
RAIRO-Oper. Res. 48 (2014) 189–210 RAIRO Operations Research

DOI: 10.1051/ro/2014007 www.rairo-ro.org

A DISTRIBUTED TRANSPORTATION SIMPLEX
APPLIED TO A CONTENT DISTRIBUTION NETWORK

PROBLEM

Rafaelli de C. Coutinho
1
, Lúcia M.A. Drummond

1

and Yuri Frota
1

Abstract. A Content Distribution Network (CDN) can be defined as
an overlay system that replicates copies of contents at multiple points of
a network, close to the final users, with the objective of improving data
access. CDN technology is widely used for the distribution of large-sized
contents, like in video streaming. In this paper we address the problem
of finding the best server for each customer request in CDNs, in order
to minimize the overall cost. We consider the problem as a transporta-
tion problem and a distributed algorithm is proposed to solve it. The
algorithm is composed of two independent phases: a distributed heuris-
tic finds an initial solution that may be later improved by a distributed
transportation simplex algorithm. It is compared with the sequential
version of the transportation simplex and with an auction-based dis-
tributed algorithm. Computational experiments carried out on a set of
instances adapted from the literature revealed that our distributed ap-
proach has a performance similar or better to its sequential counterpart,
in spite of not requiring global information about the contents requests.
Moreover, the results also showed that the new method outperforms the
based-auction distributed algorithm.

Keywords. CDN, transportation simplex algorithm, distributed
algorithm.

Mathematics Subject Classification. 68W15, 68R05.

Received September 11, 2014. Accepted November 28, 2013.

1 Institute of Computing – Fluminense Federal University, RJ, Brazil.
{rcoutinho,lucia,yuri}@ic.uff.br

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2014

http://dx.doi.org/10.1051/ro/2014007
http://www.rairo-ro.org
http://www.edpsciences.org

190 RAFAELLI DE C. COUTINHO ET AL.

1. Introduction

A Content Distribution Network (CDN) can be defined as an overlay system
that replicates copies of contents at multiple points of a network, close to the
final users, with the objective of improving data access. Some problems need to
be considered in order to implement and operate a CDN. At first, the servers
need to be strategically located in the network, aiming to cover a wide range of
potential clients. This problem is called the Server Placement Problem (SPP) [4].
Once servers are placed, and given a short-term forecast (say, for the next hours)
of the clients requests for contents, it is necessary to decide how contents should be
replicated among the servers in order to minimize the expected access time. This
second problem is called the Replica Placement Problem (RPP) [20]. The last one,
called the Request Routing System Problem (RRSP) consists in, given the client
requests and the configuration of the CDN (server/link capacities, latency, costs,
etc.), finding the best assignment of each request to a server that holds a copy
of the required content. Remark that, while it is usual that most requests will be
really assigned to a single server (the strict meaning of the word “assignment” in
the optimization community), the problem definition allows splitting the demand
of a request on different servers. This work proposes viewing and solving the RRSP
as a Transportation Problem (TP). The Transportation Problem (TP) is a classical
optimization problem [1] that deals with sources where a supply of some items are
available and destinations where the items are demanded. The objective is finding
a minimum cost way of transporting the items. Given its vast range of applications,
the TP has obviously been extensively studied. The traditional sequential approach
can only tackle a distributed problem after all data is collected in a central node,
then the solution is broadcast over the network. However, it becomes increasingly
harder to use this sequential approach, as the volume of data to be collected over
a large wide area network increases. The difficulty lies in maintaining the data
updated in a highly dynamic environment. In fact, the exponential growth of the
Internet over the last three decades could only be sustained because some of its
key protocols were designed as distributed algorithms.

In this work, we propose a distributed version of the Transportation Simplex,
an algorithm that was devised by Dantzig as a specialization of the Simplex algo-
rithm for general linear programming problems [10]. Although the Transportation
Simplex is still the most usual algorithm for the sequential TP, to the best of our
knowledge, no effort was made to obtain solution for its distributed version, where
the sources and destinations are nodes of an actual network and the problem data
is distributed among them.

An alternative approach to solve this problem would be electing a leader server
to locally solve the problem and then broadcast the solution. Considering that
there is a high cost to elect a leader, collect data, solve the problem and distribute
the solution, and also the memory demand at the leader server, the fully distributed
approach proposed here is an appealing alternative for the Request Routing System
Problem.

DISTRIBUTED TRANSPORTATION SIMPLEX 191

In this paper we also compare the proposed algorithm with an auction-based
algorithm. The auction algorithm is a parallel relaxation method for solving the
classical assignment problem and has been generalized to solve linear transporta-
tion problems in reference [5]. The algorithm operates like an auction, there is a
price for each object, and at each iteration, unassigned persons bid simultaneously
for objects thereby raising their prices. Objects are then awarded to the highest
bidder. Although it has been proposed for shared memory multiprocessors, we
adjusted it so that it also executed in distributed environments.

The remaining of the paper is organized as follows. Section 2 provides an
overview of related works that solve the transportation problem in parallel. In
Section 3 we show the modelling of the RSSP as a transportation problem. In
Section 4 the developed distributed auction algorithm is shown. The proposed
distributed algorithms, both the one used to obtain an initial solution as the dis-
tributed transportation simplex, are presented in Section 5. Section 6 discusses the
implementations and report the results of computational tests. Finally, Section 7
concludes the paper.

2. Related work

In the related literature, two well known approaches are presented to solve the
transportation problem in parallel. The first one consists of parallel versions of the
network simplex algorithm. Those algorithm solves the minimum cost network flow
problem, that includes the transportation problem as a particular case. The second
approach considers auction algorithms to solve linear transportation problems.

In reference [8], a primal network simplex algorithm, that applies decomposi-
tion of the original problem into subproblems, is proposed. Three variants of this
parallel algorithm are presented. In the first one, each process executes the same
algorithm over a different subproblem. Processes exchange parts of subproblems,
periodically, in order to eliminate arcs that connect subproblems of different pro-
cesses, called across arcs. In the second strategy, additionally to the procedure
proposed previously, some processes are dedicated uniquely to perform pricing
operations. Finally, in the third method, a process can interrupt another one, to
transfer a subproblem when an across arc appears in the solution. In all cases, the
global optimal solution is found when all local problems are solved and there are
no candidate across arc to enter the solution. Tests were performed in a shared
memory multiprocessor. Almost linear speedups were obtained on instances cor-
responding to multi-period network problems.

