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PROBLEM *

PENG WULIANG!, HUANG MIN? AND HAO YONGPING?

Abstract. Many real-world scheduling problems can be modeled as
Multi-mode Resource Constrained Project Scheduling Problems (MR-
CPSP). However, the MRCPSP is a strong NP-hard problem and very
difficult to be solved. The purpose of this research is to investigate a
more efficient alternative based on ant algorithm to solve MRCPSP.
To enhance the generality along with efficiency of the algorithm, the
rule pool is designed to manage numerous priority rules for MRCPSP.
Each ant is provided with an independent thread and endowed with the
learning ability to dynamically select the excellent priority rules. In ad-
dition, all the ants in the ant algorithm have the prejudgment ability to
avoid infeasible routes based on the branch and bound method. The al-
gorithm is tested on the well-known benchmark instances in PSPLIB.
The computational results validate the effectiveness of the proposed
algorithm.
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1. INTRODUCTION

Resource Constrained Project Scheduling Problem (RCPSP) involves assigning
activities to a set of resources with limited capacity in order to meet some prede-
fined objectives, the most common objective of which is minimizing make-span,
.. minimizing the time to complete the entire project. Thereby, technological
precedence constraints have to be observed as well as limitations of the resources
required to accomplish the activities. For more information on the RCPSP and
solution methods, the reader is referred to [9]. Traditionally, each activity in the
RCPSP can be executed in a unique way and it is defined as single mode RCPSP
(SRCPSP), which is given by its fixed duration and fixed resource requirements
during each period. Researchers have extended the activity/duration concept by
allowing for alternative execution modes to complete an activity. Each execution
mode reflects a unique, feasible alternative, which combines a duration and re-
source requirement that allows for accomplishing the underlying activity in various
ways. MRCPSP represents these types of problems well.

In MRCPSP, each activity might be accomplished in one of several execution
modes, each of which represents an alternative combination of resource require-
ments of the activity and its duration [12]. The algorithms to solve MRCPSP can
be classified into exact algorithms and heuristic algorithms. Although there are
considerable efforts on exact algorithms for solving MRCPSP [14,27,32], just as
drawn by Sprecher and Drexl [28], exact algorithms are unable to find optimal so-
lutions for projects with more than 20 activities and three modes per activity when
they are highly resource-constrained. Then heuristics have become the alternative,
and the last generation of them, i.e. intelligent algorithms, which generate near-
optimal schedules for larger projects, is of special interest. In this paper, we focus
on investigating a more efficient intelligent algorithm to solve MRCPSP based on
ant algorithm.

The remainder of the paper is organized as follows. Section 1 describes the
problem and formulates the conceptual model and Section 2 presents a litera-
ture review. Section 3 describes our solution for MRCPSP and Section 4 reports
the computational experiments, along with comparisons with other existing algo-
rithms. Concluding remarks are made in Section 5.

2. PROBLEM DESCRIPTION

In MRCPSP, given the estimated work content for each activity, a set of pos-
sible execution modes can be specified for the activity execution. Each mode is
characterized by a processing time and an amount of a particular resource type
for completing the activity. For example, one worker might finish a job in 8 h
(mode 1), whereas two workers might finish the same job in 4 h (mode 2). The
product of the activity duration and the amount of the resource type needed is
called the activity work content. In the previous example, in modes 1 and 2 the
activity has the same work content of 10 worker-hours. Resources available for
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completing tasks can be classified as either renewable or non-renewable. The non-
renewable resources are depleted after a certain amount of consumption, while
renewable resources typically have the same amount of availability in every period
for an unlimited number of periods.

Formally, we can describe the MRCPSP as follows. A project consists in J
activities. The precedence relationships between activities are defined by a directed
acyclic graph G € (V, E), where V is a set of activities numbered from 1 to J and
E is the set of pairs of activities for which a finish-start precedence relationship
with time lag 0 exists. The fixed integer duration of an activity is denoted by
d;(1 < j < J), its integer starting time by s; and its integer finishing time by
f;. No activity may be started before all its predecessors are finished. Graph G
is numerically numbered, i.e. an activity always has a higher number than all its
predecessors. Each activity 7,7 = 1,2,...J has to be executed in one of M; modes.
The activities are non-preemptable and a mode chosen for an activity may not be
changed (i.e. an activity j started in mode m € M; must be completed in mode
m without preemption). The duration of activity j executed in mode m is djp,.
Assuming that there are R renewable and C' non-renewable resources, the number
of available units of renewable resource k,k = 1,2,... R is R and the number
of available units of non-renewable resource [, = 1,2,...C is C}. Each activity
Jj executed in mode m requires for its processing 7, renewable resource k, and
consumes Cjp,; units of non-renewable resource [. The objective of MRCPSP is
to find an assignment of modes to activities as well as precedence and resource-
feasible starting times for all activities, such that the make-span of the project is
minimized. The conceptual model of MRCPSP is formulated as:

Min  f, (2.1)
ST.  sj—si> Y (@im-dim),(i,5) €E (2.2)
mEMj
ST @jmrjmk) S Riyi <6< fok=1,2,.. K (2.3)
JjEAL meM;
S>> Tjmgm<CLl=12,...C (2.4)
JjEV meM;

> tim=1i€V. (2.5)

meM;

The objective function is given as (2.1), where the project duration is minimized by
minimizing the finishing time of the end activity n. The precedence constraints are
guaranteed in (2.2), where z;,, is a decision variable, either valued 1 means activity
1 is executed in mode m or valued 0 otherwise. (2.3) takes into consideration that
the total resource demand of each renewable resource type k& does not exceed
its availability at each time unit ¢, where A; denotes the set of activities being
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processed at time instant ¢. (2.4) limits that the total resource demand of non-
renewable resource type [ does not exceed its availability at each time unit ¢. (2.5)
guarantees that each activity finishes with only one mode.

