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Joanna Berlińska
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Abstract. We analyze scheduling multilayer divisible computations.
Multilayer computations consist of a chain of parallel applications, such
that one application produces input for the next one. A simple form
of multilayer computations are MapReduce parallel applications. The
operations of mapping and reducing are two divisible applications with
precedence constraints. We propose a divisible load model and give
an algorithm for scheduling multilayer divisible computations. The al-
gorithm is tested in a series of computational experiments. We draw
conclusions on schedule patterns and determinants of the performance.
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1. Introduction

In this paper we study scheduling chains of computations on the grounds
of divisible load theory (DLT). The divisible load theory is a model of dis-
tributed processing assuming that the data to be processed, called load, can be
divided into pieces of arbitrary sizes. There are no precedence constraints between
these pieces, so that they can be processed independently in parallel on remote
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87, 61-614 Poznań, Poland. Joanna.Berlinska@amu.edu.pl
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computers. Communication delays are non-negligible and must be taken into ac-
count when scheduling the computations. Divisible load model originated in the
late 1980s [1, 15] when partitioning the load between parallel processors for the
shortest schedule was analyzed. On the one hand, using more processors short-
ens the schedule, because computers receive smaller amounts of load to process.
On the other hand, communications cost additional time. Thus, the problem was
which processors to employ and what amounts of data should be sent to them.
In the early DLT papers the scheduling problem could be reduced to a system of
linear equations. More advanced models were developed later, covering schedul-
ing problems for various network topologies [11, 15, 16, 20], systems with memory
limitations [5, 7, 28] and computation costs [37]. The most general divisible load
scheduling problem was proved to be NP-hard in [41]. Divisible load theory turned
out to be a versatile tool for modeling and analyzing processing large amounts of
data. Its applications include processing measurement data [15], image and video
processing [29, 30, 34], search for patterns in database and text files [21] and lin-
ear algebra [17,24]. The volunteer computing applications on BOINC and similar
platforms also fulfill the assumptions of divisible computation. For further details
on DLT we direct an interested reader to surveys [4, 9, 19, 36].

In this work, we analyze scheduling a chain of divisible jobs. The elements of
the chain will be equivalently called layers. Results from one layer (except the
last) are the input for the next layer. An example of a 2-layer divisible application
are MapReduce distributed computations. MapReduce is a parallel programming
paradigm for processing big datasets on large number of computers [18,31,33,35].
A more detailed description of MapReduce and multilayer divisible computations
is given in the next section. The computations are divided into two phases: map-
ping and reducing. The computers performing mapping will be called mappers and
the computers performing reducing will be called reducers. By the result of [41],
scheduling MapReduce computations in heterogeneous systems is NP-hard in gen-
eral. Scheduling MapReduce computations in homogeneous systems has been stud-
ied in [6, 8]. It was assumed in [6, 8] that the load is partitioned equally between
reducers. Here we relax this assumption. It has been shown in [6] that for MapRe-
duce computations with a single reducer a dominating schedule structure exists.
Namely, mappers should finish their computations in the order in which they were
activated. A reducer should read the mapper output one at a time, i.e. reading
from many mappers simultaneously is not profitable. Unfortunately, a single opti-
mum schedule structure does not seem to exist for many reducers, even if there is
only one reducer layer. Therefore, the complexity of scheduling multilayer divisi-
ble computations in homogeneous systems remains open. The contribution of this
paper may be summarized as follows:

(1) A scheduling model for divisible multilayer computations is proposed.
(2) A method of scheduling each layer of computations is given.
(3) An algorithm for scheduling inter-layer communications is proposed.
(4) A special, polynomially solvable case of the problem is provided.
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Table 1. Summary of notation.

αi the load size processed by mapper i; in bytes;
ared

p , sred
p the computing rate and the computation startup

time for reducers in layer p; in seconds per byte
(ared

p ) and in seconds (sred
p );

A computing rate of a mapper application;
βijk the size of the load sent in interval [ti, ti+1) from

sender j to receiver k;
C communication rate for reading data by the re-

ducers and storing the final results;
l bisection width limit, expressed in parallel chan-

nels;
m number of mappers;
Pi processor (i.e. computer) i;
R number of reducer layers;
gp layer p result multiplicity fraction;
δpk load fraction received by reducer k in layer p;
rp number of reducers in layer p;
S computation startup time, equal for all

mappers;
[ti, ti+1) the ith communication interval in a given layer;
Tp(x) = ared

p max{x, x log2 x} layer p computing time function in load
size x;

V total load size, in bytes.

(5) The scheduling algorithm is evaluated in a series of computational experi-
ments.

(6) Dependence of the structure of the schedules on the system and application
parameters is studied by simulation. This can be used in the future to construct
fast and efficient scheduling heuristics.

The rest of this paper is organized as follows. In the next section, we give
practical motivation of our study. In Section 3, we build a mathematical model
of multilayer divisible computations. Scheduling algorithms are proposed in the
following section. Section 5 comprises the results of computational experiments.
The last section is dedicated to conclusions. The notation used in this paper is
summarized in Table 1. Proofs of the theorems are moved to the appendix, for
better readability.

2. Motivation

In this section we introduce MapReduce and multilayer divisible applications.
We start with an outline of MapReduce [18, 31, 33, 35], as an introductory ex-
ample of 2-layer computations. MapReduce parallel computations consist in pro-
cessing input data sets by creating a set of intermediate key/value pairs, and
then reducing them to yet another list of key/value pairs. Hence, MapReduce
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applications are divided into two layers. In the first layer the input dataset (e.g. a
text/HTML file) is processed by a Map function, which generates a set of interme-
diate (key1, value1) pairs. In the second layer the intermediate pairs are sorted by
key1, and a Reduce function merges the pairs with equal value of key1, to produce
a list of pairs (key1, value2). Consider an example of calculating word frequencies
in a huge set of files [18]. The Map function emits an intermediate pair (word, 1)
for each word in the input dataset. The Reduce function sums together all 1s as-
sociated with key word and produces pairs (word, count). Many other practical
applications can be expressed in MapReduce, see [18, 31, 33, 35].

Both map and reduce operations are distributed computations. The execution
of MapReduce application begins with splitting the input files into load units.
Many copies of the program start on a cluster of machines. One of the machines,
called the master, assigns work to the other computers. There are m map tasks
and r reduce tasks to assign. A computer which is assigned a map task (mapper)
reads the load units and processes the data using the Map function. The output
of this function is divided into r parts by a partitioning function (usually of the
form hash(key1) mod r) and written to r files on the local disk. Each of these r
files corresponds to one reducer. The information about the local file locations is
sent back to the master, which forwards it to the reducers.

When a reducer receives this information, it reads the data from the local disks
of the mappers. After reading the intermediate data, the reducer sorts them by the
intermediate keys so that all occurrences of the same key are grouped together.
Each key and the corresponding set of values are then supplied to the Reduce
function. Its output is appended to a final output file for a given reducer. Thus,
the whole output of MapReduce application is available in r output files.

As stated in [18,40], these files are often passed as the input to another MapRe-
duce call. A chain of MapReduce computations can be seen as a sequence of
many computational layers. Example multilayer divisible computations are iter-
ative MapReduce computations involving data clustering, link analysis, machine
learning [22,26]. Chains of MapReduce jobs have been applied in query processing
of parallel and distributed databases [13, 40].