A parallel dual simplex algorithm for shared memory parallel computers is in-
troduced in reference [18]. The traditional simplex (primal or dual) does not offer
many possibilities for parallelism, because it moves from a feasible basic solution
to another by performing one pivoting operation at a time. Then, Thulasiraman
et al. proposed a dual simplex method that performs concurrent pivoting opera-
tions, by executing each of them over small subgraphs. This operation consists of
traversing the spanning tree of the graph, corresponding to a basis, from leaves

192 RAFAELLI DE C. COUTINHO ET AL.

to root, identifying clusters that can perform concurrent pivoting. Each process
consists of a graph node and the communication between processes uses shared
memory. Tests were run in the multiprocessor BBN Butterfly. Good speedups were
observed only for a small number of processors, adding more processors did not
decrease computational times. This indicates that the test instances only allowed
a limited number of concurrent pivots.

In reference [11] the authors presented a similar approach by introducing a syn-
chronous parallel primal simplex algorithm for transportation problems on shared
memory parallel computers. The method also performs concurrent pivoting op-
erations by distributing the cost matrix across the machine with each processor
storing a contiguous block of rows. Comparisons were made with parallel assign-
ment problem algorithms but there was no clear winner.

Later, a parallel primal simplex method for minimum cost network flow problem
is also proposed in [2]. A greater degree of parallelism is achieved by also breaking
down the pricing (not only the pivots) into different processors. A monitor is
used to synchronize parallel processes and to schedule tasks to processors. Those
tasks can (i) select an arc and make the pivoting; (ii) update the dual variables;
or (iii) perform the pricing operation. Tests were executed on a shared memory
multiprocessor, Sequent Symmetry S81 with 20 processors and 32 Mbytes of shared
memory. For the instances tested, an average speedup of 8.26 was reached.

A recent review of parallel simplex methods is presented in reference [12]. Ac-
cording to it, there is no parallelization of the simplex method that offers signif-
icant improvement in performance for large and sparse LP problems. However,
some implementations of parallel solvers applied to dense or specific classes of
linear programs were successful.

Concerning auction-based parallel algorithms, Bertsekas and Castañon [5] pro-
posed the converting of the transportation problem into an assignment one, intend-
ing to use a previously introduced auction algorithm for the assignment problem
with small modifications to exploit the special structure of the network. Later, they
discussed about parallel implementations of the auction algorithm in shared mem-
ory multiprocessors with several degrees of synchronization among the processes
for the assignment problem [6]. More recently, a particular case of the assignment
problem, that deals with the lack of global information and limited communica-
tion capability, is solved by a distributed auction algorithm that maximizes the
total assignment within a linear approximation of the optimal solution [19]. In
reference [9], a novel variation of the assignment problem is tackled by an auction
algorithm that considers a hierarchy of decision makers.

3. Modeling the RSSP as a transportation problem

Let G = (V, A) be a complete bipartite graph, where the vertex set V is divided
into subsets V1 with n sources and V2 with m destinations. The arc (i, j) from
source i to destination j has a cost cij . Each source i ∈ V1 is associated with a
capacity bi, while each destination j ∈ V2 is associated with a demand dj . It is

DISTRIBUTED TRANSPORTATION SIMPLEX 193

assumed that capacities and demands are balanced, i.e.,
∑

i∈V1
bi =

∑
j∈V2

dj ; if
this is not the case, an artificial vertex can be introduced to absorb the excess
of capacity or demand. The Transportation Problem (TP) consists in solving the
following linear program:

min
∑

i∈V1

∑
j∈V2

cijxij (3.1)
s.t.

∑
i∈V1

xij = dj , ∀j ∈ V2, (3.2)
∑

j∈V2
xij = bi, ∀i ∈ V1, (3.3)

xij ≥ 0, ∀i ∈ V1, j ∈ V2, (3.4)

where variables xij represent the flow from i to j. Remark that any of the equalities
in (3.2)–(3.3) is implied by the remaining m+n−1 equalities and can be removed.

To cast the RRSP as a TP, some considerations are made about typical CDNs:

• A CDN is composed by a set I of servers, spread around a large geographical
area, that can communicate using the underlying Internet structure.

• A CDN hosts a set C of distinct contents. At a given moment, a server i ∈ I
has a subset Ci of contents, determined by the last solution of the Replica
Placement Problem. Alternatively, it can be said that for each c ∈ C, Ic ⊆ I
is the subset of servers that have c. It is usual that only a single central server
(which is actually a datacenter) contains a copy of all contents.

• The servers have a limited amount of outgoing bandwidth available. The band-
width of server i ∈ I is given by bi.

• At a given moment, there is a set J of client requests. A request j ∈ J is
associated with a content c(j) ∈ C and with a required bandwidth of dj . The
value of dj is related to Quality of Service issues. Sometimes dj is defined as a
function of the content c(j). J(Ci) ⊆ J is the subset of requests for a content
in Ci.

• There is a subset K ⊆ I of the servers (called client servers) that not only hold
contents, they are also associated to the client requests. In other words, each
request j ∈ J is associated with a server k(j) ∈ K. When content c(j) belongs
to Ck(j), the request can possibly be attended by k(j) itself. Otherwise, it must
be redirected to servers that contain c(j). In any case, the total consumption
of bandwidth of the servers attending j is dj .

• It is assumed w.l.o.g. that there exists at most one request in server i for
a content c, so a request j ∈ J can be alternatively identified by the pair
(k(j), c(j)).

• The CDN administrator can define the communication cost ci1i2 between two
servers i1 and i2 in I, per unit of traffic, based on parameters like distance or
latency. If i1 = i2, the cost is zero. This means that fully attending a demand j
by k(j), if it is possible, costs zero. But this would still consume the bandwidth
of k(j) by dj units.

194 RAFAELLI DE C. COUTINHO ET AL.

Given the above considerations, the RRSP can be modeled as the following
linear program:

min
∑

j∈J

∑
i∈Ic(j)

cik(j)xij (3.5)

s.t.
∑

i∈Ic(j)
xij = dj , ∀j ∈ J, (3.6)

∑
j∈J(Ci)

xij ≤ bi, ∀i ∈ I, (3.7)

xij ≥ 0, ∀j ∈ J, i ∈ Ic(j), (3.8)

where variables xij are the bandwidth that server i uses to attend demand j.
By associating V1 to I and V2 to J , the relation between (3.1)–(3.4) and (3.5)–

(3.8) becomes evident. However, in order to obtain a perfect reduction of the RRSP
to a TP, some details must be fixed:

• The bipartite graph induced by (3.5)–(3.8) is not complete. The solution is
adding the missing arcs, between requests and servers that do not contain the
required content, with suitable large costs. We remark that even when many
artificial arcs are introduced, this has a small impact on the performance of
the distributed algorithms that will be proposed. This happens because most
of those arcs can be handled implicitly and they are completely ignored as soon
as a first truly feasible solution is found.