3. LITERATURE REVIEW

3.1. HEURISsTICS FOR MRCPSP

As a well-known NP-hard problem, MRCPSP is an important and challeng-
ing problem that has gained increasing attention for several years. Nevertheless,
it is shown that exact methods cannot solve problems with more than 20 activi-
ties executed on three modes and highly resource-constrained. Hence, in practice,
heuristics to generate near-optimal schedules of MRCPSP for larger projects are
of special interest. Drexl and Griinewald suggested a regret-based biased random
sampling approach [11]. Slowinski et al. described a single-pass approach, a multi-
pass approach and a simulated annealing (SA) algorithm [26]. Boctor presented
a heuristic for multi-mode problems without non-renewable resources [5]. Kolisch
and Drexl presented a local search procedure [18], and Ozdamar proposed a Ge-
netic Algorithm (GA) based on a priority rule encoding [22]. Hartmann presented
a genetic algorithm that uses local search to improve the schedules found by the
basic genetic algorithm, and compared the performance of the algorithm with
those of other existing heuristics [13]. Alcaraz et al. developed a genetic algorithm
solving MRCPSP, they extended the representation and operator used in SR-
CPSP, and defined a new fitness function for infeasible individuals [2]. Bouleimen
introduced a Simulated Annealing (SA) heuristic, in which two embedded search
loops were used to alternate activity and mode neighborhood exploration [6]. More
recently, Ranjbar et al. presented a hybrid Scatter Search (SS) for the discrete
time/resource trade-off problem that is also a sub-problem of the MRCPSP [25].
Lova et al. applied justification technology in MRCPSP, defined as multi-mode
forward-backward improvement method, and developed a hybrid genetic algo-
rithm [20]. Peteghem and Vanhoucke applied a bi-population genetic algorithm
to solve multi-mode resource-constrained project scheduling problem and its pre-
emptive version [23]. They also presented an Artificial Immune System (AIS) to
solve the same problem, their experiment results showed that it achieved the best
computational quality until now [24].

3.2. SWARM INTELLIGENCE FOR MRCPSP

Swarm intelligence is a discipline that deals with natural and artificial sys-
tems composed of many individuals that coordinate using decentralized control
and self-organization. Some examples of natural swarm intelligent systems are
ant colonies, slime molds, bee and wasp swarms. The research on the swarm in-
telligence for MRCPSP is relatively scarce. Nevertheless, there have been some
literatures involving swarm intelligence for SRCPSP up to now. There are two
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popular swarm intelligence algorithms that are the Particle Swarm Optimization
(PSO) and the ant algorithm. In general, the PSO is a population-based stochastic
approach for solving continuous problem. Since project scheduling problems are
discrete problems, there are few studies on PSO solving PSP, the representatives
of which are [16,31]. Compared with PSO, the ant algorithm is a kind of algorithm
for solving discrete problems in nature, especially for combinatorial optimization
problems. Abdallah et al. presented an Ant system for calculating both determin-
istic and probabilistic CPM/PERT networks, in which the resource constraints
are not taken into account [1]. Tseng and Chen presented a hybrid meta-heuristic
algorithm combining ant colony optimization(ACO, i.e. ant algorithm), and GA
to solve RCPSP [29]. First, the ant algorithm searches the solution space and
generates activity lists to provide the initial population for GA. Next, GA is exe-
cuted and the pheromone set in ACO is updated based on the solution obtained
by GA. And then, ACO searches again by using the new pheromone set. Bautista
and Pereira designed three kinds of ant colony algorithms with different solution
construction models, which are ACO-T (ACO with trail left between activities),
ACO-P (ACO with trail left between activity and position) and ACO-MP (ACO
with trail left between activity and positions and read in an accumulative fash-
ion) [3]. Daniel et al. developed a colony optimization for resource-constrained
project scheduling, in which a combination of two pheromone evaluation methods
is used by ants to find new solutions [8]. More recently, Wang et al. designed an
ACO-SS algorithm that combines a local search strategy, an ant algorithm, and
a scatter search (SS) in an iterative process [30]. ACO first searches the solution
space and generates activity lists to provide the initial population for the SS algo-
rithm. Then, the SS algorithm builds a reference set from the pheromone trails of
the ACO and improves these to obtain better solutions. Thereafter, the ACO uses
the improved solutions to update the pheromone set. Finally in this iteration, the
ACO searches the solution set using the new pheromone trails after the SS has
terminated.