Let us analyze an example presented in [39]. A set of weather stations records
temperature every hour for many years. We want to calculate, for every weather
station and every day of the year, the average maximum temperature. The
computation can be decomposed into two MapReduce applications. The first
MapReduce computes the maximum daily temperature for every station-date pair.
The results are the input for another MapReduce, which computes the aver-
age of the maximum daily temperatures for every station-day-month key. The
application workflow can be as follows. The original data composed of tuples
(station, date, time, temperature) is split into parts and read by the m proces-
sors executing the first mapping. For each such tuple the Map1 function produces
a (key, value) pair, where key = (station, date) and value = temperature. These
intermediate results are partitioned into r1 files dedicated to the r1 processors per-
forming reducing for the first MapReduce application. They read the intermediate
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data, sort them by keys, then the Reduce1 function computes the maximum
temperature at each station for every day and outputs tuples (station, date,
max{temperature}). The same r1 processors perform also mapping for the sec-
ond MapReduce application. Thus, each tuple created by the Reduce1 func-
tion is passed to the Map2 function, which removes the year from the date,
creating (key, value) pairs, where key = (station, day, month) and value =
max{temperature}. The pairs are stored in r2 files which are then read by r2

processors performing reducing for the second MapReduce. These r2 reducers
read the pairs, sort them by keys, and compute the final result as a list of
(station, day, month, average(max{temperature})) tuples.

In many cases it is possible to transform a multilayer application into a single
MapReduce, by implementing more complex Map and Reduce functions. How-
ever, applications consisting of many, but simpler, stages are easier to develop and
maintain [39].

3. Mathematical model of multilayer computations

We assume that multilayer applications are executed by a homogeneous com-
puter system. Computers are equipped with a CPU, memory and independent
network interface (e.g. NIC and DMA). Terms computer, processor, worker will
be used interchangeably. Processor i will be denoted by Pi. A processor can open
one communication channel at a time, i.e. we use the so-called 1-port model. The
structure of the interconnection network is unknown in general, but the bisection
width is limited. At most l independent communication channels can be simulta-
neously in use without reducing the channel communication speed. In other words,
if two processors can communicate with speed 1/C in the otherwise unloaded net-
work, then the bandwidth limitation for the concurrent channels in the whole net-
work is l/C. Bisection width limitations arise as a consequence of specific network
structure, as most of the interconnection topologies considered in theory [25], and
existing in practice [2, 3, 14, 23] allow for a limited number of parallel connections
between independent pairs of computers. The total size of load to be processed is
V (e.g. bytes).

Let us note that there is a substantial difference in the way the layers of the
application read and process the load. In the first layer the load is read from
an unspecific location in the network file system, and this is interleaved with
computations. In the following layers the whole data is read from the preceding
layer first, and only then can the computations start. Therefore, we will be saying
that a multilayer application consists of one mapper layer (which will be called
layer 0) and R ≥ 1 reducer layers. Let m denote the number of mappers (computers
in layer 0), and rp the number of reducers in layer p = 1, . . . , R.

The schedule structure of multilayer computations is shown in Figure 1. The
computations are divided into 2R + 3 stages, which partially overlap. In the first
stage the code is loaded on the processors. Apart from the mapper and reducer
application codes, it may also include libraries, virtual machines, etc. For simplicity
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Figure 1. General view of multilayer application schedule structure.

of presentation we assume that the mapper and all the reducer codes are uploaded
together and computation startup time elapses only once because when proceeding
to the following stages of the computations, the code is already present on the
executing processor. We assume that the processors read the code from the network
file system. The computation startup time of a single processor is S. The differences
in the startup times resulting from different processor locations are assumed to be
negligible.

In the second stage, the mappers read load units from the network file system,
process them, and store the results in r1 local files, for r1 reducers in the first
layer. For clarity of presentation, we represent all these operations together as
processing with rate A (e.g. sec/byte). A discussion of this model can be found in
[6, 8]. Let αi denote the size (e.g. in bytes) of load assigned to mapper i. Since αi

is a rational number it needs rounding to load units used in practical applications.
We assume that the effects of load size rounding are negligible. The amount of
results produced by the mappers is proportional to the input size: for αi bytes of
input g0αi bytes of output are produced.

In the following 2R stages reducing is performed. Precisely, in stage number
1 + 2p, 1 ≤ p ≤ R, reducers in layer p read load from mappers (if p = 1) or
reducers in layer p − 1 (cf. Fig. 1). All reducers read the load with equal rate C
(expressed e.g. in seconds per byte). At most one channel can be opened between
two processors with transfer rate C. The number of simultaneously used channels
cannot exceed the bisection width limit l. The partitioning function divides the
space of key values into rp not necessarily equal parts. Let δpk denote the fraction
of results assigned to reducer k in layer p. The amount of results produced by the
reducers in layer p for the input size α is gpα. The total amount of load sent to layer
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p is V
∏p−1

i=0 gi. Hence, reducer k in layer p reads input of size δpkV
∏p−1

i=0 gi. Note
that the partitioning functions in all layers are sender-independent. This means
that the proportions between the amounts of load sent to the receivers in the
next layer are the same for each sender in the layer. We use this as an optimistic
approximation assuming that each particular key has roughly equal frequency on
the senders.

In stages number 2 + 2p, 1 ≤ p ≤ R, reducers from layer p sort the input data
and perform computations using Reducep function. For a multilayer application,
Reducep comprises both reducing and mapping for the (p + 1)-st layer. Note that
a reducer can start computations only after receiving the whole assigned load,
including the load from the machine which finished in the previous layer as the
last one. The sequence of communications between the layers is unknown a priori.
Hence, it is hard to predict the order in which reducers in the next layer become
ready to start their computations. Consequently, we assume that all reducers in
layer p start computations not earlier than after transferring all data between
layers p− 1 and p. Let sred

p denote layer p reducer computation startup time, and
ared

p (in seconds per byte) its processing rate. As reducer k in layer p receives input
of size δpkV

∏p−1
i=0 gi, its execution time is sred + Tp(δpkV

∏p−1
i=0 gi), where Tp(x) is

the running time vs. size x of the input. We will assume that sorting dominates
in reducer execution time, and Tp(x) = ared

p max{x, x log2 x}, since the amount of
data is rational and x > x log2 x is possible.

In the last, (2R + 3)-rd stage, the reducers in layer R write the results to
the network file system with rate C. The output of a MapReduce application is
usually available in multiple files to be used by other MapReduce applications.
However, since we analyze a sequence of such applications, producing a compact
set of results, we assume that the final output should be saved in a single file. Still,
the scheduling algorithms proposed in the further text can be modified to handle
other organizations of storing the results (see Sect. 4.1).

In this study we exclude simultaneous execution of several map or reduce tasks
on the same computer. Were such colocation possible, it can be represented as
several processors, each running a different map task or reduce task. If there are
background services executed by the processor (e.g. the network file system), then
we assume that these services influence the processor in a stable way, and perfor-
mance parameters A, ared

p , C, S, sred
p remain constant.

