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Abstract. We consider the problem of appointment scheduling for
outpatient departments in health care systems. The objective is to de-
sign an appointment system that minimizes the average waiting time
per patient, while at the same time ensuring the effective use of re-
sources, by maximizing doctor utilization and minimizing the average
number of patients in the clinic. We model the appointment system
problem as a multi-objective optimization problem with three objec-
tives. Several new alternative appointment systems are considered, and
the new systems are modelled and simulated using the software Arena.
Subsequently, a new version of ranking and selection approaches is used
to compare the alternative systems, by constructing a set of Pareto op-
timal solutions that consists of non-dominated systems with a prede-
termined level of confidence. Finally, we present the numerical results
obtained by implementing the proposed procedure on an outpatient
clinic, taking into account the no-show patients as well as the walk-in
patients.
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1. Introduction

The scheduling of outpatient departments is considered to be one of the major
determinants of health care sector efficiency, aiming to provide excellent services
for patient satisfaction and at the same time to effectively use the available re-
sources. Among these services is the appointment system (AS), which is essentially
a scheduling tool to determine the arrival of patients, in a way that improves the
productivity of the outpatient department. Seeing as long waiting hours have re-
mained a long term complaint from the patients’ side, this improvement becomes
a central concern for action.

Thus, in the current paper we study the appointment system and how it can be
improved to better satisfy patients by reducing waiting times, as this has always
been the most important determinant of service quality. The current situation in
the clinic of interest is that patients arrive and register at the beginning of each
session. Upon registration, they are assigned an order and must wait until their
turn has come. In some cases, patients must wait very long hours to receive consul-
tation from a specialist. Several appointment systems are modelled and simulated
using Arena simulation software; then, these systems are evaluated based on three
performance measures before the best systems are selected. These measures in-
clude the minimization of the average waiting time per patient, the maximization
of doctor time utilization and the minimization of the average number of patients
in the clinic. The consideration of three conflicting objectives leads to a multi-
objective optimization problem, for which we propose a ranking and statistical
selection method to construct a set that contains the best systems with a pre-
specified level of confidence. Several researchers have assessed the operation of an
outpatient department; see Jacobson and Swisher [12] and Cayirli and Veral [8]
for overall health care and for outpatient scheduling.

In the literature, the popular appointment systems (AS’s) range from single-
block appointments, according to which patients arrive collectively at the begin-
ning of a clinic session, to individual appointments, where they arrive indepen-
dently. Most of the AS’s can be considered as a modification and combination of
these two types of systems. Any appointment system scenario consists of three
parts; the appointment interval, the block size and the initial block of patients.
The most used scenarios in hospitals are the single-block appointments which al-
locate a date rather than an exact appointment for patients, Babes and Sarma [3].
This scenario creates long waiting times for patients and at the same time maxi-
mizes the utilization of the doctors time. Many researchers including Klassen and
Rohleder [14], Rohleder and Klassen [17] and Cayirli et al. [6, 7] have studied
the individual-block/fixed-interval system; in this scenario, patients are scheduled
individually in each time interval that equals to the mean consultation time of the
doctor. Bailey [4] introduced the individual-block/fixed-interval with an initial
block system which is similar to the individual-block/fixed-interval system but the
number of patients assigned to the initial block is set to two patients rather than
one patient. Brahimi and Worthington [5] have suggested three patients for the
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initial block instead of two. Soriano [18] has used the multiple block/fixed-interval
rule that calls a fixed number of patients at the beginning of each block by intro-
ducing a scheduling system according to which two patients are scheduled at each
time interval that is twice the consultation time. The variable-block/fixed-interval
system assigns a number of patients that varies from one interval to another but
with fixed appointment intervals, Liu and Liu [16]. The Individual-block/variable-
interval rule assigns individual patients in unequal appointment intervals; Ho and
Lau [11] have introduced this rule by setting smaller intervals at the beginning of
the session but these intervals increase in time as the sessions proceed. Finally,
multiple patient blocks with variable-intervals have been considered by Cayirli
et al. [6]. Jerbi and Kamoun [13] have used a mixed goal programming approach
to compare several approaches and select the best appointment system among
the many alternatives. Nearly all the above studies have concentrated only on
appointment rules, without taking into consideration factors such as patient char-
acteristics, which can have an impact when designing the appointment systems.
Alrefaei et al. [2] considered the problem as a multi-objective optimization and
use ranking and selection to build a Pareto set on non-dominated solutions. For
a more comprehensive review of appointment scheduling systems see Gupta and
Denton [10] and Wijewickrama and Takakuwa [19].