4. PROPOSED ANT ALGORITHM FOR MRCPSP

The general idea of our solution is using ant algorithm to determine the priority
values of activities and their execution modes, which are used to generate an
optimal or near optimal schedule by Serial Schedule Generation Scheme (SSGS)
or Parallel Schedule Generation Scheme (PSGS). The principle of the algorithm is
similar to the algorithm that is widely applied in ant system traveling salesperson
problem (AS-TSP), introduced by Dorigo et al. [10]. Artificial ants used in the ant
algorithm are stochastic solution construction procedures that probabilistically
build a solution by iteratively adding solution components to partial solutions by
taking into account (i) heuristic information about the problem instance being
solved, if available; and (ii) pheromone trails which change dynamically at run-
time to reflect the agents acquired search experience. In each iteration, an ant
finishes a tour and creates one solution. During the tour, the ant uses heuristic
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value as well as pheromone information to select an activity in the activity list.
The heuristic value is generated by some problem-dependent priority rule and the
pheromone information left by historical tours of the ant colony. The best solution
found so far and the best solution in current generation are both used to update
the pheromone information. However, before that, some portion of pheromone is
evaporated according to the formulation as:

Tij = (1 — p) 7ij (4.1)

where p is the evaporation rate, j is an activity and 4 is the position of activity
j in the activity list of the best solution found so far. The reason for this is that
old pheromone should not have too strong an influence on the future. Then, for
every activity j € J, some amount of pheromone is added to element 7;; of the
pheromone matrix. This is an elitist strategy that leads ants to search near optimal
solution. The amount of pheromone added can be p/2T*, where T* is the make-
span of the found best schedule, i.e.:

1
Tij ZTij-i-pﬁ. (4.2)

The same is done also for the best solution found in the current iteration, i.e.,
for every activity j € J, pheromone is added to 7;;. The algorithm runs until the
stopping criterion is met, e.g., a certain number of iterations have been done or the
average quality of the solutions found by the ants of a generation has not changed
for many iterations.

The initial problem solved by the ant algorithm is Traveling Salesperson Prob-
lem (AS-TSP). As mentioned before, although there are a few ant algorithms for
RCPSP, all of them are presented to solve SRCPSP, and the effort of ant solving
MRCPSP hasn’t yet been reported. In this paper, we present an ant algorithm to
solve MRCPSP. Compared with existing ones, there are some new features in the
solution presented in this paper:

(1) In existing ant algorithms for RCPSP, the solution construction models specify
activity lists corresponding to the feasible solutions as tours of ants. Consider-
ing the multiple executing mode, we present a new solution construction model,
in which the element of pheromone matrix is an activity-mode option.

(2) A general advantage of the ant algorithm is that it is convenient to apply
priority rules. However, only few rules can be utilized in current ant systems
for solving RCPSP. It is known that a priority rule only adapt to solving special
types of project instances, and it is difficult to choose appropriate one from a
large number of priority rules in practical cases. In this paper, we present a new
approach, named rule pool, to manage and utilize a large number of priority
rules.

(3) Each ant is provided with an independent thread and endowed the learning
ability. The performances of priority rules are recorded in the rule pool, and
they are dynamically updated to make the more efficient priority rules be
chosen by more ants.
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(4) Ants are endowed the pre-judgment ability to avoid the non-meaningful paths
that may generate infeasible plans.

In the following sub sections, we will present the decoding scheme, encoding scheme
and solution construction model and other features of the algorithm in detail.

4.1. DECODING

The backbone of most improvement heuristics for solving the RCPSP, where
an initial solution is gradually improved, is a schedule representation scheme, a
schedule generation scheme and a solution evaluation procedure. The schedule
representation can be regarded as an encoding of a schedule. To decode the rep-
resentation into a schedule, the schedule generation scheme should be executed.
In this section, we consider the schedule generation scheme of the presented ant
algorithm.

There are two main schedule generation schemes, i.e. Serial Schedule Genera-
tion Scheme (SSGS) and Parallel Schedule Generation Scheme (PSGS) for project
scheduling, which have been discussed by Kolisch [17]. They showed that PSGS
does not generally perform better than SSGS, and parallel scheme is possible not
to obtain an optimal solution. Therefore, in most existing heuristics for SRCPSP,
SSGS is the popular method to decode the representation into a schedule. How-
ever, different from that in SRCPSP, in MRCPSP, the execution modes should
be assigned for every non-dummy activity. Therefore, the traditional SSGS formu-
lated by Kolisch can not serve to MRCPSP directly. In this paper, the traditional
SSGS for SRCPSP is extended for heuristics of MRCPSP.

Assuming that the priority values of activities and their modes have been deter-
mined, in the decoding based on SSGS, one activity in a project from the decision
set is selected according to activity priority values, and the activity with the high-
est priority value is chosen and scheduled firstly. In addition, since there are several
execution modes in each activity, the execution mode with highest priority value
should be also chosen as the scheduled mode for the activity. We select an activity
according to the feasible finish time and resource constraints through SSGS and
the selected activity is moved from the decision set to the scheduled set with a
selected mode. The decision set and the scheduled set keep dynamical updating
until the algorithm terminates when all activities are put in the scheduled set at
stage J. The decoding procedure to generate schedules through the extended serial
schedule generation scheme is formulated as follows:

(1) h:==1,PS,:=1

(2) While |PS,| < JDo

(3) Begin

(4) Ep =jlj & PSh, Pj C PSh
(5) J* < jlv; = Maxiep, {vi}

(6) m* — m|vjy, = Maxpen, {vjr}
(7) djx = djx =
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1 2 3 4 5 Positions: Schedule order
[ 1 [ 4] 3] 2] 5 |Values :Activity ID
(a) Activity List for SRCPSP
1 2 3 4 5 Positions: Schedule order
(11 [ 4232 [ 23] 51 ] Values : Activity and mode IDs
(b) Activity List for MRCPSP

FIGURE 1. Examples of encoding based on activity list for MRCPSP.