Our goal is to choose the fractions δpk of the load received by the reducers in
each layer, partition the input load of size V into mapper chunks α1, . . . , αm, and
schedule the communication between the layers as well as when storing the final
results, so that the total schedule is as short as possible.

4. Scheduling multilayer computations

In this section we consider load partitioning and communication scheduling for
multilayer computations. The schedules are built for one layer at a time starting
from the last layer toward the first (mapper) layer. In Section 4.1, a method of
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load partitioning in reducer layers is given. In Section 4.2, the mapper layer is
considered. It is shown in Section 4.3 that a feasible communication schedule for
transferring the loads between the layers always exists. The whole algorithm is
summarized in Section 4.4.

4.1. Load partitioning for reducer layers

The load distribution for layer p = R, . . . , 1 depends on the fractions of load
received by the reducers in layer p + 1. Therefore, the values δp+1,k should be
calculated before δpk. Consequently, the algorithm proceeds backward through the
reducer layers and finishes with finding the load distribution for the mapper layer.
Let t0 = 0 denote the start time of computations in layer p. Let t1 ≤ . . . ≤ trp

denote the moments when reducers in layer p finish their computations. As all
reducers are identical and start computations simultaneously, we may assume that
they are ordered by the computation completion times, and reducer k finishes
computations at moment tk. Let trp+1 be the moment when all reducers finished
writing their results. The amount of load sent in interval [ti, ti+1) from reducer
j in layer p to reducer k in layer p + 1 will be denoted by βijk. The following
mathematical program computes optimum load partitioning in layer p:

minimize trp+1 (4.1)

sred
p + Tp(δpiV

p−1∏

q=0

gq) ≤ ti for i = 1, . . . , rp (4.2)

C

i∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, k=1, . . . , rp+1 (4.3)

C

rp+1∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, j=1, . . . , i (4.4)

C

rp∑

j=1

rp+1∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , rp (4.5)

βijk = 0 for j=1, . . . , rp, i = 1, . . . , j − 1, k = 1, . . . , rp+1 (4.6)
rp∑

i=1

βijk = δp+1,kδpjV

p∏

q=0

gq for j = 1, . . . , rp, k = 1, . . . , rp+1 (4.7)

rp∑

j=1

δpj = 1. (4.8)

We minimize the length of the schedule from the moment when reducers in layer
p start computations to the time when they finish communicating with reducers
in layer p + 1. By equations (4.2) reducer i from layer p finishes computations
at the moment ti, for 1 ≤ i ≤ rp. Constraints (4.3)–(4.5) guarantee that all
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communications fit in the communication intervals together, bisection width limit
is observed, and 1-port model is enforced. The method of building a schedule
for communications will be given in Section 4.3. By (4.6) no reducer sends results
before finishing computations. Each reducer in layer p sends all results by (4.7) and
the whole load is processed by (4.8). Note that load fractions δp+1,k are constants
computed in the previous step of the optimization. There are r2

prp+1 + 2rp + 1
variables and rp+1r

2
p/2 + rp(3rp+1 + rp)/2 + 5rp/2 + 1 constraints in the given

program.
For simplicity of exposition we define rR+1 = 1 and δR+1,1 = 1. Consequently,

only one reducer from the last layer R can store results at a time. However, the
above program can be modified so that storing results is confined by bisection
width limit l, or the results are stored locally. In the first case, it is enough to omit
constraint (4.3). The second case can be handled by including the results writing
time in function Tp, and substituting constraints (4.3)–(4.7) with ti ≤ trR+1 for
i = 1, . . . , rR.

Let us note that the constraints (4.2) are not linear because of the form of
function Tp. In order to provide a practical method for solving (4.1)–(4.8), we
transform this program into a linear program. We will approximate the function
Tp with a piecewise linear convex function T ′

p. For x ∈ [0, 2) we set T ′
p(x) =

Tp(x) = x = a0x + b0 for a0 = 1, b0 = 0. For each interval [2y, 2y+1), for positive
integer y ≤ log2 V , the values ay = (Tp(2y+1) − Tp(2y))/(2y+1 − 2y) and by =
Tp(2y) − ay2y are calculated. Then, we set T ′

p(x) = ayx + by for x ∈ [2y, 2y+1).
Thus, the constraints (4.2) are changed to

sred
p + ayδpiV

p−1∏

q=0

gq + by ≤ ti for i = 1, . . . , rp, y = 0, . . . , �log2 V �, (4.9)

what increases the number of constraints by rp�log2 V �. The relative error caused
by this approximation decreases with growing V . In our experiments (see Sect. 5),
the sizes of load obtained by the reducers are larger than 1E5. For such values the
approximation error is less than 1%. Such error is on par with typical accuracy of
measuring system parameters A, C, ared, sred. Hence, it should be sufficient for
practical purposes. If necessary, a better approximation accuracy can be achieved
by considering intervals shorter than [2y, 2y+1). As T ′

p(x) ≥ Tp(x) for x ≤ V , the
load partitioning obtained for function T ′

p allows to create a feasible solution with
the original function Tp.

4.2. Load partitioning for mapper layer

In this section we consider scheduling mapper computations and communication
between the mappers and the first reducer layer. Let t1 ≤ . . . ≤ tm be the moments
when mappers finish their computations. Let tm+1 be the moment when mapper to
reducer communications finish. As the optimum order of finishing computations by
the mappers is not known, we will use binary variables zij (1 ≤ i, j ≤ m) to define
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this order. Value zij = 1 means that mapper j has finished computations by time
ti and can send some load in interval [ti, ti+1). In the opposite case zij = 0. We will
denote by βijk the amount of results read by reducer k from mapper j in interval
[ti, ti+1). Let M be a big constant, e.g. M � mS + V (A + C). The optimum
load partitioning and the sequence of finishing computations by the mappers can
be computed from the following integer linear program:

minimize tm+1 (4.10)
jS + Aαj ≥ ti − zijM for i = 1, . . . , m, j = 1 . . . , m (4.11)
jS + Aαj ≤ ti + (1 − zij)M for i = 1, . . . , m, j = 1 . . . , m (4.12)

C
m∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, k=1, . . . , r1 (4.13)

C

r1∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, j =1, . . . , m, (4.14)

C

m∑

j=1

r1∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , m (4.15)

βijk ≤ zijV for i = 1, . . . , m, j=1, . . . , m, k = 1, . . . , r1 (4.16)
m∑

i=1

βijk = δ1kg0αj for j = 1, . . . , m, k = 1, . . . , r1 (4.17)

m∑

i=1

αi = V (4.18)

zi+1,j ≥ zij for i = 1, . . . , m − 1, j = 1, . . . , m (4.19)
m∑

j=1

zij = i for i = 1, . . . , m (4.20)

zij ∈ {0, 1} for i = 1, . . . , m, j = 1, . . . , m. (4.21)

