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Abstract. Regarding today’s business environment restrictions, one
of significant concern of inventory manager is to determine optimal
policies of inventory/production systems under some restrictions such
as budget and storage space. Therefore here, a budget constraint on
total inventory investment and a maximum permissible storage space
constraint are added simultaneously to a stochastic continuous review
mixed backorder and lost sales inventory system. This study also as-
sumes that the received lot may contain some defective units with a
beta-binomial random variable. Two lead time demand (LTD) distribu-
tion approach are proposed in this paper, one with normally distributed
demand and another with distribution free demand. For each approach,
a Lagrange multiplier method is applied in order to solve the discussed
constrained inventory models and a solution procedure is developed to
find optimal values. This study, also, shows that the respective budget
and storage space constrained inventory models to be minimized are
jointly convex in the decision variables. Numerical examples are also
presented to illustrate the models.
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1. Introduction

Today, lead time plays an important role in the logistics management. In the
inventory management literature, lead time is treated as predetermined constant
or stochastic parameters. If it is assumed that lead time can be decomposed into
several components, such as setup time, process time, and queue time, it can
be assumed that each component may be reduced at a crashing cost. One of
first papers dealing with a variable lead time in an inventory model is due to
Lia and Shyu [16]. The authors present a stochastic model in which the order
quantity is predetermined and lead time is a unique decision variable. Ben-Daya
and Rauf [6] extend this model by considering both lead time and order quantity
as decision variables. Moon and Gallego [19] assume unfavorable lead time demand
distribution and solve both continuous review and periodic review models with a
mixture of backorders and lost sales using minimax distribution free approach.
Ouyang et al. [21] generalize Ben-Daya and Rauf [6] model in which the lead time
demand is considered a normal distribution or distribution free. Later, Hariga and
Ben-Daya [15] extend Ouyang et al. [21] study and present both continuous review
and periodic review inventory models in partial and perfect lead time demand
distribution information environment in which reorder point treated as a variable.
Also Wu et al. [28] study on negative exponential crashing cost with mixture of
distribution in their study. Chung et al. [10] investigate a periodic review inventory
model with controllable lead time and setup cost. Chandra and Grabis [7] develop
a model with lead time-dependent procurement costs and assume that shortening
lead time results in increasing procurement costs. The relationship between lead
time and procurement costs is established with the help of a linear and nonlinear
procurement cost function. Lin et al. [18] proposes an integrated vendor-buyer
inventory model wherein a lot received for buyer main contain some defective
items due to vendor’s imperfect manufacturing system. Glock [12] investigates
on integrated inventory system with stochastic demand and variable, lot size-
dependent lead time and assumes that lead time consists of production, setup
and transportation time. Lin [17] proposes a stochastic inventory model including
defective items wherein the demands of different customer are not identical in the
lead time.

However, in some practical situations, ordering/setup cost can also be controlled
and reduced through various efforts such as worker training, procedural changes
and specialized acquisition for the classical inventory/production model. Moreover,
it has been observed in many manufacturing settings including job shops, batch
shops and flow shops, whose ordering (or setup) cost can be reduced by investing
capital. Porteus [22] is pioneer in presenting the concept of investing in reducing
setup cost on the classical EOQ model without backorders which contains a set
up as a function of capital expenditure. Billington [3] proposes a no-backorder
inventory model including a setup cost as a function of capital expenditure. Kim
et al. [24] present several classes of setup reduction functions and describe a general
solution procedure on the EPQ model. Paknejad et al. [23] present a quality-
adjusted lot-sizing model with stochastic demand and constant lead time and study
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the benefits of lower setup cost in the model. Sarker and Coats [26] propound an
inventory model with setup cost reduction under probabilistic lead time constraint
and finite number of investment possibilities to reduce setup cost. Wu and Lin [27]
develop a model with lead time and setup cost reduction for partial backorder
system and consider amount received is uncertain. Ben-Daya and Hariga [1] study
a model wherein both lead time and crashing cost maybe reduced at a crashing
cost.

In the inventory management literature, many research works have been de-
voted to the study of restrictions such as storage space or inventory investment
constraints on the inventory system performances. This literature can be divided
into two categories, the first deal with considering a budget constraint on the
inventory investment and the second with storage space constraint:

Dealing with the first line of research, in practical environment, it is very likely
that the firm has a fixed amount of capital to invest in goods carried as inven-
tory. Hence, if it is assumed that inventory investment budget is restricted then
the critical issue is to make sure that optimal decision variables are satisfied the
constraint. Brown and Gerson [4] proposed some models for stochastic inventory
system with the limitation on total inventory investment. Schrady and Choe [31]
proposed a model with the total time weighted shortages with limitations on in-
ventory investment. Bera et al. [5] presents a multi-product continuous review
inventory model under a budget constraint wherein the system purchasing cost is
paid when an order arrives. Our model formulation differs from the one developed
in the Bera et al. [5], since, the system purchasing cost is paid at the time an order
is placed.

In the second category, as a consequence of high cost of land acquisition in the
most societies, most of inventory systems have limited storage space to stock goods.
Hariga [14] presents a stochastic space constrained continuous review inventory
system for a single item and random demand wherein the order quantity and
reorder point are decision variables. Xu and Leung [25] propose an analytical model
in a two-party vendor managed system where the retailer restricts the maximum
space allocated to the vendor. Moon et al. [20] proposed three extended models
with variable capacity. First, they presented an EOQ model with random yields.
Second, they developed a multi-item EOQ model with storage space and solved
model with Lagrange multiplier method. Third, they applied a distribution free
approach to the (Q,r) with variable capacity.

One of the assumptions of the inventory management literature is that the qual-
ity of the product in a lot is perfect. In practice, however, a received lot may contain
some defective items. If there is a possibility that a lot contains defective items,
the firm may issue a larger order than was originally planned so as to guarantee
satisfaction of customer demand. Salameh and jabber [30] develop an EOQ model
where imperfect quality items are salvaged at a discount price. Incoming raw ma-
terial containing items of imperfect quality that occurs as random fraction with
a known probability distribution, Undergo a screening in which defective items in
the lot removed by the end of screening period and sold at a discounted price.
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Chang [8] reformulates the EOQ model of Salameh and Jaber [30] to capture
the uncertainty in the defective rate using fuzzy set theory. Ben-Daya and Noman
[2] develop continuous review inventory inspection models in which Inspection po-
lices include no inspection, sampling inspection and 100% inspection. They assume
when a lot is received, the buyer uses some type of inspection policy. The fraction
of nonconforming is assumed to be a random variable following a beta distribution.
Taheri-Tolgari et al. [32] present a discounted cash-flow technique for an inventory
model for imperfect item with considering inspection errors. They assume some
produced items might not be perfect and first stage inspector of product qual-
ity control might make some inspection errors during separation of defective and
perfect items.