(8) ESJ* = Max{fl\z S _PJ*}
(9) sjx 1= MIn{t|ESj« < t,7jemrt < UFpe, 07y = Ry — ZjeAt Tk, T =t,t+
Lt+2,...,t+dj» —1,k=1,2,.. . K}
(10) fi= = s+ + dj-
(11) PSpy1:=PSpUj "
(12) h:=h+1
(13) End
In the algorithm, a schedule procedure is divided into J stages, and only one
activity is scheduled at each stage, denoted by integer h, which is also the loop
variable. At the initial stage, activity 1 is scheduled, as Step (1), where PS}, is
the partial scheduled plan at stage h. Step (2) starts a loop, and it is terminated
until all of the activities are scheduled into PSS}, at stage J. Step (4) generates the
feasible set of activities Fy, in which all the predecessors of j, denoted by P;, must
be scheduled in PS}, to meet the precedence relationships at stage h, and should
be updated in each iteration. (5) selects an activity j* with the highest priority
value in E}j,, where v; is the priority value of activity ¢. (6) assigns a mode m* with
the highest priority value among all of the modes of j*, where vj;, is the priority
value of mode k of activity j. (7) values the duration dj«,~, which is the duration
of j* with m*. In (8), ES;- is the earliest start time of activity j* and valued by
the maximum finish time of all the predecessors of j.. (9) calculates the earliest
start time s;- of j*. vry, is the residual availability of renewable resource £ in time
unit ¢. (10) calculates the finish time of j*, denoted by f;+. (11) moves j* to PS},.
(12) is the increment expression of the loop variable h. Subsequently, stage h is
over and the next stage h+1 is started until all the activities are scheduled in P.S},.

4.2. ENCODING SCHEME AND SOLUTION CONSTRUCTION MODEL

A popular encoding scheme for RCPSP in the current researches is permutation
encoding, i.e. activity list, where all the activities are permutated in a precedence-
feasible activity list and the activity closer to the head of the list has the higher
priority value and will be scheduled earlier, as shown in Figure la. Considering
the multiple execution modes in MRCPSP, we define the encoding scheme based
on activity list as the example in Figure 1b, where the identities(IDs) of activities
and their modes are both encoded in each positions of the activity list.
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F1GURE 2. Example of solution construction model and encoding individual.

The solution construction model of the ant algorithm can be represented as
diagram D = (V, P,I"), where V is activity set, P is position set of ants and I"
is the pheromone distribution. We can regard the solution construction model as
a matrix, V as ordinate, P as abscissa, and I" as the value set in the discrete
position located by discrete points in V' and P. Correspondingly, j € V is activity
ID, which should be selected during the tours of ants. i € P denotes a position of
an ant’s route. 7;; is the amount of pheromone left by ant colony when some of
ants selected activity j in step i. As each activity has several modes, the value of
Ti; is distributed in these modes, i.e.:

M;

Tij = Z Tijm (43)
m=1

where 7, is the pheromone left in execution mode m of activity j in
position(step)i.

An example illustrating the solution construction model is shown as Figure 2,
where the position is used as abscissa and the activity ID is used as ordinate in
a pheromone matrix. An ant moves a step in the matrix, an activity ID and its
mode are selected. Therefore, when an ant finishes a complete tour from left to
right, it will construct a complete activity list T', in which positions of T' suggest
priority values, including an activity ID and a mode ID.

4.3. ANT’S TOUR AND INDIVIDUAL BEHAVIOR

Each ant in the presented ant algorithm is an autonomous individual owning an
independent thread. The behaviors of an ant follow the steps shown in Figure 3.
Firstly, it selects a priority rule from the rule pool as the initial behavior habit,
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Change behavioral habit

v

Select the first activity in the first step

:- Avoid the infeasible activities by
| pre-judgment mechnism
|
|
|
L

Select the next activity in the step by
State-Transition evaluation mechanism

Generate project schedule

Add pheromone to the path of the
ant based on project duration

. No
s the terminal
ondition meeted?

Yes

FiGURE 3. Example of an ant’s tour.

which can be dynamically changed by choosing another priority rule when a new
tour is started. And then, the pre-judgment mechanism is used by ants to choose
new nodes. After an ant finished a tour, a complete activity list will be achieved.
The activity list is used by the schedule generation scheme described in Section 3.1
to generate entire schedule. The make-span of the schedule generated by each
ant is the essential basis of pheromone updating. The rule pool, the mechanism
of changing behavior habit, pre-judgment mechanism, evaluation mechanism and
pheromone updating mechanism will be elaborated in the following subsections.

4.4. ACTIVITY AND MODE PRIORITY RULES

In MRCPSP, priority rules are used to choose activity-mode options. Commonly,
priority rules consist of two components: a numerical measure and a priority func-
tion. Numerical measure is related to properties of the activities, the modes of
activities, and resources, and priority function is used to rank activity-modes.
Since the problem addressed in this paper is a multi-mode problem, both activi-
ties and their execution modes must be considered. The numerical measure used
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TABLE 1. Normalization of activity and mode priority values.