In the above program, zij are binary variables, and αj , βijk, ti are rational
variables. We minimize tm+1 which is the length of the schedule until the end
of mapper to reducer communications. Inequalities (4.11) and (4.12) guarantee
that mappers finish computations in the order defined by variables zij . By (4.13)
and (4.14) no mapper or reducer communicates longer than the communication
interval. By (4.15) the bandwidth limit is observed. Inequalities (4.16) guaran-
tee that no load is sent by a mapper which has not finished computations. Each
reducer receives appropriate amount of results by (4.17) and the whole load is
processed by (4.18). Constraints (4.19)–(4.21) ensure that there is one-to-one cor-
respondence between the mappers and time moments ti, 1 ≤ i ≤ m, when they
finish computations. There are m2r1 + 2m + 1 rational variables, m2 binary vari-
ables and m2r1 + 4m2 + 2mr1 + m + 1 constraints in the above linear program.
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The order in which the mappers should finish their computations is unknown
in general. This resulted in using binary variables in the mathematical pro-
gram (4.10)–(4.21). If S = 0, then the mappers are activated simultaneously, and
hence are not ordered by the sequence of activating them. Consequently, the bi-
nary variables zij are not needed, formulation (4.10)–(4.21) becomes an LP similar
to (4.1)–(4.8), solvable in polynomial time. In Theorem 4.1 we prove that if the
load is distributed equally between the reducers in the first layer, then the mappers
should finish computations in the FIFO order, i.e. in the order of their activation.
Such a distribution may emerge in practice, e.g., as a result of using a partitioning
function of the form hash(key1) mod r1 common in MapReduce applications. Also
in this case binary variables can be removed from the LP (4.10)–(4.21). Whether
the FIFO schedule structure is a global optimum, remains an open question. Some
preliminary computational experiments indicate that it may be the case.

Theorem 4.1. If δ1k = 1
r1

for k = 1, . . . , r1, then the FIFO order of finishing
mapper computations is optimum.

Proof. See Appendix. �

4.3. Scheduling communications

After solving the mathematical programs given in Sections 4.1 and 4.2, the
amounts of data sent between each pair of computers in each interval are known.
A feasible communication schedule can be built for each interval [ti, ti+1) in each
computation layer using a two-stage approach similar to the one used for problem
R|pmtn|Cmax [10, 12, 27]. Then, a schedule for all load transfers can be built by
concatenating the partial schedules for the consecutive intervals. Note that our
communication scheduling problem is not identical with R|pmtn|Cmax, because the
bisection width limit is absent in R|pmtn|Cmax. Hence, a schedule for R|pmtn|Cmax

is not necessarily a feasible schedule for our problem. The problem of constructing a
communication schedule can be analyzed in terms of matching decomposition [38].
To make the paper self-contained we give a dedicated algorithm in detail and prove
its feasibility.

Consider one of the intervals [ti, ti+1) with the optimum load transfers βijk from
sender j to receiver k delivered by formulations (4.1)–(4.8), (4.10)–(4.21). Let us
denote the number of load senders for the given interval by n1 and the number of
receivers by n2, i.e. n1 = |{j : βijk > 0}|, n2 = |{k : βijk > 0}|. Let W = [wjk] be
the n1 ×n2 matrix defined by wjk = Cβijk/Δt, where Δt = ti+1 − ti is the length
of the interval. Thus, wjk ≤ 1 is the fraction of the length of the current interval
used to transfer load from sender j to receiver k. Note that

∑n1
j=1

∑n2
k=1 wjk ≤ l

by (4.5) and (4.15).
Row j of matrix W , corresponding to sender j, will be called critical if∑n2
k=1 wjk = 1. Similarly, the k-th column of W , corresponding to receiver k,

will be called critical if
∑n1

j=1 wjk = 1. We will be saying that the bisection width
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limitation is active for matrix W if
∑n1

j=1

∑n2
k=1 wjk = l. Let us define a set F of

positive elements of matrix W , containing:

– exactly one element from each critical row or column, and
– at most one element from other rows and columns, and
– exactly l elements in total if bisection width limitation is active for W , or at

most l elements otherwise.

Thus, F corresponds to a set of concurrent communications in a feasible schedule.
The following algorithm constructs the optimal schedule for interval [ti, ti+1) by
concatenating partial schedules of length ε > 0 for a given set F ;

begin
Δt := ti+1 − ti
while Δt > 0 do

construct set F
v1
min := minwjk∈F{wjk}

v1
max := maxj∈{j′ :wj′k /∈F for k=1,...,n2}{

∑n2
k=1 wjk}

v2
max := maxk∈{k′ :wjk′ /∈F for j=1,...,n1}{

∑n1
j=1 wjk}

if |F| < l

then v2
min :=

l−∑ n1
j=1

∑ n2
k=1 wjk

l−|F|
else v2

min := 1
ε := min{v1

min, 1 − v1
max, 1 − v2

max, v
2
min}

for each wjk ∈ F do
schedule communication from sender j to receiver k in interval
[ti+1 − Δt, ti+1 − Δt + εΔt)

for each wjk ∈ F do wjk := wjk − ε
Δt := Δt(1 − ε)
if Δt > 0 then for each wjk do wjk := wjk/(1 − ε)

end.

In the above algorithm ε is defined so that:

– the elements of W never become negative by the choice of v1
min, which means

that a communication is not performed after the proper amount of load is sent,
– the constraints on the sums of elements of W in any row or column are not

violated by the choice of v1
max, v

2
max, and hence critical communications are

always executed,
– the constraint on the sum of elements of W is not violated by the choice of

v2
min, and active bisection width limitation is also obeyed.

In each iteration of the while loop, either a row or a column of W becomes
critical, or an element of W is decreased to 0, or the bisection width limit becomes
active. Hence, the algorithm consists of at most n1 + n2 + n1n2 + 1 iterations.

It remains to give an algorithm that finds set F for a given matrix W . This
can be done by using network flow formulation (cf . Fig. 2). Beyond the sink and
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Figure 2. Network for finding set F . Arcs are labeled with (lower,
upper) bounds. Values a|b are used for non-critical|critical nodes.

source, the network has n1 nodes corresponding to senders, n2 nodes corresponding
to receivers, and a node representing the bisection width limitation. There is an arc
between sender j and receiver k if and only if wjk > 0. The arcs from the source to
the senders, from the senders to the receivers, and from the receivers to bisection
width limitation node have capacities bounded from above by 1. The arcs from
the source to the non-critical senders, all arcs from the senders to the receivers,
and the arcs from the non-critical receivers to the bisection width limitation have
lower bound of capacity equal 0. For the arcs from the source to the critical senders
and for the arcs from the critical receivers to the bisection width limitation node
flows are bounded from below by 1. The arc from the bisection width limit node
to the sink has capacity l. If the bisection width limit is active then its flow is
bounded from below by l, and by 0 otherwise. For conciseness, in Figure 2 the
notation a|b is used for lower bounds on the flow of arcs which lead from or to
the non-critical|critical nodes. Finding a feasible flow in the described network
is equivalent to finding set F : arcs from sender node j to receiver node k with
positive flow indicate wjk ∈ F .

Theorem 4.2. Set F and hence a feasible flow always exist.