However, in the all of previously mentioned models, the problem of determin-
ing optimal continuous review policies for budget and storage space constrained
stochastic mixed backorder and lost sales inventory system with lead time and
ordering cost reduction has not been explored. This paper considers the amount
received is random variables due to rejection during inspection. Imperfect units
are assumed to be beta-binomial random variable. The imperfect items found out
during inspection are all discarded Purchasing cost is paid at the time of order
placing. For this reason, maximum inventory investment will occur at the time an
order is placed. Considering this assumption, a budget constraint is established
in this paper. Storage space constraint is random since the inventory level when
an order arrives is a random variable. Hence, a chance-constrained programming
technique is utilized to make it crisp. The piece-wise linear crashing cost function
is considered in the existing models. This kind of crashing cost function is widely
used in project management in which the duration of some activities can be re-
duced by assigning more resources to the activities. This study, first assumes the
lead time demand follows a normal distribution and then relaxes the assumption
about the form of the distribution function of the lead time demand by only assum-
ing the known mean and variance of it. Lagrange multiplier technique is applied in
order to solve the constrained problems. This study, also, shows that the discussed
budget and storage space constrained inventory models to be minimized are jointly
convex in the decision variables. A solution procedure is proposed to find optimal
order quantity, lead time, ordering cost and reorder point. In addition, numerical
examples are presented to illustrate the models

This paper is organized as follows. Notations and assumptions are given in
Section 2. In Section 3, the constrained inventory model that the lead time demand
has perfect information is formulated and the models of partial information for the
lead time demand are examined in Section 4. A numerical example and sensitivity
analysis is provided to illustrate solution procedure in Section 5, and Section 6
contains some concluding remarks and future research.

2. Notation and assumption

Following notations have been used in this paper:
Q Order quantity.
r Reorder point.
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k Safety factor.
β The fraction of demand which is backordered during stockout period,

0 � β � 1.
D Average demand per year.
π Stockout cost per unit short.
π0 Marginal profit per unit.
p Defective rate in an order lot, pε[0,1) and is a random variable.
g (p) Probability density function (p.d.f.) of p.
Cp Purchasing cost per unit.
h Holding cost per year per unit.
f Space used per unit.
A Fixed ordering cost per order.
A0 Original ordering cost.
L Length of lead time.
C (L) Total lead time crashing cost per order.
δ Inspection cost per unit.
B Maximum inventory investment.
F Maximum available space.
γ Smallest acceptable probability that total used space is within

maximum available space.
ϕ Smallest acceptable probability that total investment is within

maximum available investment.
Y Number of defective item in a lot, as a random variable.
X Demand during lead time.
X+ Maximum value of x and 0.
E (•) Mathematical expectation.

The mathematical models developed in this paper are based on the following as-
sumptions:

1. Shortages are allowed and partially backlogged.
2. Planning horizon is infinite.
3. Demand rate D is a random variable with mean μD and standard deviationσD

4. Inventory is continuously reviewed. Replenishments are made whenever the
inventory level falls to the reorder point r and replenishment rate is infinite.

5. The cost equations are approximations because inventory levels and demands
are treated as continuous instead of discrete quantities.

6. Shortages cost do not depend on time.
7. The time that the system is out of stock during a cycle is small in comparison

to the cycle length.
8. There are no orders outstanding at the time the reorder point is reached.
9. The purchasing cost is paid at the time of order placing.

10. The reorder level is larger than the mean of the lead time demand.
11. Inspection is error free.
12. Inspection time is negligible.
13. The reorder point r is the expected demand during lead time plus safety stock

(SS) and SS = k× (standard deviation of lead time) i.e. r = E (x) + kσx

where k is safety factor satisfying P (x > r) = P (z > k) = α, z represents
the standard normal random variable and α represents the allowable stockout
probability during lead time.
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14. The lead time L consists of n mutually independent components. The ith
component has a minimum duration ai, the normal duration bi and a crashing
cost ci per unit time. Further, for convenience, we rearrange ci such that c1 �
c2 � . . . � cn

15. If we let L0 =
∑n

j=1 bj and Li be the length of lead time with components
1, 2, . . . , i crashed to their minimum duration, thenLi can be expressed as
Li =

∑n
j=1 bj −

∑i
j=1 (bj − aj) , i = 1, 2, . . . , n; and the lead time crashing cost

C(L) per cycle for a given L ε [Li, Li−1] is given by C (L) = ci (Li−1 − L) +∑i−1
j=1 cj (bj − aj)

16. The components of lead time are crashed one at a time starting with component
1 (because, it has a minimum unit crashing cost) and then component 2 and
so on.

17. Consider lead time is constant and Mean and variance of demand during lead
time x is (Tersine [33]):

E (x)=μDL and Var (x) =σ2
x =Lσ2

D (2.1)

3. Model formulation for normal demand approach:

In this paper, an arrival order may contain some defective items and we consider
defective rate in an order lot is a random variable (Y ), which can be expressed as
follows:

P (y|p) =
(
Q

y

)
py (1 − p)Q−y

, y = 0, 1, 2, . . .Q. (3.1)

In this case:

E (y|p) = Qp. (3.2)

And

Var (y|p) = Qp (1 − p) . (3.3)

Hence, non-conditioning on p, the expected value of Y is:

E (y) = E (E (y|p)) = QE (p) . (3.4)

And variance of Y is calculated as follow:

Var (y) =E (Var (y|p)) + Var (E (y|p)) (3.5)
E (Var (y|p)) =E (Q (p (1 − p))) = QE (p (1 − p)) (3.6)

Var (E (y|p)) =E
(
Q2p2

)− (E (p))2 = Q2E
(
p2
)−Q2E2 (p) = Q2Var (p) (3.7)

→ Var (y) =QE (p (1 − p)) +Q2Var (p) (3.8)
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and

→ E
(
y2
)

= Q2E
(
p2
)

+QE (p (1 − p)) . (3.9)

When inventory of an item reaches to reorder level management places an order
of amountQ which Y items are defectives. The amount of shortages per cycle is a
random variable since X (demand during lead time) is a random variable and can
be expressed as follows:

(x−r)+ = Max (x−r, 0) =
{
x−r, & x � r
0, & x � r

(3.10)

So, the number of backorders per cycle is β(x− r)+ and the number of lost
sales is (1 − β) (x − r)+. The net inventory level just before order arrives is r−x+
(1 − β) (x− r)+ and the maximum inventory level at the beginning of the cycle
(considering y defective items) is Q − y + r − x + (1 − β) (x− r)+. So the total
inventory per cycle is:

Q− y

D

(
Q− y

2
+ r − x+ (1 − β) (x− r)+

)
. (3.11)

Therefore, the inventory cost per cycle given that there are y defective items in
an arriving order of size Q is expressed as follows:

[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]
+ h

Q− y

D

[
Q− y

2
+r−x+ (1−β) (x−r)+

]

+
[
(π + π◦ (1 − β)) (x− r)+

]
+ δQ,

L ε [Li, Li−1] . (3.12)

The expected inventory cost per cycle is as follows:

[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+ h
E(Q− y)2

2D
+h

E (Q− y)
D

[
r−E(x)+ (1−β)E (x−r)+

]
+
[
(π + π◦ (1 − β))E (x− r)+

]
+ δQ, L ε [Li, Li−1] . (3.13)

The expected length of the cycle time is as follows:

E (T ) =
E (Q− y)

D
· (3.14)

Hence, using the result of a basic theorem from renewal reward processes [29]
the expected annual cost can be computed as the expected cost per cycle divided
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by expected cycle time:

EAC (Q, r, L) =
D

E (Q− y)

[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+h
E(Q− y)2

2E (Q− y)
+h
[
r−E(x)+ (1−β)E (x−r)+

]

+
D

E (Q− y)

[
(π + π◦ (1 − β))E (x− r)+

]

+
D

1 − E(p)
δ, L ε [Li, Li−1] , (3.15)

where

E (Q− y) =Q− E (y) = Q (1 − E (p)) (3.16)

E (Q− y)2 =Var (Q− y) + (E (Q− y))2

=QE (p (1 − p)) +Q2Var (p) + (Q (1 − E (p)))2 . (3.17)

The underlying assumption in the above model (16) is that ordering cost, A, is
a fixed constant and not subject to control. In this study, we consider the ordering
cost can be reduced through capital investment and it treats as a decision variable.
Therefore, we seek to minimize the sum of capital investment cost of reducing
ordering cost A and the inventory related costs by optimizing over Q, A, r and
L constrained 0 � A � A0, that is, according to our model, the objective of our
problem is to minimize the following expected total annual cost.