Normalized value Minimum (Min) Maximum (Max)
.. - /, o 1/v; /, o v;
Activity priority rule measure v; = 721_6&1(1/%) v; = 721‘@2,1 @)

. r 1/vjk /. _ Vik
Mode priority rule measure Vi = Sicn, (/00 Vi = e, )

in the activity-mode priority rule should combine the numerical measures of an
activity priority rule and that of a mode priority rule. The used activity priority
rules formulated and reviewed by Hartmann and Kolish [15] including LFT (Latest
Finish Time), LST (Latest Start Time) and MTS (Most Total Successors), have
been demonstrated to be effective in single mode problems. The existing mode
priority rules, introduced by Boctor [4], includes SFM (Shortest Feasible Mode),
LTRU (Least Total Resource Usage) and LCRU (Least Critical Resource Usage).
SFM is adopted directly, while LTRU and LCRU are modified to take into account
the duration of each activity-mode alternative.

We refer to the approach introduced by Buddhakulsomsiri and Kim [7] to com-
pute the priority values of activity-mode options. The activity-mode priority rule
numerical measure is a sum of normalized activity priority rule measures and nor-
malized numerical values from a mode priority rule. Normalization is necessary
here to eliminate the differences caused by different units and measures found in
the activity and mode priority rules. Let’s remind that Ej denotes the set of eligi-
ble activities that can be scheduled at some stage & of schedule generation scheme
(SGS), v; denotes the activity priority value and vj; denotes the mode priority
value, where j € Ej. Here let v;» denote the normalized activity priority value

and v; . denote the normalized mode priority value. The normalization is shown in
Table 1 and depend on the priority function associated with the activity or mode
priority rule. With this normalization, more attractive activities (or modes) with
respect to the priority function will have higher normalized priority values.

Assuming that there are three activity priority rules: LFT, LST and MTS, and
three mode priority rules: SFM, LTRU and LCRU, 9 different activity-mode prior-
ity rule numerical measures will be created, as listed in Table 2. The activity-mode
priority rule value is calculated from an activity-mode priority rule combination
as follows [7]:

Step 1. For each activity j € E}, determine the mode k with the highest normal-
ized mode priority value with respect to the selected mode priority rule.

Step 2. Normalize the mode priority values across activities with respect to the
mode values selected in Step 1. Call this value m7.

Step 3. Calculate the normalized activity priority value with respect to the se-
lected activity priority rule (Tab. 1).

Step 4. Combine the activity priority value and mode priority value into a single
numerical measure 7;;, as follows:

Njk = a; + M. (4.4)
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TABLE 2. Activity-mode priority rule combinations.

Activity priority rule-mode priority rule
LFT-LTRU LST-LTRU MTS-LTRU
LFT-SFM LST-SFM MTS-SFM
LFT-LCRU LST-LCRU MTS-LCRU

4.5. RULE POOL AND THE MECHANISM OF CHANGING BEHAVIOR HABIT

Rule pool maintains numerous priority rules, which have the identical selection
probability to be selected in the initial status but will be dynamically updated ac-
cording to their performances. Accordingly, the priority rules with higher selection
probabilities will be selected by more ants.

¢ is defined as the rule pool, in which £ € ¢ is a priority rule numbered
1,2,...|¢|. The priority rule ¢ in the rule pool can be expressed by a triple,
&= (f,p,u). f is the priority calculation function and different from each other
among priority rules. ¢ is the selection probability of a priority rule. A priority
rule is randomly selected with the selection probability ¢ from the rule pool when
a tour is finished and the next tour begins. Obviously, if there are |p| rules in
the pool, then Z‘fﬂl we = 1, ¢ is the selection probability of rule §. Let u¢ de-
note the utility coefficient of rule &, and it is valued the average of make-spans of
schedules generated by this priority rule £. The utility coefficients of all the rules
are initially valued as sum of durations of all the activities when the first mode
is selected and resource constraints are relaxed. When an ant finishes a complete
tour, it feedbacks to update the utility coefficient as follows:

u5~w5+L5

4.
we +1 (4.5)

Ug =
where L¢ is the make-span of the schedule generated by the activity list created
by an new ant’s tour with priority rule £, and we is the total times of rule £ being
selected so far.

Simultaneously, the selection probabilities of the priority rules in the rule pool
are also required to be updated regularly according to utility coefficients of the
priority rules. The updating mechanism is formulated as:

_ Umax — Ug + l/Q
Z‘jﬂ1(umax —u; +1/Q)

Pe (4.6)

where Uy is the maximum value of the utility coefficient of all rules in the rule
pool. Since the objective function is minimizing project duration, the priority rule
with lower utility coefficient value has higher probability to be selected through a
conversion by Umax — ue. In addition, @ is a constant, and @ > 1. 1/Q is used to
guarantee that the rules that have poor performance can still be selected with a
lower probability.
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The rule pool is classified into two types: one is static rule pool, where all the pri-
ority rules have the same and invariant selection probability; the other is dynamic
rule pool, which is updated regularly according to (4.6). The interval At, of reg-
ularly updating the selection probability in dynamic pool rule can be determined
by the number of schedules generated by the algorithm.

4.6. THE PRE-JUDGMENT MECHANISM

When moving in pheromone matrix, ants might encounter many infeasible
routes due to the precedence relationship constraints and/or resource limita-
tions. If these infeasible paths can’t be voided in time, the ants will do many
meaningless efforts and generate lots of infeasible plans. Therefore, the algorithm
efficiency will be remarkably improved if ants avoid those infeasible routes by
a pre-judgment mechanism. We designed a pre-judgment mechanism where the
branch-and-bound method is used to avoid the infeasible paths by setting the
upper bound of resources.