Proof. See Appendix. �

Since network flows in a graph with n nodes can be found in O(n3) time, set F
for communication between layers p and p+1 can be found in O((max{rp, rp+1})3)
time, because rp ≥ n1, rp+1 ≥ n2. A schedule for each interval can be found in
O(max{rp, rp+1})5) because there are at most O(max{rp, rp+1})2) iterations each
of which is done in O(max{rp, rp+1}3) time. There are at most rp intervals in the
communication schedule. Consequently a schedule for communications in one layer
can be calculated in O((max{rp, rp+1})6). With respect to mappers and the first
reducer layer it is O((max{m, r1})6).
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4.4. A Complete Algorithm

In order to calculate load partitioning for the whole multilayer application, the
mathematical programs described above should be put together and solved as one
compound program. However, it is very hard in practice. Firstly, such a program
is large even for small instances. For example, according to the formulas given in
Sections 4.1 and 4.2, an instance of R = 3, m = r1 = r2 = r3 = 10, V = 230

results in 3184 rational variables, 100 binary variables and 4104 constraints (af-
ter linear approximation of constraints (4.2)). Secondly, αj , δpk are variables in
the compound mathematical program, constraints (4.7) and (4.17) are quadratic,
and a compound program amounts to solving a quadratic programming problem
(which is NP-hard in general). Therefore, we propose to build a schedule for each
layer separately, from the last to the first layer. Then, values δp+1,k are fixed
while calculating load distribution in layer p and the above mathematical pro-
grams become linear. Load partitioning for the reducers can be found in time
O(LP (r2

prp+1 + 2rp + 1, rp+1r
2
p/2 + rp(3rp+1 + rp + �log2 V �)/2 + 5rp/2 + 1))

for layer p = R, . . . , 1, where LP (a, b) is complexity of linear programming
with a variables and b constraints. Calculating load partitioning in mappers re-
quires time O(MLP (m2, m2r1 + 2m + 1, m2r1 + 4m2 + 2mr1 + m + 1)) where
MLP (a, b, c) is complexity of solving a mixed linear program with a binary vari-
ables, b rational variables and c constraints. The complexity of calculating mapper
load distribution can be lowered by use of Theorem 4.1. If load distribution is
equal in layer p = 1 then FIFO order of mapper completion times is optimum.
Then binary variables are unnecessary in (4.10)–(4.21), and it can be solved in
O(LP (m2r1 + 2m + 1, m2 + m(2r1 + 1) + 1)) time as a standard linear program.
We discuss in Section 5 when equal load partitioning emerges in the first reducer
layer. Overall, the complexity of scheduling a single layer and its communications is
O(LP (r2

prp+1+2rp+1, rp+1r
2
p/2+rp(3rp+1+rp)/2+5rp/2+1)+max{rp, rp+1})6) in

the case of reducers, and O(LP (m2r1+2m+1, m2+m(2r1+1)+1)+(max{m, r1})6)
in the case of mappers with FIFO assumption.

5. Computational experiments

The goal of this section is to confront three issues of scheduling multilayer di-
visible applications. In Section 5.1, we evaluate running time, and hence, practical
applicability of our algorithm. Section 5.2 is dedicated to the analysis of scalability
of multilayer divisible applications. The impact of the instance parameters on the
structure of schedules is studied in Section 5.3. All linear programs were solved
using lp solve linear programming library [32]. The code was implemented in C++
in Microsoft Visual Studio 2012.

5.1. Performance of the Algorithm

Since the algorithm introduced in Section 4 has quite high order of computa-
tional complexity we study here its practical execution time. The experiment is
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Figure 3. Algorithm execution time vs. m, r1, r2, (a) layer 0, (b) layer 1.

designed to verify running time against key parameters m, rp, V while random-
izing the remaining numerical values. We will study execution time of a single
reducer layer because in each layer the same algorithm is repeated, and analogous
instance parameters determine complexity in the same way. The reducers in the
last layer write their results sequentially and scheduling this layer is computation-
ally simpler. Hence, we do not report execution times for the last layer. Unless
stated to be otherwise, we used R = 2 layers with m = r1 = r2 = 10, V = 1E15,
gp = 0.1 (for p = 0, 1, 2). The bisection width limit l was chosen randomly from
{m, �m/2	, �m/4	}. Processor parameters A, ared

p , C, S, sred
p were generated from

the uniform distribution U [1E-10,1E-5]. In the following figures, each point repre-
sents an average from 100 instances. All the computations were executed on a PC
computer with Intel Core i5-2500K running at 3.3 GHz and 6 GB RAM.

In the first set of experiments the numbers of processors in all layers were
changed while keeping the condition m = r1 = r2. The results are shown in
Figure 3. As expected, increasing m, r1, r2 strongly affects the running times of the
algorithms. It can be seen that linear programming is the most time-consuming
part of the computations. The time necessary for creating the communication
schedule is 1 to 4 orders of magnitude shorter. For almost all values of m, r1, r2,
the mapper layer is scheduled much faster than the first reducer layer. This means
that inequalities (4.9) used to linearize constraints in the reducer layers make the
LP especially difficult to solve.

The second series of experiments presents the performance of the algorithm for
load size V changing from 1E12 to 1E17. It can be verified in Figure 4 that V does
not influence significantly the algorithm running time. Though increasing V results
in creating additional constraints in the LPs for the reducer layers, the number
of constraints increases by only 14% when going from V = 1E12 to V = 1E17. It
seems that this is not enough to make a clear difference in the linear programming
time. The communication scheduling time does not change with V because sending
greater amount of data usually requires creating larger chunks of data rather than
performing more communications.
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Figure 4. Algorithm execution time vs. V , (a) layer 0, (b) layer 1.

5.2. Speedup of multilayer applications

A study of the scalability limits of a parallel application has practical signifi-
cance because it verifies whether it is possible to accelerate the computations by
allowing more computing resources. Therefore, we evaluated speedup of the mul-
tilayer divisible application against the number of computers used in each layer.

Unless written to be otherwise, the reference system configuration in the fol-
lowing experiments had parameters: R = 2, m = r1 = r2 = 5, sred

p = 1E-2,
ared

p = 1E-7, gp = 0.1 (for p = 0, 1, 2), A = 1E-7, S = 1, C = 1E-8, the bisection
width limit l = 5 is not restricting the communication, V = 1E15. These param-
eters were chosen to represent a multilayer divisible application in a small con-
temporary computer cluster. The size of the test instances is a result of both high
complexity of the scheduling algorithm and the achievable numerical precision.

In Figure 5, we present the speedup of the application for changing m and r1 (in
relation to the system with m = r1 = r2 = 1). We analyzed cases with big (gp = 1)
and small (gp = 1E-3) load multiplicity fractions in each layer. It turned out that
the value of g2 has almost no impact on the speedup. This can be explained by
the fact that g2 influences only the time needed to store the final results, which is
very short in comparison to the whole schedule length. Therefore, we present only
the instances with g2 = 1 in Figure 5.

It can be seen that the application scales well with the mapper number m if
g0 is small (see Fig. 5a). In this case, the reducers receive little load and do not
dominate in the computations. On the other hand, if g0 is big, then the number
of mappers has a small impact on the speedup because the bulk of computations
takes place in layer 1, and the application scales better with the number of reducers
r1 (cf . Figs. 5a and 5b). The range of the speedup is determined not only by g0,
but also by g1. If g1 is big, then the reducers in the second layer receive big load
and their contribution to the schedule length is comparable with the first layer.
On the other hand, if g1 is small, then the execution time of the whole application
is dominated by the first reducer layer. Then, r1 has the greatest influence on
the schedule length. The influence of r2 on the performance of the application is
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(a) (b)

Figure 5. Speedup for different g0, g1, (a) vs. m, (b) vs. r1.

significant for the speedup only if both g0 and g1 are big. We do not show these
results here because they follow the pattern of Figures 5a and 5b. Overall, the
results are similar in nature to the results in [8].