• Converting (3.7) to equality can be easily done by adding an artificial demand
of

∑
i∈I bi −

∑
j∈J dj units. If this quantity is negative, then the problem is

infeasible. Anyway, while adding an artificial demand is trivial for a sequential
TP algorithm, it is not so obvious when designing a distributed algorithm,
since it requires a global data that is not readily available in the beginning of
the algorithm.

4. The auction algorithm for the TP

The auction algorithm is a parallel relaxation method for solving the classical
assignment problem. The algorithm operates like an auction whereby unassigned
persons bid simultaneously for objects by raising their prices. Each object j has a
price pricej , with the initial prices being zero. Prices of the objects are adjusted
upwards as persons bid for the best objects, that is the object for which the
corresponding benefit minus the price is maximal. Only persons without an object
submit a bid, and objects are awarded to their highest bidder. When the prices
of some of the assigned objects become high enough, unassigned objects become
attractive and receive new bids. Thus, the algorithm executes several bidding and
assignment steps towards a full assignment of persons to objects [5].

The transportation problem is converted into an assignment problem by cre-
ating multiple copies of similar persons or objects for each source or destination,
respectively. Two objects are called similar if every person to whom they can be
assigned considers them as equally valuable, while two persons are named similar
if they assign the same value to every object. The objective of the problem is to

DISTRIBUTED TRANSPORTATION SIMPLEX 195

maximize the costs of the flows between sources and destinations. The bidding
and the assignment phases of the auction algorithm are highly parallelizable with
shared memory. The bidding can be accomplished simultaneously for all persons.
Similarly, the assignment can be accomplished simultaneously for all objects.

Considering that the servers of a CDN communicate through a network and
do not have a shared memory, the algorithm by Bertsekas and Castañon had
to be adapted to execute in a distributed way. Here the sharing of prices and
bids is accomplished through message exchanges among sources and destinations.
The Algorithm 1, named AuctionTP, presents our proposal for a based-auction
distributed algorithm for the TP. Each source accomplishes the bidding phase, by
sending flows and bids to each destination not yet completed served by it, and
by calculating new flows and bids according to the answers received from these
destinations. Each destination receives all the sent bids, updates the flows and
prices of its requests and sends an acknowledge message to all servers containing
the new prices, flows and the corresponding sources responsible for serving it. The
procedure of updating bids (12), offering flows (13), prices (17), accepted flows (17)
and ε (9) and (18) are accomplished according to the rules proposed by [5]. The
algorithm terminates with an optimal solution provided that the transportation
problem is feasible and ε < 1/ min{m, n}, where n and m are the number of sources
and destinations, respectively. Remark that as RRSP consists of a minimization
problem we multiplied each cost cij by (−1) and added the highest cost among all
of them to each one.

5. Distributed algorithm

5.1. Sequential transportation simplex

The Transportation Simplex algorithm needs an initial basic solution to start
with. The classical Northwest Corner method, described as Algorithm 2, is a con-
structive heuristic to obtain it. The method was initially devised as an easy to
execute pencil-and-paper algorithm. However, its solutions can be crude as the
method completely disregards the costs, the next variable xij that will receive
positive flow is arbitrarily chosen. The related Minimum Cost method usually ob-
tains a better initial solution by choosing a variable xij that still can be increased
with minimum cij . Anyway, the n+m− 1 basic variables found by those methods
define a tree in the bipartite graph G.

The Transportation Simplex itself [10] performs a sequence of iterations, where
basic solutions (always defined by trees in G) can be improved until they are
proved to be optimal. Each source is associated with a dual variable ui and each
destination with a dual variable vj . The construction of a dual solution uses the
constraints ui + vj = cij , for each basic variable xij . One of those variables, say
u1, can be fixed to zero, defining the root of the tree. Starting from that root, the
remaining dual variables are determined in a unique way by propagating the values
over the tree. After that, the reduced costs of the non-basic variables can also be

196 RAFAELLI DE C. COUTINHO ET AL.

Algorithm 1: Auction Algorithm for the TP
1 Initialization
2 Initial Assignment: flowaj := dj , ∀j ∈ J , where a is an artificial source;
3 for every source i that offers a content required by destination j do
4 bidij := 0;
5 offer flowij := 0;
6 priceij := 0;
7 flowij := 0;

8 end
9 ε := (maxi∈I,j∈J{cij} × min{n, m})/2;

10 Bidding Step executed by source i
11 for each destination j not totally attended by source i that requires a content in Ci

do
12 update bidij (flowij , priceij , cij , ε);
13 update offer flowij (flowij , priceij , cij);
14 send message(bidij , offer flowij , i) to destination j;

15 end
16 Upon receiving message (ACK, local price, local flow, local server) from

destination j:
17 update pricekj and flowkj , ∀k ∈ local server;
18 update ε;

19 Assignment Step executed by destination j
20 Upon receiving message (bidij , offer flowij , i) from every source i that keeps a

required content:
21 list := received messages sorted by decreasing order of bid;
22 local price := ∅;
23 local flow := ∅;
24 local server := ∅;
25 while (not full attended) or (list �= ∅) do
26 price flow receivedi := first element removed from list;
27 local price := local price ∪ bidij from price flow receivedi;
28 local flow := local flow ∪ updated offer flowij from price flow receivedi;
29 local server := local server ∪ i from price flow receivedi;

30 end
31 send (ACK, local price, local flow, local server) to every source k ∈ I ;

calculated as c̄ij = cij − ui − vr. If all reduced costs are non-negative, the solution
is optimal. Otherwise, a variable with negative reduced cost is selected to enter the
basis. This variable creates a cycle in the tree. Increasing the value of the entering
variable by θ changes the values of the other variables along the cycle, by −θ
and θ, alternating. The entering variable is increased by the maximum possible
value, which causes some variables to drop to zero. One of those variables is selected
to leave the basis, which corresponds to another tree. A complete description of
all those sequential algorithms can be found in reference [3].