In the current paper, we integrate modelling and simulation with an optimiza-
tion technique for selecting an optimal set of systems for the appointment problem
in an outpatient department. More specifically, we consider the case of a single doc-
tor and we implement different appointment systems in Arena. Then, we apply a
new version of ranking and statistical selection for the multi-objective optimiza-
tion problem, in order to construct the Pareto set that will dominate all others.
This paper is an extended version of the paper by Alrefaei et al. [2] presented in
the International Conference on Operations Research and Statistics (ORS 2011)
that was held in Penang, Malaysia.

This paper is structured as follows: Section 2 provides an overview of modelling
assumptions and important aspects of the simulation approach. Section 3 presents
the detailed construction of the Arena model, while Section 4 explains the ranking
and selection procedure. Section 5 discusses the results, while Section 6 concludes
the work with important findings.

2. Simulating appointment systems

In this section, we begin by discussing the flow of patients in the clinic. Then, we
describe the method for collecting the required data before presenting the various
appointment systems that are considered in this work. Finally, we conclude this
section with the methodology for constructing the Arena simulation model.

Patients flow in the clinic: Patients start arriving at the clinic at 7:00 AM
and they proceed to the registration desk to receive a number. They wait until
this number is called in order to meet the doctor for consultation. Upon receiv-
ing consultation, a patient may either leave the clinic, or stay for laboratory
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Figure 1. The flowchart of the patient in the clinic.

tests, depending on the doctor’s suggestion. In the latter case, the patient is
received in the lab and once tests are run, the patient must return to the queue
for a second consultation with the doctor. Figure 1 illustrates the flowchart for
a patient in the clinic.
Data Collection: There is continuous information exchange between the con-
struction of the model and the collection of the required input data. Since data
collection requires a significant portion of the total time for performing a simu-
lation, it is collected in the early stages of the work. The data collection period
lasted for a month and a half; it was collected under the same conditions, on
the same day of each week for the same work shift and the same resources.
The collected data included the arrival time for each patient, the type of pa-
tient (new or follow-up), the waiting time, the queue for the doctor’s office, the
service time inside the doctor’s office, the number of patients sent to the lab
and the time required for the patient to come back from the lab to the queue.
This data was analyzed using the Arena input analyzer which enabled us to
reach several important conclusions. Firstly, the consultation time is different
according to the patient type: for new patients it is 8.86 min, for follow-up
patients it is 6.3 min and for return patients from the lab it is 2.89 min. The
lab time for return patients is 10.77 min. From the collected data, we have also
noticed that 87.5% of all patients are follow-up patients, while 12.5% are new
patients. Furthermore, we observed that only 9.5% of patients are sent for lab
tests.
Modelling and simulating appointment systems: Any appointment sys-
tem is viewed according to its preformed process. Here we discuss how to model
an appointment system for the clinic at the outpatient department. First, we
describe the current situation at the clinic and then we present the proposed
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Table 1. Current situation of the clinic.

Clinic working hour 7 h
Doctor working hours 5 h
Number of resources (doctors) 1 doctor
Average served patients 33 patients
Average waiting time per patient 2.16 h
Average doctor’s utilization Almost 100

alternative appointment systems. Finally, we explain the structure of the Arena
model.