5.3. Load distribution between reducers

In our paper [8], scheduling algorithms for 2-layer applications were proposed.
The algorithms assumed a specific communication schedule structure, which could
be an obstacle to finding the optimum solution. In particular, the amounts of load
assigned to different reducers were equal. In this paper, we relaxed the assumptions
on the communication pattern, as well as on the equal load partitioning in the
reducer layers. Therefore, we analyze the load distribution between the processors
in a given layer. We present values δpk/(1/rp), i.e. the load fractions received by
the processors in layer p relative to the equal distribution. Since the reducers in a
given layer start computations at the same moment and finish them in the order
of their indices the fractions δp,k are always nondecreasing.

The number of the reducers in the first layer is set to r1 = 10. The bisection
width limit l = 5 = r2 is not restricting the communication between the first
and the second layer. We start our study with the second (last) layer. The values
of load fractions δ2,k for different values of communication rate C are shown in
Figure 6. It can be seen in Figure 6a that for very fast communication the load
distribution in the second layer of reducers is very flat. This can be explained by
the fact that for very fast communication, the time of computations dominates
in the schedule length for a given layer. Therefore, to make this time shorter, the
load should be divided equally, so that the computations finish around the same
time on all processors. The situation becomes different for slow communication.
For very big values of C (C = 1E-4, C = 1E-5 in Fig. 6b) the time needed for
storing the results dominates in the schedule length. Thus, it is profitable to start
storing the results from some reducers very early, while other processors are still
computing. This leads to significant inequalities in the reducer load distribution.
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Figure 6. Relative load fractions δ2,k/(1/r2) vs. communication
rate C, (a) fast communication, (b) slow communication.
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Figure 7. Relative load fractions δ1,k/(1/r1) vs. communication
rate C, (a) fast communication, (b) slow communication.

The first processors receive very small load, while the last reducer has to process
about 30% for C = 1E-5, or even more than 70% for C = 1E-4 of all data.

The load distribution between the processors in the first reducer layer (δ1k) is
presented in Figure 7. As in the second layer, the distribution is balanced for fast
communication and very unequal for slow communication. Since for fast commu-
nication δ1k are nearly equal, application of Theorem 4.1 is justified and mapper
completion times can follow FIFO order. Another interesting phenomenon is that
for fast communication the reducers can be divided into two groups comprising 5
processors each (Fig. 7a). The processors in a given group receive similar amounts
of load. As there are r2 = 5 processors in layer 2 which receive data from the
reducers in layer 1, we infer that the processors in a given group can use a similar
communication pattern. Precisely, for very fast communication, the reducers in
layer 1 constitute rectangular blocks of computations of roughly the same time
on r2 processors. The processors in a given group finish computations around the



SCHEDULING MULTILAYER DIVISIBLE COMPUTATIONS 357

0.998

0.999

5.000

5.005

5.001

5 1 2 3 4 6 7 8 9 50

(a)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

(b)

Figure 8. Relative load fractions δ1,k vs. communication rate
C for r1 = 10, r2 = 4, (a) fast communication, (b) slow
communication.

time when the previous group finished sending the results to the next layer of re-
ducers. The inequalities in the load distribution become larger when C gets larger.
This can be caused by a more unequal load distribution in the second reducer
layer. It can be seen in Figure 7b that in the case of slow communication the
groups of 5 processors cannot be distinguished anymore. It can be inferred that
the pattern of communications is very different for slow communications.

In the above instances reducer number r1 was divisible by reducer number r2.
Thus, for fast communication the reducers in the first layer could be divided into
groups, each of which comprised r2 computers. In Figure 8, we show the load dis-
tribution in the first reducer layer for r1 = 10 and r2 = 4. In this case, one group
of size 4 and three groups of size 2 can be distinguished for C = 1E-7, and groups
of sizes 4, 2, 4 are visible for C = 1E-8. Thus, there is no simple repetitive pattern
in the load distribution, which could be easily generalized to any system configu-
ration. Additionally, the number and the sizes of the obtained groups depend on
parameter C. This suggests that in the systems with fast communication it may
be profitable to use the numbers of reducers r1 divisible by r2. In such a case,
the assumption that the processors are divided into r1/r2 groups can be used to
base the scheduling algorithm on a predetermined load partitioning pattern. This
would result in the design of simple and fast scheduling heuristics.

The time needed to send the load from one reducer layer to another depends
on the bisection width limit l. In Figure 9, we present the load distribution in the
first reducer layer for different values of l. The value C = 1E-8 used in Figure 9
can be considered fast communication. The results in Figure 9a confirm that the
groups of processors receiving similar load are ruled by the number of processors
which can communicate at the same time. When l = 2, groups of 2 processors can
be observed in Figure 9a. For l = 1 each processor constitutes a separate group.
Similarly, for l = 5 five-processor groups can be observed. If r1 is not divisible by l
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Figure 9. Relative load fractions δ1,k/(1/r1) vs. the bisection
width limit l, (a) r1 divisible by l, (b) r1 not divisible by l.
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Figure 10. Mapper load fractions αj/(V/m) for S = 1, (a) vs. C, (b) vs. l.

(Fig. 9b), then neither clear groups of processors nor communication patterns can
be distinguished.

5.4. Load distribution between mappers

We analyze here the load distribution in the mapper layer. Whether the FIFO
structure of the mapper computations is a global optimum, remains an open ques-
tion. We use FIFO in the following simulations for practical reasons. The startup
times are short in relation to the whole schedule, and hence, the order of starting
processors has small impact on differentiating the mappers. Mixed integer lin-
ear programming is computationally hard, and only very small instances can be
solved to optimality in acceptable time. Thanks to the FIFO order instances with
m = 50 mappers are considered in this section.

In the first series of experiments we analyzed the load distribution between the
mappers for relatively small startup times S = 1. The results of the experiments
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Figure 11. Mapper load fractions αj/(V/m) for S = 1E4 vs. C,
(a) fast communication, (b) slow communication.

with changing C and l are presented in Figure 10. The load distribution in the
mapper layer is shown as the fractions αj/(V/m). The difference between the load
distributions in the mapper and the reducer layers results from the startup times.
Yet, this difference was almost negligible. The same phenomena as for the reducers
were observed. For example, groups of min{r1, l} mappers with nearly equal load
assignments can be distinguished when C is small and m is divisible by min{r1, l}.
When C is big, the majority of the load is processed by the machines activated as
the last ones.