DISTRIBUTED TRANSPORTATION SIMPLEX 197

Algorithm 2: Northwest Corner method
Input: Integers n and m, capacity and demand vectors b and d
Output: Flow matrix x, boolean matrix B identifying the basic variables

1 x = 0, B = false, s′ = s, d′ = d;
2 i = 1, j = 1;
3 repeat
4 Δ = min{b′i, d′

j};
5 xij = Δ, Bij = true, b′i = b′i − Δ, d′

j = d′
j − Δ;

6 if d′ �= 0 and b′i = 0 and d′
j = 0 then

7 Bi(j+1) = true;
8 end
9 if b′i = 0 then

10 i = i + 1;
11 end
12 if d′

j = 0 then
13 j = j + 1;
14 end

15 until d′ = 0;

5.2. Distributed approach

In the distributed algorithms described next, each server in I is associated to
a process, that executes the same local algorithm, which consists of sending mes-
sages, waiting for incoming messages and processing. Messages can be transmitted
independently and arrive after an unpredictable but finite delay, without error
and in sequence. Processes have distinct identities that can be totally ordered.
Initially, a server i only knows the requests (i, c), c ∈ Ci. On the other hand, it is
assumed that a server knows which contents are present in each other server (pos-
sibly using a service similar to DNS) and the corresponding communication cost.
The assumption is reasonable since content position change much less dynamically
than request data.

5.2.1. Obtaining an initial solution

DistInit is a distributed constructive heuristic, inspired by the Minimum Cost
method, but not necessarily equivalent to it. In DistInit, at first, each server tries
to attend its local requests. If it is not capable of serving a local request, a mes-
sage Serve is sent to the closest server that stores that content. Upon receiving
this message, a server answers with an ACK or a NACK message depending on
its bandwidth availability. When a server receives a NACK or an ACK with par-
tial attending, it sends another Serve message to the next closest server with the
remaining required bandwidth. When all requests are attended, the algorithm fin-
ishes. See Figure 1 for an example of an initial solution. Squares and circles repre-
sent servers and requests, respectively. The number inside the square is the server
identification i, while the two numbers inside the circle of a request j represent
(k(j), c(j)). The edges indicate which servers attend each request.

198 RAFAELLI DE C. COUTINHO ET AL.

Figure 1. Initial solution.

5.2.2. Distributed transportation simplex

The distributed transportation simplex (DistTS) initiates in the server that has
the smallest identification. It assigns zero to its dual variable u1, calculates the dual
variables v corresponding to the requests supplied by it, and sends these values to
the servers that hold those requests, through Varv messages. Upon receiving this
message, each process calculates the dual variables of the other servers that have
also contributed to attend a common request and sends these results through Varu
messages. This procedure is repeated, alternating the sending of Varv and Varu
messages until all dual variables are calculated, and consequently the reduced costs.
Now, each server selects its most negative reduced cost edge and sends a message
to the corresponding server, to introduce that non-basic variable in the solution.
Then, messages are sent along the candidate cycles to select a basic variable to
leave the solution. In the best case, this distributed algorithm can process all those
cycles (i.e. make pivot steps) in parallel. However, those candidate cycles may have
intersections, which would cause inconsistencies if they are pivoted at the same
time. So, when a conflict is detected, the cycle associated with the smallest reduced
cost is chosen to continue, while the other is canceled. For every pivot that is
performed, it is also necessary to re-calculate the dual variables. However, instead
of recalculating all of them, only the ones that belong to the new subtree are
updated. The new dual variables are propagated through Varu and Varv messages
and all procedures described above are repeated until it is detected that there is
no edge with negative reduced cost.

The steps of the Distributed Transportation Simplex can be summarized as
follows. Those steps are illustrated by Figures 2 to 5, where an example of DistTS
execution is presented.

• Build the initial dual solution tree

DISTRIBUTED TRANSPORTATION SIMPLEX 199

(a) (b)

(c) (d)

Figure 2. (a) Varv and Varu Messages; (b) Dual Solution Tree;
(c) Tree with Dual Variables; (d) Tree with Reduced Costs.

In this step, u1 is updated with zero, the corresponding dual variables v are
calculated and sent in Varv messages. Upon receiving these messages, other
processes also calculate their dual variables and send these results through
Varu messages, as shown in Figure 2a. When all dual variables are calculated,
the initial dual solution tree is built, see Figure 2b, with the corresponding
dual variables and reduced costs, as presented in Figures 2c and 2d.

• Create cycles
In this step, each server selects its most negative reduced cost edge and sends
the message Reduced cost to the corresponding server. This procedure produces
candidate cycles, as shown in Figure 3a, where three negative costs are selected
(c1

3,1,c
1
3,2 and c1

3,3).
• Select a basic variable to leave the solution

200 RAFAELLI DE C. COUTINHO ET AL.

(a) (b)

(c) (d)

Figure 3. (a) Cycles corresponding to negative reduced costs;
(b) basic variable selection to leave the solution; (c) conflict de-
tection; (d) cycle canceling.

Upon receiving a Reduced cost message, the server sends the Cycle message
along the candidate cycle to select a basic variable to leave the solution, as
seen in Figure 3b with reduced cost c1

3,3. The Cycle message is sent with the
value θ to select the edge flow with the smallest value. Initially, θ is infinity.
The value −θ or +θ is assigned to each edge of the cycle, alternately. When all
edges of the cycle are visited, the smallest flow of the edges is known. Then,
an Update message is sent along the cycle to update the flows of θ with this
smallest value. A basic variable that now has value zero is selected to leave the
solution. It is possible to select until n variables to leave the solution. However,
when these candidate cycles have intersections and they are pivoted at the

DISTRIBUTED TRANSPORTATION SIMPLEX 201

(a) (b)

Figure 4. (a) Select other cycle; (b) updating the flows.

same time, a mutual exclusion problem appears what can produce inconsistent
results.

• Cancel cycles
When a conflict is detected, the cycle associated with the smallest reduced cost
is chosen to continue, while the other is canceled. Suppose that the messages
Reduced cost corresponding to the requests 3,1 and 3,3 arrive in the server 1
with equal costs, and then the other Reduced cost message from request 3,2
with a smaller cost reaches it. In this moment, the server detects a conflict, as
shown in Figure 3c. Then, Cancel messages are sent along the cycle with the
highest reduced cost, see Figure 3d. Only after canceling the previous cycle, a
new basic variable selection is initiated (see Fig. 4a) and the flows are updated
as in Figure 4b.

• Rebuild the dual solution tree
The new tree after the pivot is rebuilt, as shown in Figure 5a, and then the new
dual variables are propagated through Varu and Varv messages, as presented
in Figure 5b.

All procedures described before are repeated until it is detected that there is
no edge with negative reduced cost.

5.2.3. Complexity analysis

At first we analyse the DistInit algorithm that aims to get an initial solution for
the TP problem. Each one of the client servers tries to attend its local requests.
In a worst case scenario, this procedure can propagate n messages for each local
request m, resulting in worst case complexities of O(n.m) messages (total num-
ber of messages sent during the algorithm), O(n) global time (maximum message

202 RAFAELLI DE C. COUTINHO ET AL.

(a) (b)

Figure 5. (a) New tree after a pivot over the shorter cycle;
(b) new propagation of dual variables.

sequence), and O(|Ji|) local time, where |Ji| is defined as the number of local
requests for each server i ∈ I.