As defined before, GG is used to denote the activity set. Furthermore, we let
G denote a complete activity list as well, G, denote an incomplete activity list
generated in the process of an ant’s tour at location x, and G, is composed of
activities which belong to G and not to G;. The ants can only select new path from
feasible activity set F, at location k due to the precedence relationship restraints.
The sufficient and necessary condition of j € E,; is j ¢ Gy, and P; C G, where
P; is the predecessors of activity j. Therefore, when an ant moves, it should not
select the activity j ¢ E,. During step x of an ant’s tour, it owns an incomplete
activity list G\, that can be input into the schedule generation scheme to generate
an incomplete project plan.

Definition 4.1. In the step x, when an ant selects an activity j from the feasible
activity set E, and put it into G, a new incomplete activity list Gy1 is gener-
ated. It is assumed that all the activities of G+1 select the modes that have the
minimum consumption of nonrenewable resources k. G1 can be used to gener-
ate an incomplete schedule Y, +;. Based on Y, relaxing the renewable resource
constraints of the activities in G41, using the traditional critical path method
(CPM) to schedule the activities in Gx+1 on the base of Y41, a temporary com-
plete schedule Y can be achieved. The consumption of the nonrenewable resource
kinY' is defined as the minimum possible resource consumption of k in the stage
Kk + 1, or the minimum possible resource consumption of k to Gy, for j.

By calculating the minimum possible resource consumption, we design an ad-
vanced pre-judgment mechanism referring to the branch and bound method.
For a non-renewable resource k, if the minimum possible resource consumption
of k to Gy for j exceeds the general amount C*, then the branch from activ-
ity 7 will be cut. Consequently, the pre-judgment can be classified into two types:
one is the basic pre-judgment mechanism, which cut the activities that do not
belong to feasible activity set E,; the other is advanced pre-judgment, where be-
sides the function of basic pre-judgment mechanism, minimum possible resource
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consumption of k£ to G for 7 must not exceeds Cj, as well. In some cases, an ant
may find that all the paths are cut by advanced pre-judgment mechanism. In this
case, the ant should turn back to the previous position and reselect a new activity.

4.7. STATE-TRANSITION EVALUATION MECHANISM

After ants cut infeasible routes according to the pre-judgment mechanism de-
scribed in the previous subsection, ants evaluate the left routes according to the
state-transition evaluation mechanism. The state-transition evaluation is mainly
based on two elements: one is ants’ individual behavioral habit determined by
the priority rule bounded to the ant; the other is the pheromone remained in the
pheromone matrix, i.e., pheromone evaluation.

There are two kinds of state-transition evaluation mechanisms: the direct eval-
uation method and the summation evaluation method. The former evaluates the
new location directly, and the later considers both the ant’s historical selections
of the tour and new positions. The objective of the solution construction model
presented in this paper aims to search an activity list which generates a near op-
timal schedule. It is of no interest to put one special activity into the activity list,
and the meaningful thing here is the permutation of all these activities. There-
fore, in this paper, the summation evaluation method is employed as the following
formulation [21]:

. o
(ZZ::I Zm/EMk ('rkm/ ’ Tkjm/)) ’ ’r}fm
; a
B
ZhGEi [(Z;c:l Zm'GMk ('rkm' 'Tkjm')) 'njm]

where 22:1 > ent, @’ Thjm ) 18 the amount of the pheromone distributed in
its trial when it moves to position i. E; is the set of feasible routes (i.e. feasible
activity set). njm, is the priority coefficient activity j with mode m, which is cal-
culated based on rules bounded by the ant according to (4.4). Parameter « is the
pheromone influence factor determining the influence degree of pheromone to the
state-transition evaluation, and parameter 3 is the influence factor of heuristic in-
formation determining the influence degree of priority rules to the state-transition
evaluation respectively.

Dijm = (4.7)

4.8. PHEROMONE UPDATING MECHANISM

We design a new pheromone updating mechanism, which has two main fea-
tures: one is constant-conservation, the other is periodic volatilizing. The so called
constant-conservation is that the total quantity of pheromone keeps constant, and
the ratio between pheromone quantity remained in the distribution matrix and
that volatilized in air is also constant after each time of volatilization. The so
called periodic volatilizing is that the pheromone volatilizes periodically at a cer-
tain time interval. The time interval of pheromone volatilization can be defined
by the number of generated schedules (the concept is the same as the updating
interval At, described in Sect. 3.5).



AN IMPROVED ANT ALGORITHM FOR MRCPSP 609

Let U denote the amount of the pheromone, U,. denote the remained pheromone
in the pheromone matrix, and U, denote the volatilized pheromone in air. Although
U, and U, is dynamically updated, due to constant-conservation, U is always
unchanged, that is, U = U, + U,. After each volatilizing has just completed,
U.-=(1-p)-Uand U, =p-U are guaranteed by the algorithm, where p is the
general volatilization factor used to keep the dynamic balance of the ratio of the
U, and U,. The pheromone of each location in the pheromone matrix volatilizes
with the same ratio p/, as shown in the following equation:

DD (Tmep)=(1=p)U. (4.8)

It is seen that p' is not a constant during the algorithm execution process and
requires to be determined by the pheromone value remained in pheromone matrix
and p. It is easily drawn from (4.8) that:

, (1-p)-U

P ==7 = 3 - (4.9)
>imt Zj:l > mi1 Tijm
Consequently, the pheromone volatilizing is formulated as:
! 1 _— . U
Tijm < P * Tijm = i) “Tijm, 1 <m < M;. (4.10)

J J M;
Dict Zj:l > mI1 Tijm
When finishing a complete tour, the ant individual leaves pheromone in the
pheromone matrix according to the pheromone increase mechanism immediately.