In order to better expose the differences between the mapper and the reducer
layers we increased the startup time S to as much as 1E4. The results of the
experiments with changing communication rate C are shown in Figure 11. For
fast communication we observed a qualitative difference in the load distribution
(Fig. 11a). The mapper loads are now generally decreasing. Similarly to the reducer
layer, the mappers can be divided into groups of r1 = l = 5 processors. However,
the load fractions obtained by the processors in a group are far from equal. The
difference between the amounts of load received by two consecutive processors
from the same group is about 1E11 for C = 1E-8, 1E-9, 1E-10. The time needed
to process load of this size on a mapper is 1E4, which is equal to the startup time
S. Thus, the processors in a given group receive such amounts of data that they
finish computations at approximately the same time. Then, they use the available
communication channels to send the results to the reducers in parallel. The first
computer in the next group of mappers receives such amount of load that it still
performs computations while all communication channels are used by the previous
group. For C = 1E-8 this means that the load obtained by the first processor in a
given group is larger than the load assigned to the last processor in the preceding
group. Hence comes the characteristic saw-like pattern in Figure 11a.

When communication gets slower (cf . Fig. 11b) the load sizes of the consecutive
mappers are increasing, and groups of 5 mappers receiving similar amounts of
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Figure 12. Mapper load fractions αj/(V/m) for S = 1E4 vs. l,
(a) m divisible by l, (b) m not divisible by l.

load can be seen. This can be explained by the fact that for slow communication
mappers start communicating early to account for slow communication medium.
This is similar to distributions in reducer layers. The startup time S = 1E4 is not
significant enough to have noticeable impact in this case.

The load distributions in the mapper layer for different bisection width limits
l are presented in Figure 12. When the number of mappers m is divisible by l
(Fig. 12a), then groups comprising l mappers can be observed again. Different
tendencies can be seen for different values of l. When l = 5, the amount of load
assigned to the mappers in a given group and the amounts of load obtained by
consecutive groups are decreasing. For l = 2, the first mapper in a given pair
receives more load than the second, but there are no visible differences between
the groups. For l = 1, the load sizes assigned to the mappers are increasing.
Although these three patterns seem different, they are in fact instantiation of the
same type of communication organization. The l mappers in a given group finish
the computations around the same moment. The mappers from each following
group finish the computations when the preceding group finishes sending results
and the communication channels can be used by the next group of processors.

Such an organization of processing is not possible when m is not divisible by
l (Fig. 12b). In this case, the groups of l mappers can be seen at the beginning
of the mapper sequence, but for the mappers activated later, the group pattern
gradually disappears. Thus, the schedule starts with blocks of l mappers, which
gradually dismantle to single-mapper “groups”.

6. Conclusions

In this work we studied scheduling multilayer divisible applications. Algorithms
based on mixed nonlinear programming were proposed, and then simplified to a
sequence of linear programs. The order in which the mappers should finish their
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computations is crucial for determining complexity of our problem. We proved that
the FIFO order is optimum in special cases. Whether it is optimum in general,
remains an open question. The method of constructing a communication schedule
was proposed.

Load distributions in different computational layers were analyzed. To a large
degree they are determined by the communication rate C. When C is small, the
computation time dominates the schedule length. Then the load distribution is
balanced, so that all processors finish computing around the same time. If C is
big, the communication time dominates the schedule length and it is profitable to
start the communications as soon as possible. This leads to big inequalities in the
load distribution.

Another important parameter influencing the load distribution is the bisection
width limit l. If the number of senders (mappers or reducers) is divisible by l
and the communication is fast, then the computers form groups of size l. The
computers in a given group finish the computations around the same moment
and send their results in parallel using the l available communication channels.
The next group finishes computations almost exactly when the communication
channels are released. In practice it is profitable to use the numbers of mappers
or reducers divisible by l because the schedule structure is known. Consequently,
faster scheduling algorithms may be devised.

Many aspects remain open for the future research. For example, is FIFO se-
quence globally optimum? There are practical issues of, e.g., handling volatility of
the computational and communication resources, accommodating to unpredictable
distribution of the keys, unequal processing times of data units.

Appendix A

Theorem A.1. If δ1k = 1
r1

for k = 1, . . . , r1, then the FIFO order of finishing
mapper computations is optimum.

Proof. We will show that FIFO is a dominating structure by calculating the
amount of load processed in a given time, and by interchange argument. Assume
that in schedule σ1 for mapper phase processor Pi+1 finishes computations before
Pi. The amount of load processed by Pi+1 in this schedule is αi+1, and the amount
of load processed by Pi is

αi = α
(1)
i + α

(2)
i , (A.1)

where α
(1)
i is the amount of load processed by Pi until the completion of compu-

tations on Pi+1 (see Fig. A.1a). Hence,

Aα
(1)
i = S + Aαi+1. (A.2)

and
α

(1)
i ≥ αi+1. (A.3)
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(a)

(b)

Figure A.1. Communication pattern in schedules (a) σ1 and
(b) σ2. Labeling (i) of communication intervals is explained in
the main text.

We will construct a schedule σ2 in which processor Pi is assigned load of size
α

(1)
i and processor Pi+1 receives load of size αi+1 + α

(2)
i . Therefore, processor

Pi finishes computations before Pi+1 in σ2 (cf. Fig. A.1b). The amounts of load
assigned to processors other than Pi and Pi+1 remain the same as in σ1. We will
show that it is possible to schedule the mapper to reducer communications in σ2

so that the total length of σ2 is not greater than the length of σ1.
Let us choose set I of intervals in which Pi sent load to reducers and which did

not overlap with any communications from Pi+1 in σ1, such that the total length
of these intervals allows for sending load of size α

(1)
i − αi+1, i.e.

∑

I∈I
|I| = g0C(α(1)

i − αi+1). (A.4)

Such a choice is always possible because the total length of intervals in which Pi

communicates in σ1, and which do not overlap with communications from Pi+1, is
equal to at least g0C(α(1)

i + α
(2)
i − αi+1) ≥ g0C(α(1)

i −αi+1). Note that I may be
chosen in many different ways.

Let us introduce the following labeling of communication intervals in which at
least one of processors Pi and Pi+1 sends load in σ1. The intervals from I receive
label 1, the other communication intervals in which Pi sends load get label 2, and
all communication intervals containing communications from Pi+1 receive label 3
(cf. Fig. A.1a).

We schedule the communications in σ2 so that processor Pi performs all
communications in intervals labeled with 1 or 3, and Pi+1 sends load in inter-
vals labeled with 2 (Fig. A.1b). The total length of intervals marked with 2 is
g0C(α(1)

i + α
(2)
i ) − ∑

I∈I |I| = g0C(αi+1 + α
(2)
i ). The total length of intervals

labeled with 3 is g0Cαi+1. The intervals marked with 1 and 3 do not overlap.
Therefore, processors Pi and Pi+1 have enough time to send the required amount
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Figure A.2. Scheduling mapper to reducer computations in σ2,
for m = 3, r1 = 3. Notation j → k stands for: mapper j commu-
nicates with reducer k in layer 1.

of data to the reducers. The communications from processors other than Pi and
Pi+1 remain the same as in schedule σ1. The bisection width limit is still observed,
because we only swapped some communication slots between processors Pi and
Pi+1.

However, further changes in communication schedule are necessary to guarantee
that each reducer receives a proper amount of load from processors Pi and Pi+1.
The communication schedule will be changed globally, not only for processors
Pi and Pi+1. Let us define T1 < . . . < Tq as all distinct moments in schedule
σ1 when any mapper to reducer communication starts or finishes. Thus, in each
interval Ii = [Ti, Ti+1) each mapper either communicates all the time with the
same reducer, or it does not communicate at all. As the schedule is feasible, in
each interval Ii there are at most min{l, r1} mappers sending some load.