Starting from a solution provided by the DistInit method, the DistTS initi-
ates the procedure that calculates all dual variables by sending V arv and V aru
messages, resulting in a complexity of O(n.m) messages. Next, each server selects
its most negative reduced cost edge and warns the elected corresponding server,
which in turn broadcasts its election to all other servers. In the worst case, O(n2)
messages are sent to identify candidate cycles to be processed as pivot steps. The
conflicting cycles are canceled with a complexity of O(n2) messages while each
one of the k remaining cycles (k < n) are processed and has to re-calculate its
dual variables. The new dual variables are propagated through all servers with a
total of O(k.n) messages. The above observations leads to a worst case message
complexity for the DistTS method of O(p.n.m), where p is the number of rounds
of the Simplex.

Considering now the global time of DistTS, we note that the maximum message
sequence to process the dual variables, identify/cancel cycles and broadcast new
variables, are all bounded by the height of the dual solution tree, which is O(n).
Therefore, we reach a global time complexity of O(p.n). Moreover, the local time
spent by a server is dominated by the process of selecting its most negative reduced
cost edge (O(n)), finding candidate cycles (O(n)), or selecting a request to be
served (O(m)). Since O(m) > O(n), we achieve a local time complexity of O(m).

6. Experimental results

The algorithms described in the previous section were implemented in ANSI
C and MPI (MPICH2) [15] for message passing. All experiments were performed

DISTRIBUTED TRANSPORTATION SIMPLEX 203

(with exclusive access) on a cluster with 42 nodes, each one with two processors
Intel Xeon QuadCore 2.66 Hz and 16 Gb of RAM under Linux (Red Hat) 5.3
operating system. The algorithms were tested over the set of instances presented
in reference [16] for the combined RPP and RRSP problems (both problems are
optimized at once). These instances were generated by using BRITE topology
generator [7], that tries to generate topologies similar to real networks, and are
available on the LABIC website [14]. These instances were adapted for the RRSP
by fixing the locations of the contents on the servers, as can be seen in [13]. They
are divided into three classes: easy, medium and hard. The instances from the easy
class are not considered in this work. There are twenty instances for each class, five
for each value of n ∈ {10, 20, 30, 50}. The average number of requests per server
is 70. Table 1 presents the quantity of servers, requests and contents, the average
capacity and bandwidth of all servers, for each instance.

6.1. Comparison of DistTS and the sequential version

The first experiment, reported in Table 2, is a comparison of the new distributed
heuristic DistInit with the sequential Minimum Cost Method (MCM), in terms of
solution quality. The instances are identified by the label n y, instances with y
ranging from 6 to 10 belong to class medium, those where y is between 11 and 15
are from class hard. The second and third columns present the number of requests
and the value of an optimal solution, respectively. The next two columns are the
value of the solution found by MCM and the corresponding percentual difference
to the optimal. The next columns are the average value of the solutions found by 10
executions of DistInit (since this algorithm is not deterministic), the corresponding
average difference to the optimal and the standard deviation. DistInit performed a
little better than MCM. Some very large solutions values indicate the use of some
artificial variables, so those solutions are not really feasible. MCM could not find a
feasible solution on 17 instances, this happened 14 times with DistInit. Considering
only the 23 instances where both algorithms could find a feasible solution, the
average difference to the optimal is 2.4% for MCM and 2.2% for DistInit. The small
values in the last colummn indicate that DistInit found very similar solutions on
its different executions of the same instance. However, it should be stressed that
the tests were performed in a “well-behaved” environment. Processor loads and
message delays would be much more unpredictable in a real CDN environment.

The second experiment, reported in Table 3, compare the sequential Trans-
portation Simplex method, initialized with the MCM, with the distributed Trans-
portation Simplex method (DistTS), initialized with DistInit. First, there is a
comparison of their performance on finding the first truly feasible solution, with-
out using artificial variables. In some practical contexts, one just needs a feasible
solution, so the methods can be stopped at that point. The table shows, for each
method, the value of the first solution and the number of pivot steps necessary to
find it. If the initial heuristic already produces a feasible solution, the number of
pivots is zero. The number of steps necessary to find the optimal solution is also

204 RAFAELLI DE C. COUTINHO ET AL.

Table 1. Instance Description.

Avg. of Server Avg. of Server
Instance Server Requests Contents

Capacity Bandwidth

10 6 10 627 12 118 394 4024

10 7 10 675 11 122 458 4026

10 8 10 641 13 123 875 4028

10 9 10 659 14 130 202 4025

10 10 10 649 15 124 592 4023

10 11 10 627 12 3494 4024

10 12 10 675 11 3558 4026

10 13 10 641 13 3475 4028

10 14 10 659 14 3302 4025

10 15 10 649 15 3492 4023

20 6 20 1289 15 127 773 4023

20 7 20 1356 11 130 070 4024

20 8 20 1314 13 122 498 4029

20 9 20 1352 14 122 696 4027

20 10 20 1367 13 122 637 4027

20 11 20 1289 15 3473 4023

20 12 20 1356 11 3420 4024

20 13 20 1314 13 3498 4029

20 14 20 1352 14 3596 4027

20 15 20 1367 12 3537 4027

30 6 30 2007 12 123 095 4023

30 7 30 1963 12 123 887 4022

30 8 30 2021 11 124 698 4023

30 9 30 1991 11 124 119 4022

30 10 30 1998 11 126 618 4031

30 11 30 2007 12 3495 4023

30 12 30 1963 12 4620 4022

30 13 30 2021 11 3598 4023

30 14 30 1991 11 3552 4022

30 15 30 1998 11 3518 4031

50 6 50 3391 11 125 785 4025

50 7 50 3329 11 124 544 4025

50 8 50 3214 15 123 678 4023

50 9 50 3303 15 121 720 4028

50 10 50 3295 13 120 115 4026

50 11 50 3391 11 3565 4025

50 12 50 3329 11 3504 4025

50 13 50 3314 15 3398 4023

50 14 50 3303 15 4160 4028

50 15 50 3295 13 3535 4026

DISTRIBUTED TRANSPORTATION SIMPLEX 205

Table 2. Heuristic solution: DistInit x MCM.