EAC (Q,A, r, L) = θI (A) + EAC(QrL) (3.18)

Over A ∈ [0, A0), where θ is the fractional opportunity cost of capital per year
and I(A) follows the logarithmic investment function which is consistent with the
japanese experince as reported in Hall [13], given by

I (A) = bln
(
A0

A

)
for A ∈ (0, A0] . (3.19)

where
1
b

is the fraction of the reduction in A per dollar increase in investment.
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Hence, expected annual cost can be expressed as:

EAC (Q,A, r, L) = θbln
(
A0

A

)
+

D

E (Q− y)

×
[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+ h
E (Q− y)2

2E (Q− y)
+h
[
r−E(x)+ (1−β)E (x−r)+

]

+
D

E (Q− y)

[
(π + π◦ (1 − β))E (x− r)+

]
+

D

1 − E (p)
δ,

L ε [Li, Li−1] , Aε (0, A0] .
(3.20)

In this paper, we consider a storage space limitation, which is dependent on the
maximum inventory size. The restriction ensures that even if an item reaches to
its maximum inventory position, the maximum available space is still enough for
it. Therefore, the random storage space constraint for a partial backlogging policy
is as follows:

P
{
f
(
Q− y + r − x+ (1 − β) (x− r)+

)
� F
}

� γ. (3.21)

The above constraint forces the probability that total used space is within
maximum available storage space to be no smaller than γ. By using the chance-
constrained programming technique which is originally developed by Charnes and
Cooper [9] and considering Markov inequality, the random storage space constraint
is transformed to a crisp constraint, as given below.

→ γ � P
{
f
(
x− (1 − β) (x− r)+ + y

)
+ F � f (Q+ r)

}

�
f
(
E (x) − (1 − β)E (x− r)+ + E (y)

)
+ F

f (Q+ r)

→ γ �
f
(
E (x) − (1 − β)E (x− r)+ + E (y)

)
+ F

f (Q+ r)

→ γf (Q+ r) − F − f (E (x) + E(y)) + f (1 − β)E(x− r)+ � 0. (3.22)

In this study, a restriction on maximum inventory investment has been con-
sidered. Warehousing inventory causes to lose the opportunity of investments in
the other places and system managers would like to control it by considering this
limitation on inventory system. In this paper, we assume that the purchasing cost
is paid at the time an order is placed. Considering this assumption, the maximum
inventory investment will occur at the time of order placing. For this reason, we
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establish a limitation on maximum inventory investment. Hence, if the purchas-
ing cost payment is due at the time an order is placed then budget constraint is
written as

P {Cp (Q− y + r) � B} � ϕ.

Hence, considering chance-constrained programming technique and Markov in-
equality, it can be written as:

→ ϕ � P (Cpy +B � Cp (Q+ r)) � CpE (y) +B

Cp (Q+ r)

→ ϕCp (Q+ r) −B − CpE (y) � 0. (3.23)

When the lead time demand X follows a normal probability density function
(p.d.f) fX (x) with mean E (x) = μDL and standard deviation σx = σD

√
L. By

giving the reorder point r = E(x) + kσx, the expected shortages quantity at the
end of cycle E (x−r)+ can be expressed by:

E(x−r)+ =
∫ ∞

r

(x−r) f (x) dx, k=
r−E(x)
σx

, z=
x−E(x)
σx

(3.24)

→E(x−r)+=σx

∫ ∞

k

(z−k) f (z) dz

→ E(x− r)+ = σD

√
L

[∫ ∞

k

zf (z) dz − kΦ(k)
]
,[∫ ∞

k

zf (z) dz − kΦ(k)
]

=
[
φ (k) − kΦ(k)

]
= ψ(k)

→E(x−r)+ =σD

√
Lψ(k) � 0. (3.25)

Where φ is standard normal density function and Φ̄ is the standard normal
complementary cumulative distribution function. Also it is noted that ψ(k) is
standard normal loss function and its amount can be found in Silver and Peterson
(1985) (pp. 699–708).
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Therefore, considering r = μDL + kσD

√
L andE(x− r)+ = σD

√
Lψ (k) the

constrained model for discarding imperfect units is transformed as follows:

EACN (Q,A, k, L) = θbln
(
A0

A

)
+

D

Q (1 − E (p))

×
[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+
h

2

{
Q (1−E (p))+

Q
[
E
(
p2
)−E2 (p)

]
1 − E (p)

+
E (p (1 − p))

1 − E (p)

}

+ h
[
kσD

√
L+ (1 − β)σD

√
Lψ (k)

]
+

D

Q (1 − E (p))

[
(π + π◦ (1 − β)) σD

√
Lψ (k)

]

+
D

1 − E (p)
δ.

Subject to

γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E (y)) + f (1 − β) σD

√
Lψ (k) � 0

ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y) � 0

Q, k � 0, L ε [Li, Li−1] , Aε (0, A0] . (3.26)

The above model (3.26) can be solved with Lagrange multiplier method as given
below:

EACN (Q,A, k, L, λ1, λ2) = θbln
(
A0

A

)
+

D

Q (1 − E (p))

×
[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]
+

D

1 − E(p)
δ

+
h

2

{
Q (1 − E (p)) +

Q
[
E
(
p2
)− E2 (p)

]
1 − E (p)

+
E (p (1 − p))

1 − E (p)

}

+ h
[
kσD

√
L+(1 − β) σD

√
Lψ (k)

]
+

D

Q (1 − E (p))

[
(π + π◦ (1 − β))σD

√
Lψ (k)

]
+ λ1

[
γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y)) + f (1 − β)σD

√
Lψ(k)

]
+ λ2

[
ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y)

]
, (3.27)

where λ1 and λ2 are nonnegative Lagrange multipliers.
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Notice that for any given (Q,A, k, λ1, λ2), EACN (Q,A, k, L, λ1, λ2) is a concave
function in L ∈ [Li, Li−1], because

∂2EACN (Q,A, k, L, λ1, λ2)
∂L2

= − 1
4
L− 3

2

{
h [kσD + (1 − β)ψ(k)σD]

+
[

D

Q(1 − E(p))
(π + π0(1 − β))ψ(k)σD

]

+ λ1f [γkσD + (1 − β)ψ(k)σD] + λ2CpkσD

}
� 0.