The current appointment system consists of the following three main parts:
Waiting in the doctor queue: This clinic offers its services to three types
of patients, namely new patients, follow-ups and return patients. The two
first types require a number from the registration desk, while return patients
are those who are advised to run lab tests for evaluation and thus they visit
the doctor’s office twice; this is why they are called return patients. When the
patients are inserted into the system database and assigned numbers, they are
requested to wait until it is their turn to see the doctor. The patients start
arriving at 7:00 AM, while the doctor commences consultation at 9:00 AM,
thus a queue is generated in these two hours and the first patient receives
consultation at 9:00 AM.
Doctor diagnosing process: After entering the doctor’s office for diagnosis,
it is assumed that the patient will remain there for a service time which is
dependent on the patient type; new, follow-up or return. New patient time is
usually the longest due to the fact that the doctor must complete the patient’s
file and identify problems and conditions. Follow-up patient time is not as long,
because the doctor already has a record for these patients and performs a mere
check-up. Finally, return patients require the least time, as the doctor only
examines the test results and provides the appropriate prescription based on
these results.
Lab Process: As already mentioned, return patients are those who are sent
for tests, the results of which are usually ready on the same day. On average,
the lab process takes 10 min. Upon completion of the tests, return patients
have a higher priority to see the doctor and thus they are taken in immediately
without the need for a visit number.

Table 1 includes some statistics obtained from the collected data of the current
situation.

At this point, it must be mentioned that appointment systems are affected
by many factors, including the initial block of patients, in terms of the number of
arrivals at the beginning of each session, the number of patients in the initial block
and the length of the interval between the consecutive arriving blocks. Based on
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Table 2. The description of the 9 scenarios considered in the project.

System Class Description
1 1 One patient each 8 min
2 2 One patient each 8 min but with initial arrival of 2 patients
3 3 One patient each 6 min for 30 min then

one patient each 8 min for 2 h and a half then
one patient each 10 min for the last 3 h

4 3 One patient each 8 min for 2 h then
one patient each 10 min for the last 4 h

5 4 Two patients per arrival for each 20 min
6 4 Two patients per arrival for each 18 min
7 5 Three patients per arrival each 18 min for 1 hour then

Two patients per arrival for each 18 min for the last 5 h
8 6 Two patients per arrival each 15 min for 1 hour then

two patients per arrival each 18 min for the last 5 h
9 6 Two patients per arrival each 15 min for 30 min then

two patients per arrival each 18 min for 3 h then
two patients per arrival each 20 min for the last 2.5 h

these factors, the AS can be classified as follows:

Class 1: The individual-block/fixed-interval system. In this system, patients
are assigned individual appointments with a fixed interval time between any
two appointments that is equal to the mean consultation time between any two
appointments.
Class 2: The individual-block/fixed-interval with an initial block system. This
system is similar to the previous, except in this case the initial arrival block
comprises of more than one patient.
Class 3: The individual-block/variable-interval system. In this system indi-
vidual patients in each block are assigned with different appointment intervals
between scheduled arrivals. Usually, these appointment intervals are increasing.
Class 4: The multiple-block/fixed-interval system. According to this system,
a fixed number of patients (more than one) are assigned in each block but with
fixed intervals, equal to the mean consultation time between two patients,
multiplied by the number of patients in the block.
Class 5: The variable-block/fixed-interval system. In this system, a different
number of patients in each appointment block are assigned with fixed intervals.
Usually, the number of patients assigned at the beginning is higher and notes
a gradual decrease thereafter.
Class 6: The multiple-block/variable-interval system. In this system, a fixed
number of patients (more than one) with different appointment intervals (in-
creasing appointment intervals) are assigned.

We have investigated 9 alternative systems based on this classification scheme,
which are compared in order to identify the set that contains the systems exhibiting
the best performance. Table 2 describes these 9 alternatives.
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3. The Arena model