Let us divide each interval Ii into r1 subintervals Ii1, . . . , Iir1 of equal length
(cf . Fig. A.2). Let P ′

1, . . . , P
′
m′ be the processors which send some load in interval

Ii in σ1. Note that necessarily m′ ≤ l and m′ ≤ r1. In schedule σ2 processor P ′
j

will communicate with reducers j, j+1, . . . , r1, 1, . . . , j−1 in intervals Ii1, . . . , Iir1 ,
correspondingly (cf. Fig. A.2). As m′ ≤ r1, no reducer reads more than one mapper
at a time in schedule σ2. The bisection width limit is not violated in σ2 because
m′ ≤ l. Furthermore, all mappers send the same amount of load in schedule σ2 as
in σ1 and each reducer receives the same amount of load from any given mapper.
Therefore, schedule σ2 is feasible and is not longer than σ1.

Repeating the above procedure for each pair of processors Pj , Pj+1, such that
Pj+1 finished computations before Pj , we prove that there exists an optimum
schedule in which mappers finish computations in the FIFO order. �

Theorem A.2. Set F and hence a feasible flow always exist.

Outline of the proof. Consider a weighted bipartite graph G = (X ∪ Y, E, w), such
that there are n1 vertices in X , corresponding to the rows of matrix W , and n2

vertices in Y , representing the columns of W . Set E comprises an edge between
vertices uj ∈ X and vk ∈ Y if and only if wjk > 0, and the weight of this edge
is equal to wjk. Note that the sum of weights of all edges incident to any given
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vertex is not greater than 1, and the sum of all edge weights in G is at most l.
We will say that a vertex is critical if it corresponds to a critical row or column
in W . Thus, the sum of weights of edges incident to a critical vertex in G is equal
to 1. Let cX denote the number of critical vertices in X , and cY the number of
critical vertices in Y . The subsets of critical vertices in X and Y will be denoted
by Xc and Yc correspondingly. Let Gc denote a subgraph of G induced by the set
of critical vertices, and wc be the sum of edge weights in Gc. We need to show
that there is always a matching Mc in G such that

(i) Mc covers all critical vertices,
(ii) Mc has size at most l, and
(iii) if the bisection width limit is active, then the size of Mc is exactly l.

By Lemma A.3 a matching satisfying the above condition (i) always exists. Note
that if cX + cY ≤ l then this result implies that there exists a matching in G of
size at most l covering all critical vertices. For the opposite case, such a matching
must contain at least cX +cY − l pairs of critical vertices matched with each other,
in order not to violate condition (ii). We prove that it is the case in Lemma A.4.
In Theorem A.5 we use this fact to prove that there exists a matching satisfying
both conditions (i) and (ii) given above. Finally, in Theorem A.6 it is shown that
if the bisection width limit is active, then a matching satisfying conditions (i), (ii)
and (iii) exists.

Lemma A.3. A matching in G covering all critical vertices always exists.

Proof. This follows directly from the proof given in [10,27] for the algorithm solving
problem R|pmtn|Cmax. �

Lemma A.4. If cX+cY > l, then there exists a matching of size at least cX+cY −l
in the graph Gc.

Proof. The sum of all edge weights in G is not smaller than
∑

j∈Xc
wjk +∑

k∈Yc
wjk − wc. Hence, by (4.5) and (4.15)

∑

j∈Xc

wjk +
∑

k∈Yc

wjk − wc ≤ l. (A.5)

As the sum of weights of edges incident to a critical vertex in G is equal to 1, we
obtain from (A.5)

wc ≥ cX + cY − l. (A.6)

Now consider a minimum vertex cover of Gc. Since the sum of weights of edges
incident to any vertex in Gc is not greater than 1, at least wc vertices are necessary
in the Gc vertex cover. Thus, by (A.6) the minimum vertex cover of Gc has at least
cX + cY − l elements. By König’s theorem, the size of maximum matching in Gc

is equal to the size of the minimum vertex cover. Hence, there exists a matching
of size at least cX + cY − l in Gc. �
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(a)

(b)

Figure A.3. Augmenting matching M . Black nodes are critical,
non-critical nodes are white, gray nodes may be critical or not.
The bold edges are in M . The left figure is the initial matching M ,
the right figure is the augmented matching. (a) case a – alternating
path starting in v and finishing in non-critical v′ ∈ Y , (b) case b
– augmenting path starting in v.

Theorem A.5. There exists a matching in G of size at most l covering all critical
vertices.

Proof. If cX +cY ≤ l, the thesis follows from Lemma A.3. Assume that cX +cY > l.
Consider the maximum matching M in Gc. Suppose that not all critical vertices
are matched by M . We will show that for each critical vertex v ∈ Y unmatched
by M either (case a) there exists an even length M -alternating path π1 starting
in v and ending with a non-critical vertex v′ ∈ Y (cf . Fig. A.3a), or (case b) there
exists an odd length M -augmenting path π2 starting from v (Fig. A.3b). Suppose
that there is no M -alternating path π1 starting in v and ending with a non-critical
vertex v′ ∈ Y . Consider the graph Gv induced by the set of all M -alternating
paths starting in v ∈ Y . Since no alternating path π1 ending in non-critical v′ ∈ Y
exists, all vertices of Gv contained in Y are critical. Graph Gv contains also all
neighbors in X of these vertices. By Lemma A.3, there exists a matching in Gv

covering all its critical vertices from the set Y . As v is the only critical vertex in
Gv contained in Y and not matched by M , there exists an M -augmenting path
starting in v. In other words, we necessarily have case b (Fig. A.3b). Analogous
reasoning can be applied to unmatched critical vertices in X .

Thus, for each unmatched critical vertex v we can find either an M -alternating
path π1 or an M -augmenting path π2. We set M ′ = M ⊕ π1 or M ′ = M ⊕ π2

correspondingly, where the symbol ⊕ denotes the symmetric difference. In both
cases, no critical vertices become unmatched by M ′, we gain at least one critical
vertex matched by M ′, and the number of edges in M ′ is increased by at most 1
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(see Figs. A.3a and A.3b). The size of the initial matching M was em ≥ cX +cY − l
by Lemma A.4. At most cX + cY − 2em critical vertices in G were unmatched
in M . Thus, we obtain a matching covering all critical vertices, having at most
em + cX + cY − 2em ≤ l edges. �

Theorem A.6. If the sum of edge weights in G is equal to l, then there exists a
matching in G of size l, covering all critical vertices.

Proof. We can apply the same procedure as in the proof of Theorem A.5 to obtain
a matching M of size at most l, covering all critical vertices. The sum of weights
of the edges incident to any vertex in G is at most 1. Hence, if the sum of all
edge weights in G is l, then the minimum vertex cover in G contains at least l
vertices. By König’s theorem, the size of the maximum matching in G is at least l.
Therefore, if |M | < l, we can further augment the matching M until it has exactly
l edges. �
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– deterministic models. Ann. Oper. Res. 7 (1986).
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