(3.28)

Hence, for fixed (Q,A, k, λ1, λ2), the minimum expected annual cost will oc-
cur at the end of point of the interval L ∈ [Li, Li−1]. It can be shown that for
a given value of L ∈ [Li, Li−1] , EACN (Q,A, k, L, λ1, λ2), is a convex function
of (Q, k, λ1, λ2). (See Appendix A for detailed proof). Therefore, for fixedL ∈
[Li, Li−1], the Kuhn–Tucker necessary conditions for minimization of the func-
tion (3.27) are as follows:

∂EACN (Q,A, k, λ1, λ2)
∂Q

= − D

Q2 (1 − E (p))

[(
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

)

+ (π + π0 (1 − β))σD

√
Lψ (k)

]

+
h

2

(
(1 − E (p)) +

[
E
(
p2
)− E2 (p)

]
1 − E (p)

)

+ λ1γf + λ2ϕCp = 0 (3.29)

∂EACN (Q,A, k, λ1, λ2)
∂k

=hσD

√
L−
[
h (1 − β)σD

√
LΦ(k)

]
−
[

D

Q(1 − E(p))
(π + π0(1 − β))Φ(k)σD

√
L

]

+ λ1f
[
γσD

√
L− (1 − β)σD

√
LΦ(k)

]
+ λ2CpσD

√
L = 0 (3.30)

∂EACN (Q,A, k, λ1, λ2)
∂A

= −θb
A

+
D

Q (1 − E (p))
= 0 (3.31)

λ1

[
γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y)) + f (1 − β)σD

√
Lψ(k)

]
= 0

(3.32)
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λ2

[
ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y)

]
= 0. (3.33)

Solving equation (3.29), Q is obtained as follows:

Q =

⎡
⎣D
{(
A+ci(Li−1−L)+

∑i−1
j=1 cj(bj − aj)

)
+
[
(π+π0 (1 − β))σD

√
Lψ(k)

]}
h
2 (1−2E (p)+E (p2))+λ1γf+λ2ϕCp

⎤
⎦

1
2

·

(3.34)
As a result, the following solution procedure can be established to find the

optimal (Q,A, r, L).
Step 1. For eachLi, i = 0, 1, 2, . . . , n perform Step 1-1 to Step 1-6.
Step 1-1. Input the values of D,h, k, ππ0, B, F, δ, Cp and f.
Step 1-2. PutQ in equations (3.31), (3.32) and (3.33).
Step 1-3. Obtain Ak, λk

1 , λ
k
2 by simultaneously solving equations (3.31), (3.32)

and (3.33).
Step 1-4. Find Qk by putting Ak, λk

1 , λ
k
2 into equation (3.34).

Step 1-5 Put Qk, Ak, λk
1 , λ

k
2 in equation (3.27) and find EACN

(
Qk, Ak, λk

1 , λ
k
2

)
Step 1-6. Compute EAC

(
Qk, Ak, λk

1 , λ
k
2

)
in terms of different k and ψ(k) and

stop when you get to
((
Qki , Aki , λki

1 , λ
ki
2

)
= (Qi, Ai, ki, Li, λ1i , λ2i)

)
:

EACN
(
Qki , Aki , λki

1 , λ
ki
2

)
< Min

{
EACN

(
Qki−ξ, Aki−ξ, λki−ξ

1 , λki−ξ
2

)
,

EACN
(
Qki+ξ, Aki+ξ, λki+ξ

1 , λki+ξ
2

)}
∣∣∣EACN

(
Qki , Aki , λki

1 , λ
ki
2

)
−EACN

(
Qki−ξ, Aki−ξ, λki−ξ

1 , λki−ξ
2

)∣∣∣� ε∣∣∣EACN
(
Qki , Aki , λki

1 , λ
ki
2

)
−EACN

(
Qki+ξ, Aki+ξ, λki+ξ

1 , λki+ξ
2

)∣∣∣� ε.

Step 2. Compare Ai andA0:
Step 2-1. If Ai < A0, then the solution found in Step 1 is the optimal solution

for Li, and go to Step 3.
Step 2-2. If Ai � A0, then set Ai = A0 and find optimal solution by simultane-

ously solving equations (3.30), (3.32), (3.33) and (3.34) by a procedure similar to
Step 1.

Step 3. For each (Qi, Ai, kiLi, λ1iλ2i) compute EACN (Qi, Ai, ki, Li, λ1i ,
λ2i) , i = 0, 1, . . . , n.

Step 4. Find MINi =0,1,...,nEAC
N (Qi, Ai, ki, Li, λ1i , λ2i) = EACN (Q∗,

A∗, k∗, L∗, λ1, λ2) and hence the optimal reorder point is r∗ = μDL
∗ + k∗σ

√
L∗.

4. Model formulation for distribution free approach

In many practical situations, the probability distributional information of the
lead time demand is often limited in practices. Therefore, in this section, we relax
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the restriction about the normal distribution demand by only assuming that the
lead time demand X has given finite first two moment (and hence, mean and
variance are also given) (i.e., the p.d.f. fX of X belongs to the class F of the p.d.f.
with mean E (x) = μDL and variance Var (x) =σ2

x =Lσ2
D). Hence, using minimax

distribution free procedure the problem can be expressed as follows:{
MaxEAC (Q,A, r, L) = EACU (Q,A, r, L)

}
.

Subject to

γf (Q+ r) − F − f (μDL+ E(y)) + f (1 − β)E(x− r)+ � 0

ϕCp (Q+ r) −B − CpE (y) � 0

Q � 0, r � μDL, L ε [Li, Li−1] , A ∈ (0, A0] . (4.1)

For this purpose, we need the following proposition, which was asserted by
Gallego and Moon [11]:

E (x−r)+ � 1
2

[√
Var (x)+ (r−E(x))2− (r−E (x))

]
=

1
2

(√
1+k2−k

)
σD

√
L.

(4.2)
Considering r = E (x) + kσx and E(x − r)+ � 1

2

(√
1 + k2 − k

)
σD

√
L, the

expected annual cost of distribution free approach is changed as follows:

EACU (Q,A, k, L) = θbln
(
A0

A

)
+

D

Q (1 − E (p))

×
[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+
h

2

{
Q (1 − E (p)) +

Q
[
E
(
p2
)− E2 (p)

]
1 − E (p)

+
E (p (1 − p))

1 − E (p)

}

+ h

[
kσD

√
L+ (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)]

+
D

Q (1 − E (p))

[
(π + π◦ (1 − β))

(
σD

√
L

2

)(√
1 + k2 − k

)]

+
D

1 − E(p)
δ.