Arena uses what is known as CREATE module to control the arrival process
to the clinic. To model this we used one CREATE module to generate the initial
arrivals, one CREATE module for walk-in arrivals and another for each block and
each times slot. For example, in order to model the arrival of 3 patients with
20 min intervals, for the first 2 h, then 2 patient arrivals with 15 min intervals for
the next 2 h and finally one patient arrival each 10 min. For the last 2 h, we use 3
Create modules, each one with constant time between arrivals, with values equal
to 20, 15 and 10, respectively, the number of entities per arrival is set as 3, 2 and 1,
respectively; the maximum number of arrivals are set to 6, 8 and 12 and the first
creation starts at 0.00, 120.00 and 240.00 min, respectively. The DECIDE module
is used to decide whether the patient shows up or not and it is set to 90% in
favor of showing up and 10% for no-show patients who are disposed immediately.
Another DECIDE module is used to determine the arrival type; 12.5% for new
patients and 87.5% for follow up patients. Then the ASSIGN module is used to
assign attributes to the entity type; for new arrivals we assign doctor service times
obtained from data collected as 4 + Expo(4.86); for follow-ups the doctor service
time is assigned as Expo(6.32); finally, for return patients it is Expo(2.9). The
priority for new, follow-up and return patients is set higher than that for walk-in
patients, who have not booked an appointment. The PROCESS module is used
to assign the process time required in the doctors office, which depends on the
patient type. The DECIDE module is used to model whether the patient is sent
for lab tests or not; from the collected data, the percentage of patients requested
to go to lab test is 9.5%. The lab process time follows the distribution of 7.17 +
Expo(3.65) min. In addition, the RECORD module is used to count the number
of patients leaving the system. Finally, the DISPOSE module is used to let the
entities leave the system.

Figure 2 provides a sketch of the Arena model for an appointment system.

4. The ranking and selection procedure

Ranking and Selection (R&S) procedures are statistical selection techniques
designed to select the best, or a subset of systems containing the best, from a
group of alternative systems whose behavior encounters some randomness. It is
assumed that we can generate independent and normally distributed observations
from each system. There are two types of R&S procedures, the indifference zone
approach and the subset selection approach. In the indifference zone approach one
needs to select the system with the largest mean (assuming we are maximizing a
set of systems) with a predetermined level of confidence. If the difference between
the selected and the actual best system is small, less than d∗, then the user is
satisfied with the selection. Let Xik, be the kth observation of the ith system
and assume that Xi1 , Xi2 , Xini

are independent and normally distributed. Let
μi = E(Xik

) and assume that μ1 ≤ μ2 . . . ≤ μn be the ordered mean performance
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Figure 2. The Arena model for a general appointment system.

for the n systems, the practitioner then is interested in selecting the system n∗,
where μn − μn∗ ≤ d∗, where d∗ is predetermined by a practitioner, the region
[μn − d∗, μn] is called the indifference zone.

Let CS be the event of correct selection, i.e., a system in the indifference zone
is selected as the best, then it is sought to have P (CS) ≥ P ∗, where P ∗ is a
predetermined level of confidence. R&S procedures usually consist of two phases.
In the first phase, a sample of size n0 is generated from each system, which is used
to estimate the variances. Then, using the variances, the values of d∗ and P ∗, and
the initial sample size, a second sample is calculated to guarantee the probability
of correct selection. Most of the ranking and selection procedures have focused
on a single objective function. However, in many applications, it is required to
select a system based on multi-objective criteria; for example, in outpatient clinic
departments managers are interested in minimizing the average waiting time per
patient, maximizing the utilization of the doctor and minimizing the expected
number of patients in the clinic.

Multi-objective optimization

Assume that f is an r-vector f = (f1, . . . , fr), where fj is the expected per-
formance of a complex stochastic system whose evaluation encounters some noise;
fj(s) = E[hj(s; Ys)] where Ys is a random variable that depends on the parame-
ter s. The objective is to select a system that optimizes all the objective functions
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f1, . . . , fr. Note that, there may be no single optimal solution that solves all objec-
tive functions. One way of solving this problem is to give a weight for the various
objective functions based on their importance and then they are aggregated into
a single objective optimization problem

f(s) =
r∑

j=1

wjfj(s), where
r∑

j=1

wj = 1, wj ≥ 0.

