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Abstract. We propose a vector optimization approach to linear
Cournot oligopolistic market equilibrium models where the strategy
sets depend on each other. We use scalarization technique to find a
Pareto efficient solution to the model by using a jointly constrained
bilinear programming formulation. We then propose a decomposition
branch-and-bound algorithm for globally solving the resulting bilinear
problem. The subdivision takes place in one-dimensional intervals that
enables solving the problem with relatively large sizes. Numerical ex-
periments and results on randomly generated data show the efficiency
of the proposed algorithm.
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1. Introduction

The Cournot oligopolistic market model is one of fundamental models in eco-
nomics. In the classic models that has been considered in a lot of papers (see
e.g. [5, 14, 16, 25] and the references therein), it is assumed that there are n firms
producing a common homogeneous commodity. Each firm i has an independent
strategy set Ui ⊂ R+ and a profit function. Let xi ∈ Ui denote a correspond-
ing production level of firm i. Actually, each firm seeks to maximize its profit by
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choosing a corresponding production level under the presumption that the produc-
tion of the other firms are parametric input. A commonly used approach to this
model is based upon the famous Nash equilibrium concept. In the linear Cournot
model, the profit function of firm i is given by

fi(x) =

(
αi − βi

n∑
i=1

xi

)
xi − hi(xi) (i = 1, . . . , n),

where αi, βi > 0 and the cost function hi is an affine function that depends only on
the quantity xi of firm i. In this linear case, it has been shown that (see e.g. [14])
the model has a unique Nash equilibrium point which is the unique solution of a
strongly convex quadratic program. In the case, when hi (i = 1, . . . , n) are convex,
the problem of finding a Nash equilibrium point can be formulated as a variational
inequality. When some of functions hi (i = 1, . . . , n) are piecewise linear concave,
the model can be formulated as a (nonconvex) mixed variational inequality and
a solution algorithm is developed in [19] to solve the resulting mixed variational
inequality.

In generalized Nash−Cournot model, where the strategy set of each firm de-
pends on the strategy sets of other firms, the model then can be formulated as
a quasivariational inequality. Recently, Fukushima [8] and Kubota et al. [15] pro-
posed a class of gap functions for generalized Nash equilibrium problems in order
to convert the problem into an optimization problem. However, this optimization
problem being nonconvex, supplementary conditions must be imposed to ensure
that any stationary point is a solution of the generalized variational inequality. An
axiomatic gap function approach is proposed by Aussel et al. in [2] for quasivaria-
tional inequalities and generalized Nash equilibrium problems. A smooth dual gap
function and smoothness of regularized gap functions for quasivariational inequal-
ities are considered in [10–12]. In [7] Facchinei et al. used the KKT conditions for
solving quasivariational inequalities. Very recently, Strodiot et al. [26] presented
new extragradient algorithms for finding a solution of quasiequilibrium problems
which contain the generalized Nash equilibrium problem as a special case. The
convergence of these algorithms are proved under some additional conditions that,
unfortunately, are not satisfied for the generalized linear Nash−Cournot equilib-
rium models. A comprehensive survey for generalized Nash equilibrium problems
can be found in [6].

In this paper we proposed a vector optimization approach rather than the equi-
librium approach to generalized Cournot market models with linear cost functions.
Our proposal is motivated by the following facts. First, to our knowledge, without
supplementary conditions, generalized Nash equilibrium problems, including gen-
eralized linear Nash−Cournot models cannot be solved by the existing methods.
Second, in the Cournot model described above, the total profit

∑n
j=1 fj(x) where

x is a Pareto solution of the vector function f(x) := (f1(x), . . . , fn(x))T on the
strategy set, in general, is greater than that when x is a Nash equilibrium point.
Moreover, in some cases of practical models, the total amount of the commodity
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∑n
j=1 xj must be equal to a given quota m0 > 0. Third, by using the Pareto so-

lution, the model can be handled by a jointly constrained bilinear programming
efficient algorithm employing specific properties of the model under consideration.
It is worth mentioning (see Example 2.5 in Sect. 3) that a Pareto solution may or
may not be an equilibrium point.