MCM DistInit
Instance Opt

Value %Opt Value %Opt SD

10 6 471 763 471 763 0.0 471 763 0.0 0.0

10 7 306 227 12 055 281 3 836.7 306 227 0.0 0.0

10 8 378 231 380 743 0.7 379 416 0.3 0.0

10 9 461 161 360 134 315 77 992.9 66 494 292 14 318.9 57.5

10 10 501 082 516 506 3.1 516 538 3.1 1.1

10 11 471 763 471 763 0.0 471 763 0.0 0.0

10 12 316 065 104 204 534 32 869.3 93 844 995 29 591.7 7.6

10 13 378 231 380 743 0.7 379 416 0.3 0.0

10 14 461 161 360 134 315 77 992.9 104 635 498 22 589.6 54.3

10 15 501 082 516 506 3.1 519 473 3.7 0.8

20 6 1 434 570 298 622 394 20 716.2 69 422 807 4 739.3 106.5

20 7 916 306 974 232 6.3 950 868 3.8 0.6

20 8 1 158 373 252 787 670 21 722.6 186 742 182 16 021.1 34.6

20 9 1 160 991 814 687 624 70 071.7 542 353 658 46 614.7 18.8

20 10 853 256 864 902 1.4 864 245 1.3 0.1

20 11 1 434 570 298 622 394 20 716.2 90 560 889 6 212.8 80.4

20 12 916 306 974 232 6.3 951 267 3.8 0.7

20 13 1 158 373 252 787 670 21 722.6 181 488 041 15 567.5 19.7

20 14 1 160 991 814 687 624 70 071.7 481 505 793 41 373.7 22.6

20 15 839 076 845 561 0.8 845 503 0.8 0.2

30 6 1 443 887 1 452 805 0.6 1 471 337 1.9 0.3

30 7 1 280 967 1 299 447 1.4 1 311 361 2.4 0.2

30 8 1 132 309 1 187 076 4.8 1 168 246 3.2 1.6

30 9 1 169 035 1 219 235 4.3 1 226 495 4.9 0.4

30 10 1 150 971 111 066 244 9 549.8 87 874 822 7 534.8 50.7

30 11 1 458 771 1 467 689 0.6 1 487 350 2.0 0.2

30 12 1 280 967 1 299 447 1.4 1 308 424 2.1 0.4

30 13 1 132 309 1 187 076 4.8 1 168 002 3.2 1.5

30 14 1 182 625 1 232 757 4.2 1 241 409 5.0 0.3

30 15 1 150 971 111 066 244 9 549.8 68 044 774 5 811.9 113.0

50 6 2 223 512 232 991 437 10 378.5 2 326 645 4.6 0.9

50 7 1 655 212 1 674 253 1.2 1 670 467 0.9 0.2

50 8 3 065 126 81 444 220 2 557.1 100 397 235 3 175.5 68.0

50 9 3 029 901 3 111 283 2.7 3 117 665 2.9 0.4

50 10 2 196 471 2 250 427 2.5 2 227 284 1.4 0.5

50 11 2 223 512 232 991 437 10 378.5 2 333 775 5.0 0.7

50 12 1 655 212 1 674 253 1.2 1 668 489 0.8 0.2

50 13 3 065 126 81 444 220 2 557.1 162 122 968 5 189.3 35.3

50 14 3 011 459 163 208 074 5 319.6 14 219 738 372.2 126.4

50 15 2 196 403 2 223 243 1.2 2 217 503 1.0 0.2

206 RAFAELLI DE C. COUTINHO ET AL.

Table 3. Sequential transportation simplex x DistTS.

Instance

Sequential DistTS

Feasible Final Feasible Final

Solution Solution Solution Solution
Solution Pivots Pivots Solution Pivots Pivots

10 6 471 763 0 0 471 763 0 0

10 7 306 303 1 2 306 227 0 0

10 8 380 743 0 4 380 365 0 1

10 9 469 533 18 23 491 423 2 20

10 10 516 506 0 10 526 855 0 17

10 11 471 763 0 0 471 763 0 0

10 12 316 443 5 6 316 874 2 3

10 13 380 743 0 4 380 615 0 1

10 14 469 533 18 23 491 653 4 22

10 15 516 506 0 10 527 942 0 21

20 6 1 465 556 17 52 1 555 328 5 46

20 7 974 232 0 86 938 719 0 77

20 8 1 165 685 12 26 1 385 258 12 32

20 9 1 162 230 57 74 1 170 782 43 86

20 10 864 902 0 17 866 121 0 21

20 11 1 465 556 17 52 1 469 270 6 45

20 12 974 232 0 86 937 778 0 79

20 13 1 165 685 12 26 1 225 276 11 35

20 14 1 162 230 57 74 1 169 135 43 81

20 15 845 561 0 12 848 275 0 12

30 6 1 452 805 0 33 1 471 605 0 42

30 7 1 299 447 0 36 1 299 497 0 49

30 8 1 187 076 0 63 1 166 714 0 60

30 9 1 219 235 0 78 1 222 032 0 94

30 10 1 178 768 9 46 1 175 020 6 53

30 11 1 467 689 0 33 1 486 846 0 42

30 12 1 299 447 0 36 1 299 569 0 47

30 13 1 187 076 0 63 1 169 751 0 60

30 14 1 232 757 0 76 1 235 904 0 96

30 15 1 178 768 9 46 1 171 555 8 49

50 6 2 351 415 25 170 2 322 403 0 149

50 7 1 674 253 0 32 1 666 277 0 29

50 8 3 149 847 7 121 3 144 390 12 143

50 9 3 111 283 0 108 3 123 216 0 103

50 10 2 250 427 0 60 2 236 384 0 46

50 11 2 351 415 25 170 2 308 857 0 149

50 12 1 674 253 0 32 1 664 698 0 27

50 13 3 149 847 7 121 3 197 215 13 154

50 14 3 078 389 11 124 3 201 781 1 109

50 15 2 223 243 0 38 2 222 120 0 40

Average 1 331 579 8 52 1 342 931 4 54

DISTRIBUTED TRANSPORTATION SIMPLEX 207

Table 4. DistST solution with groups.

Instance
Server Group Sequential

Solution
DistTS Message Message

Number Number Steps Steps Number Chain

10 11-13 10 14-15 50 5 44 2 128 302 18 20 740 1017

20 11-13 20 14-15 100 5 240 5 509 315 74 378 013 6301

10 14-15 20 13-15 80 5 147 4 120 681 82 224 549 6845

10 14-15 30 13-15 110 5 219 4 428 147 89 757 308 12460

10 11-13 20 11-13 90 6 172 4 675 308 69 250 957 6302

10 11-13 30 11-13 120 6 143 5 038 106 64 493 945 8885

10 11-12 20 11-12 30 11-12 120 6 220 5 878 442 70 484 547 7858

10 11-15 30 11-12 110 7 113 4 868 040 46 328 851 10334

10 11-14 20 11-13 100 7 195 5 136 469 77 274 504 7789

10 11-15 20 11-13 110 8 205 5 637 551 70 271 521 6458

Average 99 6 170 4 742 036 66 348 494 7425

given. It can be seen that the performance of both methods is similar in terms of
pivots required to find an optimal solution. This means that the fact that some
pivots are being made in parallel is not affecting the algorithm. However, the level
of parallelism observed in this experiment was small, it is rare that more than
3 pivots can be performed in parallel. In those instances, the candidate cycles are
composed of too many servers and requests, which results in lots of intersections
and, consequently, poor parallelism. Its due to the characteristics of the instances,
which were randomly generated in such a way that the requests for a given content
are evenly distributed among the servers. Therefore, that are no natural clusters
of requests/contents that can be optimized in parallel.