Subject to

γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E (y))

+ f (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)
� 0
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ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y) � 0

Q, k � 0, L ε [Li, Li−1] , Aε (0, A0] , (4.3)

where EACU (Q,A, k, L) is the least upper bound of EAC (Q,A, k, L) .
In this section, model (4.3) is solved using Lagrange method and its function

can be expressed as below:

EACU (Q,A, k, L, λ1, λ2) = θbln
(
A0

A

)
+

D

Q (1 − E (p))

×
[
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

]

+ h

{
Q (1 − E (p)) +

Q
[
E
(
p2
)− E2 (p)

]
1 − E(p)

+
E (p (1 − p))

1 − E (p)

}

+ h

[
kσD

√
L+ (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)]

+
D

Q (1 − E (p))

[
(π + π◦ (1 − β))

(
σD

√
L

2

)(√
1 + k2 − k

)]

+
D

1 − E(p)
δ + λ1

[
γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y))

+f (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)]

+ λ2

[
ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y)

]
. (4.4)

Notice that for any given (Q,A, k, λ1, λ2), EACU (Q,A, k, L, λ1, λ2) is a concave
function in L ∈ [Li, Li−1], because

∂2EACU (Q,A, k, L, λ1, λ2)
∂L2

=

− 1
2
L− 3

2

{
h
[
k
(σD

2

)
+ (1 − β)

(√
1 + k2 − k

)(σD

4

)]
+
[

D

Q (1 − E (p))
(π + π0(1 − β))

(√
1 + k2 − k

)(σD

4

)]
+ λ1f

[
γk
(σD

2

)
+ (1 − β)

(√
1 + k2 − k

)(σD

4

)]
+ λ2Cpϕk

(σD

2

)}
� 0. (4.5)

For this reason, similar to previous section, for fixed (Q,A, k, λ1, λ2), the
minimum expected annual cost will occur at the end of point of the in-
terval L ∈ [Li, Li−1]. It can be shown that for a given value of L ∈
[Li, Li−1] EACN (Q,A, k, L, λ1, λ2), is a convex function of (Q,A, k, λ1, λ2).
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(See Appendix B for detailed proof). Therefore, for fixedL ∈ [Li, Li−1], the
Kuhn-Tucker necessary conditions for minimization of the function (4.4) are as
follows:

∂EACU (Q,A, k, λ1, λ2)
∂Q

= − D

Q2 (1 − E (p))

×
[(
A+ ci (Li−1 − L) +

∑i−1

j=1
cj (bj − aj)

)

+ (π + π0 (1 − β))

(
σD

√
L

2

)(√
1 + k2 − k

)]

+
h

2

(
(1 − E (p)) +

[
E
(
p2
)− E2 (p)

]
1 − E (p)

)

+ λ1γf + λ2ϕCp = 0 (4.6)

∂EACU (Q,A, k, λ1, λ2)
∂k

= hσD

√
L+

[
h (1 − β)

(
σD

√
L

2

)(
k√

1 + k2
− 1
)]

+

[
D

Q(1 − E(p))
(π+π0(1−β))

(
k√

1+k2
−1
)(
σD

√
L

2

)]

+ λ1f

[
γσD

√
L+ (1 − β)

(
σD

√
L

2

)(
k√

1 + k2
− 1
)]

+ λ2ϕCpσD

√
L = 0 (4.7)

∂EACU (Q,A, k, λ1, λ2)
∂A

= −θb
A

+
D

Q(1 − E(p))
= 0 (4.8)

λ1

[
γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y))

+f (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)]
= 0 (4.9)

λ2

[
ϕCp

(
Q+ μDL+ kσD

√
L
)
−B − CpE (y)

]
= 0. (4.10)

Solving equation (4.6), Q is obtained as follows:

Q =⎡
⎣D
{(
A+ci (Li−1−L)+

∑i−1
j=1cj(bj−aj)

)
+
[
(π+π0 (1−β))

(
σD

√
L

2

)(√
1+k2−k)]}

h
2 (1 − 2E (p)+E (p2)) + λ1γf + λ2ϕCp

⎤
⎦

1
2

.

(4.11)
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Consequently, we can establish the following algorithm to find the optimal
(Q,A, r, L).

Step 1. For eachLi, i = 0, 1, 2, . . . , n perform Step 1-1 to Step 1-4.
Step 1-1. Input the values of D,h, π, π0, B, F, δ, Cp and f
Step 1-2. Put Q in equations (4.7), (4.8), (4.9) and (4.10).
Step 1-3. Obtain Ai, ki, λ1i , λ2i by simultaneously solving equations (4.7), (4.8),

(4.9) and (4.10).
Step 1-4. Find Qi by putting Ai, ki, λ1i , λ2i into equation (4.11).
Step 2. Compare Ai andA0:
Step 2-1. If Ai < A0, then the solution found in Step 1 is the optimal solution,

and go to Step 3.
Step 2-2. If Ai � A0, then set Ai = A0 and find optimal solution by simulta-

neously solving equations (4.7), (4.9), (4.10) and (4.11) by a procedure similar to
Step 1.

Step 3. For each (Qi, Ai, ki, Li, λ1iλ2i) compute EACU (Qi, Ai, ki, Li, λ1i ,
λ2i) , i = 0, 1, . . . , n

Step 4. Find MINi =0,1,...,nEAC
U (Qi, Ai, ki, Li, λ1i , λ2i) = EACU (Q∗,

A∗, k∗, L∗, λ1, λ2) and hence the optimal reorder point is r∗ = μDL
∗ + k∗σ

√
L∗.

5. Numerical example

Example 1.

In this section, we solve some examples using the procedure outlined in the
previous section. The purpose is to illustrate the solution procedure, conduct a
sensitivity analysis for important model parameters and highlight important fea-
tures of the developed models.

D = 600 unit/ year, A0 = 200$, h = 20$, μD = 13 unit/week, σD = 4 unit/week

π = 50$, π0 = 100$, Cp = 60$ , f = 1.5M2,

γ = 0.95 , ϕ = 0.95, F = 170M2, B = 11 000 $

δ = 1.5$, ε = 0.01.

Defective rate p has a Beta distribution function with parameters α = 1 and
β = 4; that is, the p.d.f. of p is given by:

g (p) = 4 (1 − p)3 , 0 < p < 1

Therefore, we have:

E (p) =
α

α+ β
= 0.2 and E

(
p2
)

=
α (α+ β)

(α+ β) (α+ β + 1)
= 0.066.
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Table 1. Lead time data.

Lead time Normal duration Minimum duration Unit crashing cost
component i bi (days) ai (days) ci ($/day)
1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Table 2. Results of solution procedure for perfect demand (Li in weeks).

β Li C (Li) Qi ri(ki) A∗ EACN λ1, λ2

(Qi, ri, Li)

0. 8
6
4
3

0
5.6
22.4
57.4

83.04
120.69
134.41
136.59

127.41(2.07)
97.69(2.01)
67.84(1.98)
52.44(1.94)

110.72
160.93
179.22
182.12

3979.45
3844.71∗

3847.78
3988.68

0, 0.11
0, 0.02
0.49, 0
1.58, 0

0.5 8
6
4
3

0
5.6
22.4
57.4

85.62
123.05
136.36
138.27

125.38(1.89)
95.83(1.82)
66.32(1.79)
51.12(1.75)

114.16
164.07
181.81
184.37

3933.90
3812.21∗

3821.48
3963.88

0, 0.10
0, 0.01
0.39, 0
1.47, 0

0.8 8
6
4
3

0
5.6
22.4
57.4

88.06
125.16
138.21
139.88

123.45(1.72)
94.16(1.65)
64.88(1.61)
49.87(1.57)

117.41
166.88
184.28
186.51

3892.05
3781.99∗

3796.95
3940.71

0, 0.09
0, 0.01
0.31, 0
1.37, 0

1 8
6
4
3

0
5.6
22.4
57.4

65.98
127.27
140.08
141.51

121.53(1.55)
92.50(1.48)
63.44(1.43)
48.63(1.39)

120.66
169.70
186.78
188.68

3850.64
3751.75∗

3772.32
3917.39

0, 0.09
0, 0.01
0.23, 0
1.28, 0

Besides, for the ordering cost reduction we take θ = 0.1, b = 10 000.
Suppose that the demand during lead time is normally distributed. The lead

time has three components with data shown in Table 1. Applying the proposed so-
lution procedure yields the results shown in Table 2 for β = 0.0, 0.5, 0.8, and
1. From Table 2, the optimal inventory policy can be founded by comparing
(Qi, ki, Li, λ1i , λ2i) for i = 0, 1, 2, 3 and the summary is presented in Ta-
ble 3 and to see the effects of constrained problem, we tabulate optimal values of
unconstrained problem in the same table.