Then one can use any optimization problem to solve the aggregated problem,
Alrefaei and Diabat [1] have used the simulated annealing algorithm for solving
the multi-objective optimization (MOO) problem using the weighted sum method.
However, selecting the weight is a major concern because it depends on the decision
makers. Another way of solving the MOO is to construct a Pareto set, that consists
of all non-dominated solutions. A solution A is said to dominate solution B if for all
components of A; fj(A) ≤ fj(B), j = 1, . . . , r and for at least one j, fj(A) < fj(B).
A solution A is said to be non-dominated if it is not dominated by any solution.
Solution A belongs to the Pareto optimal set if it is not dominated by any other
feasible solution, see Chen and Lee [9].

Note that in the stochastic model, the objective function values are known and
have to be estimated by simulation, therefore the definition of the dominance is
not valid in this situation; in this work, we propose a new definition for dominance
based on comparison of alternative simulation systems.

Definition 4.1. A solution A is said to α-dominate solution B if the (1−α)100%
confidence interval of the difference Z = fj(A) − fj(B) contained entirely in the
closed interval (−∞, 0] and at least one confidence interval is contained in the open
interval (−∞, 0). A solution A is said to be α-non-dominated solution if it is not
α-dominated by any solution.

The following algorithm describes the proposed ranking and selection procedure
for multi-objective optimization.

Algorithm 1 (RSMOO).

Step 1: For each system i, i = 1, . . . , n, get n0 samples for each objective
j, j = 1, . . . , r. For k = 1, . . . , n0, let Xijk be the kth sample of system i for
objective j.
Step 2: For each system i and objective j; i = 1, . . . , n, j = 1, . . . , r, calculate
the initial estimates of the sample mean Xij(1) and the sample variances S2

ij

as follows:

Xij(1) =
1
n0

n0∑
k=1

Xijk

S2
ij =

1
(n0 − 1)

n0∑
k=1

(Xijk − Xij(1))2.
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Step 3: For i = 1, . . . , n, j = 1, . . . , r, compute the total sample size

Nij = max

{
n0 + 1,

⌈
h2

1S
2
ij)

d∗j

⌉}

where d∗j is the indifference value for objective j and h1 is a constant that
depends on confidence level P ∗ to gurantee the probability of correct selection
and can be obtained from Table 10.11 of Law and Kelton [15], see the remark
below to show how to evaluate the value of h1.
Step 4: For each system i, i = 1, . . . , n, and each objective j, j = 1, . . . , r, run
the simulation for Nij −n0 more samples and compute the second sample mean

Xij(2) =
1

Nij − n0

Nij−n0∑
k=1

Xijk.

Step 5: For i = 1, . . . , n, and j = 1, . . . , r, define the weights

Wij(1) =
n0

Nij

⎡⎣1 +

√√√√(1 − Nij

n0

(
1 − (Nij − n0)(d∗j )2)

h2
1S

2
ij

)⎤⎦
and Wij(2) = 1 − Wij(1) and compute the overall weighted sample mean

X̂ij = Wij(1)Xij(1) + Wij(2)Xij(2).

Step 6: For each objective j, j = 1, . . . , r, rank the systems based on their
weighted sample means X̂ij .
Step 7: Construct an initial Pareto set P that consists of all systems that
have the best performance in at least one objective function based on the ranks
obtained in Step 6.
Step 8: For each system s ∈ S, let α = 1 − P ∗, construct the 100(1 − α)%
confidence intervals for the difference fj(s) − fj(i), for all i = 1, . . . , n, i �= s
and j = 1, . . . , r as follows

(
X̂sj − X̂ij

)
± Z(1−( α

(n−1) ))

[√
(Ssj)2

Nsj
+

(Sij)2

Nij

]

where Z(1− α
n−1 ) is the 1 − α

n−1 upper critical points of the normal random
variable. Note that since we have n− 1 comparisons, to guarantee the 100(1−
α)% confidence level, we build the 100(1− α

(n−1))% confidence interval for each
comparison.
Step 9: If there is a system s′ that is α-non-dominated by all s ∈ P, then s′

enters the Pareto set P.
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Table 3. The estimated mean and variance for the average wait-
ing time per patient obtained by the initial 20 replication and the
new sample sizes.