Considering that in CDN’s, requests are frequently attended by closest sev-
ers [17] forming clusters, new instances were proposed in this work. These instances
were generated from association of some of the previously proposed instances,
where costs between content requests and servers of originally different instances
were assigned very high values, see [13]. Table 4 presents results on these instances,
columns have the following meaning. The first column give information about the
new instances, where x y − z w v − k represents the association of instances of x
servers with classes varying from y to z, and instances with w servers with classes
ranging from v to k. The next two columns present the number of servers and the
number of grouped instances, respectively. The fourth column represents the num-
ber of steps of the sequential transportation simplex while the fifth column stands
for the value of optimal solution. The next three columns present the number of
global steps executed in the distributed simplex, the total number of messages ex-
changed in the distributed execution and the largest exchanged chain of messages,
respectively.

In these new instances, each cluster of servers executed totally in parallel with
each other, which resulted in many simplex steps executed in parallel and conse-
quently in a significant reduction of DistTS steps. As in the previous instances, the
number of total exchanged messages increased with the growing of the number of
steps, requests and servers, however the number of messages exchanged in a chain

208 RAFAELLI DE C. COUTINHO ET AL.

where the sending of one depended on the receipt of another one, in the worst case,
was much smaller than the total number of messages, meaning that now many of
them were exchanged in parallel.

6.2. Comparison of DistTS and AuctionTP

The third experiment, reported in Table 5, compares the DistTS and AuctionTP
methods. The first and second columns present the name and the optimal solution
of the instances. The next four columns contain the first feasible solution, the time
in seconds to find it, the total time and the number of exchanged messages by the
DistTS. The last four columns show the same information for the AuctionTP.

It is possible to observe that for instances with 10 servers both algorithms
present similar execution time. As the number of servers increases, the AuctionTP
execution time also grows. It occurs because the bidding and assignment steps,
executed several times until the optimal solution is found, are separated logically
by synchronization points. In the distributed algorithm it means that a server can
not progress to the next bidding step without receiving an acknowledge message
from each other destination to which it sent a bidding message. On its turns,
without receiving all bidding messages, destination processes do not update their
prices and send the corresponding acknowledge messages. Clearly, the time spent
with synchronization increases with the number of servers.

7. Final remarks

This paper tackled the Request Routing System Problem, as a Transportation
Problem. In the related literature, simplex and auction based approaches are usu-
ally presented to solve the TP in shared memory parallel machines. However, as
CDN information is spread out on servers that communicate only by message
passing, new parallel algorithms adjusted to this distributed scenario have been
proposed here.

Our main contribution was the design and implementation of a distributed
transportation Simplex algorithm adapted to solve the RRSP. It includes a dis-
tributed heuristic for finding an initial solution that it is interesting on its own.
Furthermore, for comparison purposes, we also developed a distributed Auction
algorithm based on the shared memory parallel version by [5].

Experiments with instances adapted from the literature were performed. The
results pointed that the DistInit and DistTS algorithms have a performance
better or similar to their sequential counterparts, in spite of not requiring global
information about the content requests. Moreover, we also verified that DistTS
outperformed the AuctionTP in the largest instances, showing that the synchro-
nization points of AuctionTP introduced a high overhead in a distributed envi-
ronment. Future work will concentrate on the investigation of the parameter ε in
order to improve the convergence time of AuctionTP.

DISTRIBUTED TRANSPORTATION SIMPLEX 209

Table 5. DistTS x AuctionTP.