Example 2.

In this example, we assume that the probability distribution of lead time demand
is unknown. Applying the proposed solution procedure yields the results shown in
Table 4 for β = 0.0, 0.5, 0.8, and 1, and the summary of results are tabulated in
Table 5.

Also, some results of the various backorder rates against optimal values are as
follows:
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Table 3. Summary of results for perfect demand (Li in weeks).

Constrained model

β Q∗ r∗(k∗) A∗ L∗ EACN

(Q∗, A∗, r∗, L∗)

0.0
0.5
0.8
1

120.69
123.05
125.16
127.27

97.69(2.01)
95.83(1.82)
94.16(1.65)
92.50(1.48)

160.93
164.07
166.88
169.70

6
6
6
6

3844.71
3812.21
3781.99
3751.75

Unconstrained model

β Q∗ r∗(k∗) A∗ L∗ EACN

(Q∗, A∗, r∗, L∗)

0.0
0.5
0.8
1

133.58
134.09
134.83
135.36

97.49(1.99)
95.73(1.81)
93.97(1.63)
92.30(1.46)

178.11
178.79
179.77
180.48

6
6
6
6

3839.00
3807.99
3778.93
3749.61

Table 4. Results of solution procedure for partial demand (Li in weeks).

β Li C (Li) Qi ri(ki) A∗ EACU λ1, λ2

(Qi, ri, Li)

0. 8
6
4
3

0
5.6
22.4
57.4

76.55
111.68
125.48
129.15

132.54(2.52)
104.80(2.73)
74.23(2.77)
57.73(2.70)

102.21
148.91
167.32
172.32

5609.45
4806.71
4557.62∗

4601.54

0, 0.56
0, 0.19
5.12, 0
5.55, 0

0.5 8
6
4
3

0
5.6
22.4
57.4

81.67
117.68
131.20
134.05

128.50(2.16)
100.07(2.25)
70.00(2.25)
54.12(2.18)

108.87
156.97
174.91
178.80

5050.99
4488.65
4323.98∗

4398.28

0, 0.39
0, 0.13
3.62, 0
4.22, 0

0.8 8
6
4
3

0
5.6
22.4
57.4

86.28
122.50
135.63
137.86

124.86(1.84)
96.26(1.86)
66.74(1.84)
51.31(1.77)

115.05
163.35
181.21
183.85

4686.50
4271.04
4161.43∗

4255.52

0, 0.29
0, 0.09
2.60, 0
3.34, 0

1 8
6
4
3

0
5.6
22.4
57.4

90.55
126.74
139.43
141.11

121.49(1.54)
92.91(1.52)
63.95(1.49)
48.94(1.43)

120.73
169.83
186.52
188.16

4418.68
4104.92
4035.72∗

4144.30

0, 0.23
0, 0.07
1.90, 0
2.70, 0

1. For unconstrained problem (λ1 = λ2 = 0), if β = 1, equation (4.4) reduces to
the expected annual cost of backorder case and hence equation (4.11) becomes

Q=

⎡
⎣D
{(
A+ ci (Li−1 − L) +

∑i−1
j=1 cj (bj − aj)

)
+
[

π
2

(√
1 + k2 − k

)
σD

√
L
]}

h
2 (1 − 2E (p)+E (p2))

⎤
⎦

1
2

·

(5.1)
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Table 5. Summary of results for partial demand (Li in weeks).

Constrained model
β Q∗ r∗(k∗) A∗ L∗ EAC∗

(Qi, ri, Li)
0.0
0.5
0.8
1.0

125.48
131.20
135.63
139.43

74.23(2.77)
70.00(2.25)
66.74(1.84)
63.95(1.49)

167.32
174.91
181.21
186.52

4
4
4
4

4557.62
4323.98
4161.43
4035.72

Unconstrained model
β Q∗ r∗(k∗) A∗ L∗ EAC∗

(Qi, ri, Li)
0.0
0.5
0.8
1

172.43
167.18
163.40
160.46

74.14(2.76)
69.87(2.23)
66.60(1.82)
63.85(1.48)

200
200
200
200

4
4
4
4

4430.09
4252.54
4120.24
4012.54

When β = 0, equation (4.4) reduces to that of the lost sale case, and thus
equation (4.11) becomes

Q=

⎡
⎣D
{(
A+ ci(Li−1−L)+

∑i−1
j=1 cj(bj − aj)

)
+
[
(π+π0)

2

(√
1 + k2 − k

)
σD

√
L
]}

h
2 (1 − 2E (p)+E (p2))

⎤
⎦

1
2

·

(5.2)
Hence, for fixed L and k, comparing equations (5.1) and (5.2), we get Qβ=0 >

Qβ > Qβ=1, that is, the order quantity per cycle in the lost sale case for uncon-
strained problem is greater than backorder case.

However, for the constrained problem, if β = 1, equation (4.4) reduces to the
expected annual cost of backorder case and hence equation (4.11) becomes

Q =

⎡
⎣D
{(
A+ ci (Li−1 − L)+

∑i−1
j=1 cj (bj − aj)

)
+
[

π
2

(√
1 + k2 − k

)
σD

√
L
]}

h
2 (1−2E (p)+E (p2)) + λ1γf+λ2ϕCp

⎤
⎦

1
2

(5.3)
Also storage space constrained for backorder case is transformed as follows:

gβ=1 = γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y)) (5.4)

For β = 0, equation (4.4) reduces to the lost sale case, and thus equation (4.11)
becomes

Q=

⎡
⎣D
{(
A+ci(Li−1 − L) +

∑i−1
j=1 cj (bj − aj)

)
+
[
(π+π0)

2

(√
1+k2 − k

)
σD

√
L
]}

h
2 (1 − 2E (p)+E (p2))+λ1γf+λ2ϕCp

⎤
⎦

1
2

(5.5)
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Table 6. Comparison of two procedure.

β EACU EACN EVAI Cost penalty

(Q∗, A∗, r∗, L∗) (Q∗, A∗, r∗, L∗)

0.
0.5
0.8
1.0

4557.62
4323.98
4161.43
4035.72

3844.71
3812.21
3781.99
3751.75

712.91
511.77
379.44
283.97

1.185
1.134
1.100
1.075

Furthermore, storage space constraint for lost sale case is as follows:

gβ=0 = γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y))

+ f

(
σD

√
L

2

)(√
1 + k2 − k

)
. (5.6)

Therefore, for fixed L and k storage space constraint for lost sale case is larger
than backorder case (gβ=0 > gβ=1). Hence,λβ=0 > λβ=1. So, in the case of con-
strained problem, Qβ=0 < Qβ < Qβ=1. For this reason, the order quantity per
cycle in the backorder case is greater than lost sale case. Similarly, for normally
distributed demand case parallel results can be obtained.

2. The effect of β on the minimum of the expected annual cost, say EAC∗
β ,

may be examined. It has the minimum value when β = 1 (backorder case)
and the maximum value when β = 0 (lost sale case). Hence, for 0 < β < 1,
EAC∗

β=1< EAC∗
β< EAC∗

β=0 for both normally distributed and distribution free
demand problems.

