, the pth assembly line is inefficient and we have

k(1)
p =

n∑
j=1

λjk
(1)
j + s(k(1)),

k(2)
p =

n∑
j=1

λjk
(2)
j + s(k(2)),

fp =
n∑

j=1

λjfj + s(f),

yp =
n∑

j=1

λjyj − s(y).

The production and assembly lines can be improved and become efficient by delet-
ing the input excess and augmenting the output shortfalls.

It is to be noted that the intermediate measures k(1) and k(2) may be increased
or decreased to make the whole system as efficient. These operations are called
CRS projection (constant returns to scale) and make the inefficient process as
efficient.

Generalization of the model.
In model 1, we assumed there are only two production stations in the first

stage. Consider now that there are G parallel production stations and the gth
station uses inputs α

(g)
i xip : i = 1, 2, . . . , m and z

(g)
(hp) : h = 1, 2, . . . , Hg to

generate k
(g)
(lp) : l = 1, 2, . . . , Lg. The production possibility set of technology

under consideration for production line g : g = 1, 2, . . . , G is as follows:

Tg =

{(
α(g)diag(x), z(g), k(g)

)
:
(
α(g)diag(x)

)T

≥
n∑

j=1

λjx
(g)
j , z(g) ≥

n∑
j=1

λjz
(g)
j ,

k(g) ≤
n∑

j=1

λjk
(g)
j , 0 ≤ α(g) ≤ eT , λj ≥ 0, j = 1, 2, . . . , n

}
.

Moreover, the production possibility set of technology under consideration for the
assembly line is defined as follows:

TA =

{(
k(1), k(2), . . . , k(G), f, y

)
: k(g) ≥

n∑
j=1

λjk
(g)
j , g = 1, 2, . . . , G,

f ≥
n∑

j=1

λjfj, y ≤
n∑

j=1

λjyj, λj ≥ 0, j = 1, 2, . . . , n

}
.
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Taking in to account the forms of Tg : g = 1, 2, . . . , G and TA and consider-
ing

∑G
g=1 α

(g)
i = 1, i = 1, 2, . . . , m, this is obtained as the optimal value of the

following model:

Max Ep =
G∑

g=1

eT s(x(g)) +
G∑

g=1

eT s(kg) +
G∑

g=1

eT s(zg) + eT s(f) + eT s(y)

s.t.

P roduction line g : g = 1, 2, . . . , G :

n∑
j=1

λjx
(g)
j + s(x(g)) =

(
α(g)diag

(
G∑

g=1

x(g)
p

)t

,

n∑
j=1

λjz
(g)
j + s(z(g)) = z(g)

p ,

n∑
j=1

λjk
(g)
j + s(k(g)) = k(g)

p .

Assembly line:

n∑
j=1

λjk
(g)
j + s(k(g)) = k(g)

p , g = 1, 2, . . . , G,

n∑
j=1

λjfj + s(f) = fp,

n∑
j=1

λjyj − s(y) = yp.

General constraint:

l(α) ≤ α(i)

α(j)
≤ u(α), for all i and j,

G∑
g=1

α(g) = 1,

α(g), λj ≥ 0, for all g and j,

s(x(g)), s(z(g)), s(f), s(y) ≥ 0.
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Table 1. The input-output measures used in this application.

Production line: Inputs Outputs

Structure production line Steel (meter), wood (m2) Structure
D & W production line Aluminum (meter), Glass (m2), wood (m2) Door, window

Assembly line Asbestos cement (m2 ), Concrete (Tone) Cabin

Figure 2. The production process of prefabricated cabin.

3. Application

In this section, we apply the two-stage production process discussed in this paper
with the analysis of manufacturing company’s activities. A limited company in
Golestan, Iran, has 17 plants that produce prefabricated cabins. Each manufactory
consists of two production lines arranged in series: structure production line and
doors and windows (D&W ) production line. The structure production line uses
steels (z(1)

1 ) and some portion of woods (x1) to produce structures (k(1)). Parallel
to this line, the D&W production line uses glasses (z(2)

2 ), some portion of woods
(x2) and aluminums (z(2)

1 ) to produce doors and windows (k(2)). The produced
structures, doors and windows will be assembled in the assembly line to produce
the final products that are prefabricated cabins (y). The assembly line uses two
external inputs: corrugated plate (Asbestos cement)(f1) and concrete(f2).

The input-output measures that are used in this application are summarized in
Table 1.

The production process is depicted in Figure 2. The data for a six-month period
is displayed in Table 2. The results from model (1) are reported in Table 3 where the
columns are the inefficiency slacks obtained from model 1. As the table indicates,
eight plants are efficient in overall sense. The projection points are listed in Table 4
(note that incomplete projects are acceptable by the board of management and
hence, the input/output measures are not restricted to take integer values).
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Table 2. Plants data.