Then it continues its next tour without waiting for other ants. The pheromone
increase mechanism is formulated as:

Tijm < Tijm + ATi5,1 <m < M; (4.11)

where AT;; is the pheromone increment for 7;j,,, it indicates that the value of
the pheromone only increase to the selected model m of activity j on position 1.
Ar;; is calculated according to the following formulation:

By —F* p U o +F,

F,—F, At, "7 "¢

ﬂyszFe
At,

where F, is the currently found best solution, F, is currently found worst solution,
and At is the interval of the pheromone volatilizing. For example, At,, = 10 means
that it volatilizes once just when 10 ants finished their tours. Apparently, this
method is adaptive for the concurrent computation presented in this paper. The
increase and volatilization of the pheromone are no more determined by iterations
of algorithm, but by the amount of tours of all the ants. In MRCPSP, the amount
of the tours of ants is equal to the number of the generated schedules.
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5. COMPUTATIONAL EXPERIMENTS

5.1. EXPERIMENTAL ENVIRONMENT AND PROJECT INSTANCES

The ant algorithm presented in this paper as well as the extended serial schedule
generation scheme are programmed in Java, and experiment has been conducted
under the Windows XP operating system on a Pentium IBM-compatible PC with
1 CPU, Intel 2.0 GHz, 512 MB RAM, 80 GB Hard Disk. We use the shared sets
in PSPLIB [19] as test instances. They were generated using PROGEN under a
full factorial experimental design with the following three independent problem
parameters: network complexity, resource factor and resource strength [19]. In
PSPLIB, there are seven sets of test instances for MRCPSP containing instances
with 10, 12, 14, 18, 20, and 30 non-dummy activities. Each of the non-dummy
activities may be performed in one out of three modes. The duration of a mode
varies between 1 and 10 periods. For each project size, 640 instances were gener-
ated. Those instances with no feasible solution have not been considered. Hence,
there are 536 instances with J = 10, 547 instances with J = 12, 551 instances with
J = 14, 550 instances with j = 16, 552 instances with J = 18, and 554 instances
with J = 20. The set with 20 non-dummy activities currently is the hardest stan-
dard set of multi-mode instances for which all optimal solutions are known [28].
For the set with 30 activities, not all optimal solutions are known until now, and
for some instances it is currently not known if a feasible solution exists.

5.2. PARAMETERS SETTING

In the algorithms presented in this paper, the main parameters include
pheromone influence factor «, influence factor of heuristic information (3, pop-
ulation size POP, evaporation rate p, time interval of pheromone evaporation
At,, time interval of rule pool updating At,. The absolute value of either a or
[ have no meaning, and the meaningful thing is the ratio between them. Let ~
denote the ratio of « to (3, that is 7 = /«, and thus ~ is an other parameter of
the algorithm. We evaluate how all the parameters affect the performance of the
algorithm by computational experiments. From computational experiments, it is
verified when At, and At, is more than 20, and v = 2, p = 0.4, the algorithm
achieves better performance. Although POP has little effect on the number of
generated schedules to find the optimal solution, different values of POP cause
different CPU times of the algorithm seriously. With the increasing of POP, the
average CPU time decreases significantly when POP < 40. When POP > 40, the
CPU time will reach a stable level, and the performance of the algorithm is no
longer improved. The reason for it is that in the presented algorithm, each ant
owns one thread, and more threads will make full use of the processing ability
of CPU. However, all the threads share the pheromone matrix and priority rule
pool, such that the synchronization mechanism should be employed to ensure the
thread-safe. Therefore, too many ant individuals will cause thread waiting when
volatilizing pheromone as well as updating rule pool. For the given hardware con-
figuration of the test computer, the algorithm performance will not be improved
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TABLE 3. Performances of algorithms with different configura-
tions under 5000 schedules generated.

Instance set Criteria Algorithm I Algorithm II ~ Algorithm III
Avg dev 0.79% 0.25% 0.09%
J12 Max dev — 18.4% 11.6%
Opt rate 57.2% 87.4% 98.4%
Inf rate 48.2% 0% 0%
Avg dev 0.98% 0.91% 0.21%
J16 Max dev - 27.2% 21.6%
Opt rate 55.0% 76.4% 89.4%
Infeasible solution rate 47.1% 0% 0%
Avg dev 1.18% 1.09% 0.54%
J20 Max dev — 37.2% 29.6%
Opt rate 46.0% 68.4% 80.4%
Inf rate 49.5% 0% 0%

continually with too many threads. Appropriate population size of the ant algo-
rithm presented in this paper is related to computer hardware configuration. In
our computer platform, POP is valued 40. For the parameter @ used in (11), it is
randomly valued 2 since we found that the parameter has minor influence on the
algorithm through experiments.