3. Increasing the value of backorder rate (β), will result in a decrease in safety
factor and reorder point for both partial and perfect lead time demand problems.

5. for a fixed β, if lead time increases then the order quantity decreases.
Moreover, The expected value of additional information, EVAI, is the largest

amount that one is willing to pay for the knowledge of the form of the lead time de-
mand distribution and in equal to EACU (Q∗, A∗, r∗, L∗)−EACN (Q∗, A∗, r∗, L∗).
Also, the cost penalty is the ratio of the approximate expected annual cost (partial
demand information ) to the expected one (perfect demand information). From
Table 6, it is observed that the cost performance of distribution free approach is
improving as β gets larger.

In Table 7, we obtain optimal values in terms of different maximum available
space and inventory investment for partial and perfect lead time demand and
minimum cost is shown for β = 0.5. In this case, with an increase in maximum
permissible (F ) and keeping the remaining parameters fixed, the optimal order
quantity (Q∗) and optimal reorder point (r∗) increase, however the optimal reorder
point (r∗) and expected annual cost (EAC∗) decreases. From an economic view
point, it implies that when maximum permissible inventory investment arises, the
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Table 7. Effect of changes in maximum available space (F ) and
inventory investment (B).

Partial demand information Perfect demand information

(Q∗, A∗, L∗, r∗, k∗, λ1, λ2) EACU (Q∗, A∗, L∗, r∗, k∗, λ1, λ2) EACN

F
130
150
190
210

(95.39, 127.30, 4, 70.21,
2.27, 9.77, 0)

(113.18, 150.92, 4, 70.20,
2.27, 6.04, 0)

(149.27, 199.02, 4, 69.77,
2.22, 1.85, 0)

(156.03, 200.00, 4, 69.80,
2.22, 0, 0.02)

4574.22
4418.79
4270.54
4259.24

(97.46, 129.95, 6, 96.32,
1.87, 2.99, 0)

(115.61, 154.15, 6, 96.02,
1.84, 1.25, 0)

(122.93, 163.91, 6, 95.93,
1.83, 0, 0.01)

(122.93, 163.91, 6, 95.93,
1.83, 0, 0.01)

3861.58
3820.21
3812.21
3812.12

B
8000
9000
10 000
11 000

(89.06, 118.60, 4, 70.03,
2.25, 0, 0.29)

(111.16, 148.22, 4, 70.12,
2.26, 0, 0.16)

(131.17, 174.91, 4, 70.03,
2.25, 3.58, 0)

(131.17, 174.91, 4, 70.03,
2.25, 3.58, 0)

4652.88
4433.54
4323.98
4323.98

(55.14, 73.53, 6, 96.81,
1.92, 0, 0.3)

(77.74, 103.65, 6, 96.51,
1.89, 0, 0.14)

(100.33, 133.78, 6, 96.22,
1.86, 0, 0.06)

(122.93, 163.91, 6, 95.93,
1.83, 0, 0.01)

4173.99
3956.73
3852.81
3812.21

maximum permissible inventory level increases, then order quantity (Q∗) should
be increased to diminish expected annual cost (EAC∗). The same results can be
obtained in increasing maximum inventory investment (B).

6. Conclusion

This paper studied the effect budget and storage space constraints for the con-
tinuous review inventory model when the amount received is uncertain due to re-
jection during inspection. Two models with objective of minimizing the expected
annual cost are formulated and analyzed. The first model considers lead time de-
mand follows a normal distribution. The second model relaxes the assumption
about form of probability distribution of lead time demand and applies a minimax
distribution free procedure to solve the problem. Also, in each case, we show that
the constrained model is jointly convex on the decision variable. Moreover, two
numerical examples are presented to illustrate the important issues related to the
proposed models. The proposed model can be extended in several directions. For
instance we may consider inflationary condition in the models or consider sampling
inspection to the model.

Acknowledgements. The authors acknowledge the constructive comments made by the
anonymous referees on an earlier version of paper.
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Appendix A.

For a given value of L, we obtain the Hessian matrix H for objective function
as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2EACN (Q,A, k)
∂Q2

∂2EACN (Q,A, k)
∂Q∂k

∂2EACN (Q,A, k)
∂Q∂A

∂2EACN (Q,A, k)
∂k∂Q

∂2EACN (Q,A, k)
∂k2

∂2EACN (Q,A, k)
∂k∂A

∂2EACN (Q,A, k)
∂A∂Q

∂2EACN (Q,A, k)
∂A∂k

∂2EACN (Q,A, k)
∂A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

∂2EACN (Q,A, k)
∂Q2

=
2D

Q3(1 − E(p))

{
(A+ C (L)) +

[
π1ψ(k)σD

√
L
]}

(A.1)

∂2EACN (Q,A, k)
∂k2

=
[
φ(k)h (1 − β) σD

√
L
]

+
[

D

Q(1 − E(p))
π1σD

√
Lφ(k)

]
(A.2)

∂2EACN (Q,A, k)
∂A2

=
θb

A2
(A.3)

∂2EACN (Q,A, k)
∂Q∂k

=
∂2EACN (Q,A, k)

∂k∂Q
=

D

Q2(1 − E(p))
π1σD

√
LΦ(k) (A.4)

∂2EACN (Q,A, k)
∂Q∂A

=
∂2EACN (Q,A, k)

∂A∂Q
= − D

Q2(1 − E(p))
(A.5)

∂2EACN (Q,A, k)
∂A∂k

=
∂2EACN (Q,A, k)

∂k∂A
= 0 (A.6)

where
π1 = (π + π0 (1 − β)) (A.7)

C (L) = ci (Li−1 − L) +
∑i−1

j=1
cj (bj − aj). (A.8)

The first principal minor of H for objective function is

|H11| =
∂2EACN (Q,A, k)

∂Q2

=
2D

Q3(1 − E(p))

{
(A+ C (L)) +

[
π1ψ(k)σD

√
L
]}

> 0. (A.9)
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The second principal minor of H for objective function is

|H22| =
∂2EACN (Q,A, k)

∂Q2
× ∂2EACN (Q,A, k)

∂k2
−
(
∂2EACN (Q,A, k)

∂k∂Q

)2

=
2D2

Q4 (1 − E (p))2
(
A+ C (L) + π1ψ (k)σD

√
L
)
π1σD

√
Lφ (k)

+
2D

Q3 (1 − E (p))

(
A+ C (L) + π1σD

√
Lψ (k)

)
hσD

√
L (1 − β)φ (k)

− D2

Q4 (1 − E (p))2
π2

1

(
σD

√
L
)2 ( ¯Φ (k)

)2
=

2D2

Q4 (1 − E (p))2
(A+ C (L))π1σD

√
Lφ (k)

+
2D

Q3 (1 − E (p))

(
A+ C (L) + π1σD

√
Lψ (k)

)
hσD

√
L (1 − β)φ (k)

+
D2

Q4 (1 − E (p))2
π2

1

(
σD

√
L
)2 [

2φ (k)ψ (k) − ( ¯Φ (k)
)2]

(A.10)

Let ζ (k) = 2φ (k)ψ (k) − ( ¯Φ (k)
)2

. From (A.10), we can find that to verify
|H22| > 0 only need to prove that ζ (k) > 0 since all other terms are positive. We
know that limk→0+ζ (k) = 1 and limk→+∞ζ (k) = 0. Also we know dζ (k)/dk < 0.
Hence, ζ (k) is a decreasing function of k and ζ (k) is positive.