The average waiting New sample
System time per patient Variance sizes Nij

1 10.90 36.22 85
2 14.84 53.45 125
3 12.74 102.11 238
4 9.72 53.27 124
5 9.00 60.54 141
6 10.06 22.82 54
7 11.30 44.97 105
8 14.61 89.70 209
9 12.22 43.47 102

Remark 4.2. Note that in Step 3, h1 is a constant that can be evaluated by
solving the integral equation:∫ ∞

∞
(F (t + h1))

(n−1)
f(t)dt = P ∗

to guarantee the correct selection P (CS) = P ∗, where F (.) and f(.) are the CDF
and pdf for the standard normal distribution. h1 can be obtained from Table 10.11
of Law and Kelton [15].

5. Results and discussion

In order to use ranking and selection method for multi objectives, we first ran
the Arena simulation for each alternative an initial run of n0 = 20 replications.
Then we obtained the initial estimates of sample means and variances for the
average waiting time per patient, doctor’s utilization and the number of patients
waiting in the queue using equations (1) and (2), respectively. The second sample
sizes, Nij for each system i, i = 1, . . . , n and objective j, j = 1, . . . , r are calculated
using equation (3). We assume that we seek the probability of correct selection
P ∗ = 0.9, the indifference zone d∗j is selected as follows; for the average waiting
time d∗1 = 2 min, for the utilization objective d∗2 = 0.05 and for the average number
of patients in the queue d∗3 = 0.5. Tables 3, 4 and 5 include the summary statistics
and the new sample sizes for the three objectives, respectively. Table 6 includes
the maximum new sample sizes for all alternatives over the three objectives.

We ran Arena for each alternative based on the maximum number sample size
for each system. New estimates of the sample means and variance for all systems
and all objectives are calculated and the weighted sample means are calculated
based on equations (4) and (5). The systems are ranked based on their weighted
sample means for each objective. Tables 7–9 include these ranked systems including
their sample means, variances and the number of total replications.
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Table 4. The estimated mean and variance for the average num-
ber of patients in queue obtained by the initial 20 replication and
the new sample sizes.

System The Number of patients in Queue Variance New sample sizes (Nij)
1 1.85 1.65 62
2 2.83 3.17 119
3 1.90 2 87 108
4 1.3 1.49 56
5 1.20 1.10 42
6 1.42 0.57 22
7 1.66 1.62 61
8 2.37 2.33 87
9 1.72 0.85 32

Table 5. The estimated mean and variance for doctor utilization
obtained by the initial 20 replication and the new sample sizes.

System The estimated Doctor Utilization Variance New sample sizes (Nij)
1 88.14% 0.0054 21
2 89.49% 0.0104 39
3 83.52% 0.0117 44
4 80.92% 0.0047 18
5 74.22% 0.0071 27
6 80.49% 0.0111 42
7 76.80% 0.0167 63
8 85.23% 0.0076 29
9 81.88% 0.0126 47

Table 6. The new sample sizes for all systems.

System NMAX

1 85
2 125
3 238
4 124
5 141
6 54
7 105
8 209
9 102

The initial Pareto set is constructed by including the best system in at least
one objective, so the initial set is S = 1, 5. Then each system in S is compared
with all other alternatives not in S by constructing confidence intervals for the
difference of the estimated means of the objective functions. So we construct the
1 − (0.1

8 )100% = 98.75% confidence intervals for W1 − Wi and NIQ1 − NIQi
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Table 7. The ranked systems based on the average waiting time per patients.

System Average waiting time (min) Variance Number of replicates
5 8.11 31.244 141
4 8.77 40.797 124
6 10.55 33.633 54
8 11.65 53.903 209
1 11.68 52.679 85
2 11.72 51.362 125
3 12.14 99.015 238
9 13.8 81.265 102
7 14.19 128.47 105

Table 8. The ranked systems based on the average number of
patients in queue.

System Average number of patients in queue Variance Number of replicates
5 1.07 0.687 141
4 1.16 0.821 124
7 1.52 1.658 105
6 1.55 1.059 54
3 1.77 2.697 238
1 1.97 2.058 85
2 2.05 2.400 125
9 2.09 2.526 102
8 2.19 3.162 209

Table 9. The rank of systems based on the utilization of the doctor.