DMUj x(1) x(2) z
(1)
1 z

(2)
1 z

(2)
2 k(1) k(2) y1 f1 f2

1 5 5.5 12 700 9 8 168 328 160 310 1600

2 4.6 4.4 11 500 9 4 120 226 108 290 1100

3 3.5 5 11 300 11 7 84 220 84 160 800

4 2 3.2 8000 12 6 65 156 69 165 750

5 6.3 3.7 13 000 12 11 144 268 132 260 1400

6 4.7 5.8 13 500 22 23 158 280 149 290 1500

7 4.3 5.2 12 000 29 31 144 268 130 230 1350

8 6.8 4.2 13 450 13 9 168 326 158 300 1600

9 5 3.5 11 010 28 11 120 240 112 260 1100

10 4.1 3.4 10 500 19 12 89 178 84 160 900

11 4.8 5.2 12 350 10 9 144 284 132 235 1300

12 4.4 5.6 13 000 29 17 144 262 129 225 1350

13 3.8 4.2 11 505 9 11 108 200 99 215 1000

14 5 3.5 9550 22 21 96 178 82 165 850

15 5.2 6.3 13 800 24 11 168 330 157 315 1600

16 5.4 5.1 13 500 22 21 141 312 144 300 1500

17 6.8 5.7 13 505 24 11 153 318 150 295 1550

Table 3. Results from model 1.

DMUj Ep E
(1)
p E

(2)
p E

(A)
p α1 α2

DMU

1 0 0 0 0 0.4762 0.5238

2 0 0 0 0 0.5111 0.4889

3 0 0 0 0 0.4118 0.5882

4 2632.8781 2516.3469 25.2187 98.4125 0.5439 0.4561

5 2619.8625 2529.2375 6.375 87.05 0.5462 0.4538

6 0 0 0 0 0.4476 0.5524

7 0 0 0 0 0.4526 0.5474

8 387.9808 361.9602 1.3839 23.4801 0.4884 0.5116

9 0 0 0 0 0.5882 0.4118

10 3698.46 3622.8657 21.88 59.1829 0.6027 0.3973

11 0 0 0 0 0.48 0.52

12 0 0 0 0 0.44 0.56

13 3692.1469 3652.4281 6.5312 34.2875 0.5746 0.4254

14 3134.5812 3054.2687 44.1875 55.925 0.6684 0.3316

15 1409.7531 1342.4719 26.4687 52.1125 0.5307 0.4693

16 2186.35 2060.85 44.5 87.6 0.5286 0.4714

17 1680.8438 1596.9063 29.5625 60.375 0.5875 0.4125
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Table 4. Projection points.

DMUj x(1) x(2) z
(1)
1 z

(2)
1 z

(2)
2 k(1) k(2) y1 f1 f2

1 5 5.5 12 700 9 8 168 328 160 310 1600

2 4.6 4.4 11 500 9 4 120 226 108 290 1100

3 3.5 5 11 300 11 7 84 220 84 160 800

4 2.16 2.37 5476.88 3.88 3.45 72.45 141.45 69 133.69 690

5 4.13 4.54 10 477.5 7.43 6.6 138.6 270.6 132 255.75 1320

6 4.7 5.8 13500 22 23 158 280 149 290 1500

7 4.3 5.2 12 000 29 31 144 268 130 230 1350

8 5.13 5.63 13 088.76 9.99 9 167.53 327.63 158 300 1575.36

9 5 3.5 11 010 28 11 120 240 112 260 1100

10 2.65 2.98 6878.86 7.45 7.28 89.14 172.39 84 160 846.29

11 4.8 5.2 12350 10 9 144 284 132 235 1300

12 4.4 5.6 13 000 29 17 144 262 129 225 1350

13 3.09 3.4 7858.13 5.57 4.95 103.95 202.95 99 191.81 990

14 2.56 2.82 6508.75 4.61 4.1 86.1 168.1 82 158.88 820

15 4.91 5.4 12 461.88 8.83 7.85 164.85 321.85 157 304.19 1570

16 4.5 4.95 11 430 8.1 7.2 151.2 295.2 144 279 1440

17 4.69 5.16 11 906.25 8.44 7.5 157.5 307.5 150 290.63 1500

The interpretation of our model can be illustrated by considering a specific plant,
say plant 10. The production lines 1 and 2 and the assembly line are inefficient in
this plant. The shared resource to this plant should be reduced from its current
level 7.5 (4.1 for production line 1 and 3.4 for the second line) to 5.63 (2.65 for
production line 1 and 2.98 for the second line). The projection point to this plant is(

x(1), x(2), z
(1)
1 , z

(2)
1 , z

(2)
2 , k(1), k(2), y1, f1, f2

)
=

(2.65, 2.98, 6878.86, 7.45, 7.28, 89.14, 172.39, 84, 160, 846.29).

Considering the optimal values to α1 and α2, we conclude that the first interme-
diate measure k(1) should be increased from 89 to 89.14, whereas, the second one,
k(2), should be decreased from 178 to 172.39. These reductions make the whole
chain as efficient.

4. Conclusion

This paper discusses the efficiency measurement of two-stage production pro-
cesses with three processes where two parallel processes in the first stage are con-
nected serially with the process in the second stage. For this type of production
system, an additive efficiency measure has been defined. A method for determining
the DEA frontier points for inefficient components in these parallel-series produc-
tion systems has been faced. This application of parallel-series production process
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involves shared resources and the model proposed in this paper, determines an
optimal split of shared resources. The case of prefabricated cabin plants is given
using this newly developed approach.

The DEA model discussed in this paper is under CRS, in other words, an as-
sumption of constant returns to scale is considered. The approach is also applicable
to variable returns to scale under the BCC model of Banker at al. [2] by including
the constraint

∑n
j=1 λj = 1 in the LP model 1.

Acknowledgements. The authors are grateful to the editor professor Ridha Mahjoub for
ensuring a timely review process. Any errors and omissions are our own.
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