Instance Opt

DistTS AuctionTP

Feasible Feasible Total Total Feasible Feasible Total Total

Solution Time (s) Time (s) Messages Solution Time (s) Time (s) Messages

10 6 471 763 471 763 0.00 0.00 953 471 763 0.02 1.09 366 600

10 7 306 227 306 227 0.00 0.01 1 424 306 227 0.04 1.07 357 500

10 8 378 231 380 365 0.00 0.01 2 298 378 231 0.04 1.17 370 500

10 9 461 161 491 423 0.00 0.08 10 215 461 161 0.04 0.88 289 900

10 10 501 082 526 855 0.00 0.09 11 762 501 082 0.03 1.12 357 500

10 11 471 763 471 763 0.00 0.00 953 471 763 0.02 1.10 366 600

10 12 316 065 316 874 0.01 0.02 3 069 316 065 0.04 1.07 357 500

10 13 378 231 380 615 0.00 0.01 2 558 378 231 0.04 1.14 370 500

10 14 461 161 491 653 0.00 0.08 10 210 461 161 0.04 0.90 289 900

10 15 501 082 527 942 0.00 0.10 12 548 501 082 0.03 1.11 357 500

20 6 1 434 570 1 555 328 0.13 0.69 93 428 1 434 570 16.20 170.86 5 617 416

20 7 916 306 938 719 0.02 0.79 100 124 916 306 85.75 167.44 5 501 080

20 8 1 158 373 1 385 258 0.23 0.44 58 628 1 158 373 15.71 233.78 6 177 400

20 9 1 160 991 1 170 782 0.68 1.09 141 779 1 160 991 10.82 195.10 6 275 040

20 10 853 256 866 121 0.01 0.32 41 636 853 256 2.83 164.35 5 299 200

20 11 1 434 570 1 469 270 0.13 0.71 94 914 1 434 570 16.81 171.44 5 617 416

20 12 916 306 937 778 0.01 0.65 86 582 916 306 86.18 168.40 5 497 504

20 13 1 158 373 1 225 276 0.20 0.41 55 179 1 158 373 15.64 235.57 6 177 400

20 14 1 160 991 1 169 135 0.82 1.23 148 894 1 160 991 10.93 195.71 6 280 480

20 15 839 076 848 275 0.01 0.19 25 287 839 076 2.90 165.70 5 301 500

30 6 1 443 887 1 471 605 0.08 12.71 185 099 1 443 887 26.44 535.24 31 672 992

30 7 1 280 967 1 299 497 0.27 12.65 152 457 1 280 967 13.35 468.23 27 845 568

30 8 1 132 309 1 166 714 0.13 19.90 206 759 1 132 309 8.00 484.28 28 915 614

30 9 1 169 035 1 222 032 0.05 24.74 272 909 1 169 035 7.73 502.68 29 040 348

30 10 1 150 971 1 175 020 2.72 13.44 181 513 1 150 971 47.75 498.32 29 718 000

30 11 1 458 771 1 486 846 0.07 11.85 178 703 1 458 771 25.81 535.75 31 692 180

30 12 1 280 967 1 299 569 0.34 12.32 148 595 1 280 967 13.41 479.81 28 547 466

30 13 1 132 309 1 169 751 0.23 20.31 214 672 1 132 309 7.95 485.60 28 909 776

30 14 1 182 625 1 235 904 0.07 26.18 288 581 1 182 625 7.62 500.15 29 034 486

30 15 1 150 971 1 171 555 2.52 12.48 164 366 1 150 971 47.95 496.07 29 730 000

50 6 2 223 512 2 322 403 1.13 165.27 1 318 262 2 223 512 157.50 1 712.05 251 921 000

50 7 1 655 212 1 666 277 1.06 34.85 245 676 1 655 212 84.35 1 520.94 253 663 800

50 8 3 065 126 3 144 390 6.90 138.37 1 279 083 3 065 126 90.36 1 580.04 245 158 910

50 9 3 029 901 3 123 216 1.05 125.19 949 613 3 029 901 135.05 1 673.37 257 829 200

50 10 2 196 471 2 236 384 0.90 57.01 455 113 2 196 471 164.02 1 676.71 245 177 400

50 11 2 223 512 2 308 857 1.08 160.70 1 298 531 2 223 512 157.29 1 693.02 251 864 000

50 12 1 655 212 1 664 698 1.07 22.85 165 867 1 655 212 84.63 1 522.36 253 663 800

50 13 3 065 126 3 197 215 21.02 152.57 1 427 140 3 065 126 90.56 1 549.89 240 678 250

50 14 3 011 459 3 201 781 1.99 135.31 1 001 733 3 011 459 26.13 1 517.02 241 516 500

50 15 2 196 403 2 222 120 1.04 49.35 398 012 2 196 403 162.15 1 626.70 251 892 500

Average 1 299 608 1 342 931 1.15 30.37 285 878 1 299 608 40.55 573.43 71 242 506

210 RAFAELLI DE C. COUTINHO ET AL.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows: Theory, algorithms, and appli-
cations. Prentice Hall (1993).

[2] R.S. Barr and B.L. Hickman, Parallel simplex for large pure network problems: Computa-
tional testing and sources of speedup. Oper. Res. 42 (1994) 65–80.

[3] M.S. Bazaraa, J.J. Jarvis and H.F. Sherali, Linear programming and network flows. John
Wiley & Sons, New York, USA, 2nd edn. (1990).

[4] Tolga Bektas, Osman Oguz, and Iradj Ouveysi, Designing cost-effective content distribution
networks. Comput. Oper. Res. 34 (2007) 2436–2449.

[5] D.P. Bertsekas and D.A. Castañon, The auction algorithm for the transportation problem.
Ann. Oper. Res. 20 (1989) 67–96.

[6] Dimitri P. Bertsekas and David A. Castañon, Parallel synchronous and asynchronous im-
plementations of the auction algorithm. Parallel Comput. 17 (1991) 707–732.

[7] BRITE. http://www.cs.bu.edu/brite/, March 2013, 12.
[8] M.D. Chang, M. Engquist, R. Finkel and R.R. Meyer, Parallel algorithm for generalized

networks. Ann. Oper. Res. 14 (1988) 125–145.
[9] Krishna R. Pattipati Chulwoo Park, Woosun An and David L. Kleinman, Distributed

auction algorithms for the assignment problem with partial information, in Proceedings of the
15th International Command and Control Research and Technology Symposium (ICCRTS
10) (2010).

[10] G.B. Dantzig, Application of the simplex method to a transportation problem, in Activity
analysis of production and allocation, edited by T.C. Koopmans. J. Wiley, New York (1951),
pp. 359–373.

[11] J.F. Pekny D.L. Miller and G.L. Thompson, Solution of large dense transportation problems
using a parallel primal algorithm. Oper. Res. Lett. 9 (1990) 319–324.

[12] J. Hall, Towards a practical parallelisation of the simplex method. Comput. Management
Sci. 7 (2010) 139–170.

[13] RRSP Instances. http://www.ic.uff.br/~yuri/files/RRSP.zip, March 2013, 12.
[14] LABIC. http://labic.ic.uff.br/Instance/index.php?dir=rprdp/&file=dynamic.zip,

September 2012, 25.
[15] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/, September 2012, 25.
[16] Tiago Araújo Neves, Lúcia Maria de A. Drummond, Luiz Satoru Ochi, Célio Albuquerque,

and Eduardo Uchoa, Solving replica placement and request distribution in content distri-
bution networks. Electronic Notes in Discrete Mathematics 36 (2010) 89–96.

[17] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun, The akamai network: a platform for
high-performance internet applications. SIGOPS Oper. Syst. Rev. 44 (2010) 2–19.

[18] K. Thulasiraman, R.P. Chalasani and M.A. Comeau, Parallel network dual simplex method
on a shared memory multiprocessor, in Proceedings of the Fifth IEEE Symposium on (1993)
408 –415.

[19] M.M. Zavlanos, Leonid Spesivtsev, and George J. Pappas, A distributed auction algorithm
for the assignment problem, in 47th IEEE Conference on Decision and Control (CDC 2008)
(2008) 1212–1217.

[20] Xiaobo Zhou and Cheng-Zhong Xu, Efficient algorithms of video replication and placement
on a cluster of streaming servers. J. Netw. Comput. Appl. 30 (2007) 515–540.

http://www.cs.bu.edu/brite/
http://www.ic.uff.br/~yuri/files/RRSP.zip
http://labic.ic.uff.br/Instance/index.php?dir=rprdp/&file=dynamic.zip
http://www.mcs.anl.gov/research/projects/mpich2/

	Introduction
	Related work
	Modeling the RSSP as a transportation problem
	The auction algorithm for the TP
	Distributed algorithm
	Sequential transportation simplex
	Distributed approach
	Obtaining an initial solution
	Distributed transportation simplex
	Complexity analysis

	Experimental results
	Comparison of DistTS and the sequential version
	Comparison of DistTS and AuctionTP

	Final remarks
	References