System Average utilization Variance Number of replicates
1 86.9% 0.0063 85
2 86.6% 0.0078 125
8 86.1% 0.097 209
9 83.2% 0.0123 102
3 81.9% 0.0117 238
6 80.7% 0.0101 54
4 79.2% 0.0092 124
5 73.6% 0.0111 141
7 65.3% 0.0167 105

and UT5 − UTi for each system i = 1, 2, . . . , 9, j �= 1, 5. The results are listed in
Tables 10–12.

Since the confidence interval for W1 − W4 and NIQ1 − NIQ4 are contained
entirely in (0,∞) (Note that we are interested in minimizing the waiting time and
the average number of patients in system) and U5−U4 is contained entirely in the
interval (−∞, 0) (Note that we are interested in maximizing the doctor utilization),
we conclude that System 4 is not dominated by any system, so it enters the Pareto



448 MAHMOUD H. ALREFAEI AND ALI DIABAT

Table 10. The The lower and upper limits of the 90% confidence
intervals for the difference in waiting time between alternative 1
and other alternatives.

System (j) W1 − Wj W LCI UCI
2 −0.037 2.2751 −2.3121 2.2381
3 −0.4664 2.2807 −2.7472 1.8143
4 2.9058 2.1828 0.723 5.0886
6 1.1274 2.4981 −1.3706 3.6255
7 −2.5126 3.0425 −5.5551 0.5299
8 0.0257 2.0994 −2.0738 2.1251
9 −2.1207 2.6671 −4.7878 0.5465

Table 11. The lower and upper limits of the 90% confidence
intervals for the difference in average number of patients in queue
between alternative 1 and other alternatives.

System (j) NIQ1 − NIQj HW LCI UCI
2 −0.0828 0.4669 −0.5497 0.3841
3 0.2028 0.4225 −0.2197 0.6253
4 0.8073 0.3935 0.4138 1.2008
6 0.4246 0.4691 −0.0445 0.8938
7 0.4528 0.4482 0.0046 0.901
8 −0.2206 0.4445 −0.6651 0.2239
9 −0.1232 0.4959 −0.6192 0.327

Table 12. The lower and upper limits of the 90% confidence in-
tervals for the difference in doctor utilization between alternative
5 and other alternatives.

System (j) U5 − Uj HW LCI UCI
2 −0.1292 0.0266 −0.1558 −0.1026
3 −0.0827 0.0254 −0.1081 −0.0573
4 −0.0556 0.0277 −0.0833 −0.0279
6 −0.0705 .0365 −0.107 −0.034
7 0.0832 0.0346 0.0486 0.1178
8 −0.1241 0.0251 −0.1492 −0.0991
9 −0.0955 0.0317 −0.1272 0.0638

set. Therefore, the final Pareto set is S = {1, 4, 5}. Table 13 includes the estimated
average waiting time per patient, the estimated number of patients in queue and
the doctor utilization for all members in the final Pareto set S.

6. Conclusion

In this paper we considered the problem of selecting an optimal appointment
system to be implemented in an outpatient department clinic. We develop a
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Table 13. The estimates of the performance of the members of
the final Pareto set S.

Average waiting Number of patients Doctor
System time per patient in queue utilization

5 8.11 1.07 73.6%
4 8.77 1.16 79.2%
1 11.68 1.97 86.9%

multi-objective optimization problem to address this challenge, by considering the
following important objectives: the minimization of the average waiting time in
the clinic per patient, the maximization of doctor utilization and the minimiza-
tion of the average number of patients waiting in the queue for consultation from
the doctor. We propose a new version of the ranking and selection procedure to
solve this problem. The procedure constructs a set containing the best systems
with a predetermined level of confidence. The proposed alternative appointment
systems are simulated using Arena software and then the R&S procedure is used
to construct the Pareto set of appointment systems that are not dominated by any
other systems. The final set contains three appointment systems and it is left to
the decision maker to select which system must be adapted, that will best suit the
clinic.
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