5.3. THE COMPARISONS OF EXPERIMENTAL RESULTS WITH DIFFERENT
CONFIGURATIONS

In order to investigate the effectiveness of the extended serial schedule genera-
tion scheme, rule pool and prejudgment mechanism, we set three different config-
urations for the algorithm: algorithm I adopts the basic prejudgment mechanism
and the static priority rule pool; algorithm IT adopts the advanced prejudgment
mechanism and the static rule pool; algorithm IIT adopts the advanced prejudg-
ment mechanism and the dynamic rule pool. Four criteria are taken into account:
average deviation, maximal deviation, optimal solution rate and infeasible solution
rate, which are defined as follows:

e Average deviation(Avg dev): Average deviations from the best known so-
lution for instance set.

e Maximal deviation(Max dev): The maximal deviation from the best known
solution for instance set.

e Optimal solution rate(Opt rate): The percentage of instances for which an
optimal solution was found.

e Infeasible solution rate(Inf rate): The percentage of schedules which are
infeasible in all the schedules created during the process of computation.

We select J12, J14 and J20 as test sets to compare the performances of the three
algorithms with an upper limit of 5000 generated schedules. Some instances with-
out feasible solution for MRCPSP could be found and they have been excluded in
the computational experiment. The computational results are listed in Table 3.
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TABLE 4. Comparative computational results for J10.

Authors Algorithm Avg dev Opt rate Schedules CPU time
Kolisch et al. [18] Local search 0.50% 91.8% 6000 -
Ozdamar [22] GA 0.86% 88.1% 6000 -
Hartmann [13] GA 0.10%  98.01% 6000 -
Alcaraz et al. [2] GA 0.19% 96.5% 6000 0.19¢
Bouleimen et al. [3)] SA 021%  96.3% 6000 19.3"
Lova et al. [20] GA 0.04% 99.7% 6000 0.1¢
Lova et al. [20] GA 0.06% 98.51% 5000 0.08°
Lova et al. [20] GA 0.08% 98.13% 4000 0.7¢
Ranjbar et al. [25] SS 0.18% — — 10¢
Peteghem et al. [24] AIS 0.02% 99.4% 5000 -
This work Ant Algorithm  0.03% 99.7% 6000 0.07
This work Ant Algorithm  0.03% 99.6% 5000 0.05
This work Ant Algorithm  0.05% 99.3% 4000 0.05

¢ Pentium with 1.13 GHz and 256 MB RAM.
® Pentium with 100 MHz and 32 M RAM.
¢ Pentium with 3 GHz and 1 GB RAM.

Since the basic prejudgment mechanism is used in algorithm I, a large number
of generated schedules may not satisfy the non-renewable resource constraints, and
the infeasible solution rate is high in algorithm I. Once the advanced prejudgment
mechanism is employed in algorithm II and algorithm III, the infeasible solution
can not be created, and the computation performence is accordingly enhanced.
Furthermore, the rule pool used in algorithm III can be dynamically updated
according to rules’ performance, and the excellent rules can be automatically found
and bound with a higher probability. As a result, the quality and computation
efficiency of algorithm III is improved remarkably.

5.4. THE COMPARISONS OF EXPERIMENTAL RESULTS WITH OTHER METHODS

In current research of MRCPSP, the CPU time is one of performance criteria.
However, the algorithms designed by different researchers can not be executed in
the same hardware and software configurations, and thus different algorithms can
not be compared only with CPU time. It is common practice to compare heuris-
tics by comparing the quality of the best schedules obtained when the maximum
number of schedules that can be generated is limited. This practice allows the
comparison of results obtained in different configurations. We compare the algo-
rithm IIT presented in this paper with the reported algorithms, and the results for
J10 are listed as Table 4. It is shown that the algorithm presented in this paper
outperforms the existing ones in most aspects.

In the reported literatures, more instances set are commonly tested under 5000
schedules generated, that is, the maximum number of schedules that can be gener-
ated is limited to a maximum of 5000. To completely compare the performance of
this algorithm with the existing ones, we test the Algorithm III using J12, J14, J16,
J18, J20 and J30 as instances set under 5000 schedules generated, and compare
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TABLE 5. Average deviation under 5000 schedules generated.

Authors J12° J14 JI6 JI8  J20 J30
Alcaraz et al. (2003) [2] 073 100 112 143 191 —
Ranjbar et al. (2008) [25]  0.65 0.89 095 121 1.64 —
Jarboui et al. (2008) [16]  0.09 0.36 044 089 1.10 2.35
Peteghem et al. (2009) [24] 0.07 020 039 052 070 1.55
This work 0.09 017 034 041 053 1.38

the computational result with other heuristics in Table 5. It is shown that the
performance of ACO algorithm presented in this paper has excellent performance.

6. CONCLUSION

According to the characteristics of MRCPSP, we presented an improved ACO.
A solution construction model of the algorithm can intuitionally describe the
pheromone matrix, where each cell is corresponding to an activity-mode option.
Since each ant in the new ant algorithm has been assigned an independent thread,
it has more autonomous ability and the computing capability of computers can
be fully utilized. The rule pool is employed to manage a large number of priority
rules as different habits of ants. Moreover, ants in the algorithm are endowed with
some prejudgment ability to avoid infeasible routes. The prejudgment mechanism
make the algorithm avoid infeasible schedules and thus the computation efficiency
of algorithm is remarkably enhanced. The results of computational experiments
verified that the features, i.e. prejudgment mechanism, rule pool, etc. not only
improve the computation efficiency of the algorithm, but also enhance the com-
putation quality and generality as well. We believe that the introduction of this
algorithm and all its features will provide some references to solving other project
scheduling problem as well as other combination optimization problems by ant
algorithms.
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