The third principal minor of H for objective function is:

|H33| =
θb

A2
|H22| +

(
D

Q2 (1 − E (p))

)2 {[
φ(k)h (1 − β)σD

√
L
]

+
[

D

Q (1 − E (p))
π1σD

√
Lφ(k)

]}
> 0. (A.11)

It follows from |H11| > 0, |H22| > 0 and |H33| > 0 that H is positive finite. That
is to say, objective function is a convex function in (Q, k) for any L ∈ [Li, Li−1]

Moreover, for a given value of L ∈ [Li, Li−1], storage space constraint
(g (Q, k, L)) is a convex function of (Q, k), since

g (Q, k) = γf
(
Q+ μDL+ kσD

√
L
)
−F−f (μDL+ E(y)) + f (1−β)σD

√
Lψ(k)
(A.12)

∂2g (Q, k)
∂k2

= f (1 − β)σD

√
Lφ(k) > 0. (A.13)

Because, Also for a fixedL ∈ [Li, Li−1], budget constraint is a linear function of
(Q, k). Consequently, the necessary KKT conditions for the constrained inventory
problem are also sufficient. So in this case, for a fixed value of L ∈ [Li, Li−1], if
there exists a solution (Q∗, A∗, k∗) that satisfies the KKT necessary conditions,
then (Q∗, A∗, k∗) is an optimal solution of our constrained inventory problem. In
fact, (Q∗, A∗, k∗) is the global minimum.
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Appendix B.

For a given value of L, we obtain the Hessian matrix H for objective function
as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂2EACU (Q,A, k)
∂Q2

∂2EACU (Q,A, k)
∂Q∂k

∂2EACU (Q,A, k)
∂Q∂A

∂2EACU (Q,A, k)
∂k∂Q

∂2EACU (Q,A, k)
∂k2

∂2EACU (Q,A, k)
∂k∂A

∂2EACU (Q,A, k)
∂A∂Q

∂2EACU (Q,A, k)
∂A∂k

∂2EACU (Q,A, k)
∂A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where

∂2EACU (Q,A, k)
∂Q2

=
2D

Q3(1 − E(p))

{
(A+ C (L)) +

[
π1ρ (k)

σD

√
L

2

]}
(B.1)

∂2EACU (Q,A, k)
∂k2

=

[
τ (k)h (1−β)

(
σD

√
L

2

)]
+

[
D

Q(1 − E(p))
π1

(
σD

√
L

2

)
τ (k)

]

(B.2)

∂2EACU (Q,A, k)
∂A2

=
θb

A2
(B.3)

∂2EACU (Q,A, k)
∂Q∂k

=
∂2EACU (Q,A, k)

∂k∂Q
= − D

Q2(1 − E(p))
π1

(
σD

√
L

2

)
η (k)

(B.4)

∂2EACU (Q,A, k)
∂Q∂A

=
∂2EACU (Q,A, k)

∂A∂Q
= − D

Q2(1 − E(p))
(B.5)

∂2EACU (Q,A, k)
∂A∂k

=
∂2EACU (Q,A, k)

∂k∂A
= 0 (B.6)

where
ρ (k) =

(√
1 + k2 − k

)
> 0 (B.7)

π1 = (π + π0 (1 − β)) (B.8)

τ (k) =

(
1√

1 + k2
− k2

(1 + k2)
3
2

)
> 0 (B.9)

η (k) =
(

k√
1 + k2

− 1
)
< 0 (B.10)

C (L) = ci (Li−1 − L) +
∑i−1

j=1
cj (bj − aj). (B.11)
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The first principal minor of H for objective function is:

|H11| =
∂2EACU (Q,A, k)

∂Q2
=

2D
Q3 (1−E (p))

{
(A+ C (L))+

[
π1
σD

√
L

2
ρ (k)

]}
>0.

(B.12)
The second principal minor of H for objective function is:

|H22| =
∂2EACU (Q,A, k)

∂Q2
× ∂2EACU (Q,A, k)

∂k2
−
(
∂2EACU (Q,A, k)

∂k∂Q

)2

=
2D2

Q4 (1 − E (p))2

(
A+ C (L) + π1

(
σD

√
L

2

)
ρ (k)

)
π1

×
(
σD

√
L

2

)
τ (k) +

2D
Q3 (1 − E (p))

×
(
A+ C (L) + π1

(
σD

√
L

2

)
ρ (k)

)
h

(
σD

√
L

2

)
(1 − β) τ (k)

− D2

Q4 (1 − E (p))2
π2

1

(
σD

√
L

2

)2

η2 (k)

=
2D2

Q4 (1 − E (p))2
(A+ C (L))π1

(
σD

√
L

2

)
τ (k)

+
2D

Q3 (1 − E (p))

(
A+ C (L) + π1

(
σD

√
L

2

)
ρ (k)

)
h

×
(
σD

√
L

2

)
(1 − β) τ (k)

+
D2

Q4 (1 − E (p))2
(π2

1

(
σD

√
L

2

)2 [
2τ (k) ρ (k) − η2 (k)

]
. (B.13)

Let ξ (k) = 2τ (k) ρ (k)−η2 (k). From (B.13), we can find that to verify |H22| > 0
only need to prove that ξ (k) > 0 since all other terms are positive. We know that
limk→0+ξ (k) = 1 and limk→+∞ξ (k) = 0. Also we know dξ (k)/dk < 0. Hence,
ξ (k) is a decreasing function of k and ξ (k) is positive.

The third principal minor of H for objective function is:

|H33| =
θb

A2
|H22| +

(
D

Q2 (1 − E (p))

)2
{[

τ (k)h (1 − β)

(
σD

√
L

2

)]

+

[
D

Q (1 − E (p))
π1

(
σD

√
L

2

)
τ (k)

]}
> 0. (B.14)
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It follows from |H11| > 0 and |H22| > 0 that H is positive finite. That is to say,
objective function is a convex function in (Q, k) for any L ∈ [Li, Li−1] .

Also for a given value ofL ∈ [Li, Li−1], storage space constraint (g (Q, k, L)) is
a convex function of (Q, k), since

g (Q, k) = γf
(
Q+ μDL+ kσD

√
L
)
− F − f (μDL+ E(y))

+ f (1 − β)

(
σD

√
L

2

)(√
1 + k2 − k

)
(B.15)

∂2g (Q, k)
∂k2

= f (1 − β)

(
σD

√
L

2

)(
1√

1 + k2
− k2

(1 + k2)
3
2

)
> 0. (B.16)

Because (
1√

1 + k2
− k2

(1 + k2)
3
2

)
> 0. (B.17)

In addition, for a fixedL ∈ [Li, Li−1], budget constraint is a linear function of
(Q, k). Consequently, the necessary KKT conditions for the constrained inventory
problem are also sufficient. So in this case, for a fixed value of L ∈ [Li, Li−1], if
there exists a solution (Q∗, A∗, k∗) that satisfies the KKT necessary conditions,
then (Q∗, A∗, k∗) is an optimal solution of our constrained inventory problem. In
fact, (Q∗, A∗, k∗) is the global minimum.
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