To be specific, we suppose that the strategy set of the model is a polyhedral
convex set given by

D :=
{

Ax ≤ b,
xi ∈ Ui (i = 1, . . . , n),

where A is a m × n matrix and b ∈ R
m. In this case we formulate the prob-

lem of finding a Pareto solution of the model as a jointly constrained bilinear
mathematical program. There are some available methods for globally solving
the latter problem, however all of them can solve the problem with very limited
size [1, 13]. Fortunately, for our problem, thanks to its specific structure, we can
propose a branch-and-bound algorithm which solves the problem efficiently. In
fact, the adaptive branching operation in the proposed algorithm takes place in
one dimensional intervals, which makes the algorithm efficient for the models with
relatively large sizes. We have tested the algorithm with a number of models on
randomly generated data. The obtained computational results show the efficiency
of the algorithm.

2. Preliminaries on the equilibria approach

to the nash−cournot model

First we briefly present the classical oligopolistic market model where it is as-
sumed that there are n firms producing a commonly homogeneous commodity.
The commodity’s quantity of firm i is assigned by xi ∈ Ui (i = 1, . . . , n), and
xT = (x1, . . . , xn) is the vector commodity’s quantity of all n firms. In this paper,
we assume that the price pi of firm i depends on the total quantity σ =

∑n
i=1 xi

of the commodity, and the cost function hi of firm i depends only on the quantity
xi (i = 1, . . . , n).

The price function of firm i is defined by:

pi(x) := αi − βi

n∑
i=1

xi,

where βi (i = 1, . . . , n) is the price-reduced coefficient of firm i. Naturally, the
profit function of firm i has the form:

fi(x) =

(
αi − βi

n∑
i=1

xi

)
xi − hi(xi).

A commonly used approach to this model is based upon the Nash equilibrium
concept. This concept is used when each firm seeks to maximize its profit by choos-
ing the corresponding production level under the presumption that the production
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of the other firms are parametric input. In this context, a Nash equilibrium is a pro-
duction pattern in which no firm can increase its profit by changing its controlled
variables.

Mathematically, a point x∗ = (x∗
1, . . . , x

∗
n) ∈ U := U1 × U2 × . . .× Un is said to

be a (global) Nash-equilibrium if

fi(x∗
1, . . . , x

∗
i−1, yi, x

∗
i+1, . . . , x

∗
n) ≤ fi(x∗

1, .., x
∗
n), ∀yi ∈ Ui, ∀i = 1, . . . , n. (2.1)

When hi(.) and p(.) are affine, this Nash−Cournot model can be formulated as
a special Nash equilibrium problem in the n-person noncooperative game theory,
which in turn is a strongly monotone variational inequality.

In fact, let

Ψ(x, y) := −
n∑

i=1

fi(x1, . . . , xi−1, yi, xi+1, . . . , xn) (2.2)

and
Φ(x, y) := Ψ(x, y)− Ψ(x, x., (2.3)

Using this well-known Nikaido−Isoda bifunction [23] it has been proved that (see
e.g. [14, 19]) the problem of finding an equilibrium point of this model can be
formulated as the following equilibrium problem [3,4]{

find x∗ ∈ U such that
Φ(x∗, y) ≥ 0, ∀y ∈ U.

(EP )

In the classic linear model, the cost and the price functions for each firm are
assumed to be affine with the forms

hi(xi) := μixi + ξi, μi ≥ 0, ξi ≥ 0,

pi(σ) := pi

(∑n
j=1 xj

)
= αi − βi

∑n
j=1 xj , αi ≥ 0, βi > 0,

with σ =
∑n

i=1 xi, (i = 1, . . . , n).
(2.4)

In this case, Problem (EP) becomes the variational inequality

Find x∗ ∈ U : 〈Q̃x∗ + μ− ᾱ, y − x∗〉 ≥ 0 ∀y ∈ U (V I)

where

Q̃ =

⎛
⎜⎝

2β1 β1 β1 . . . β1

β2 2β2 β2 . . . β2

. . . . . . . . . . . . . . .
βn βn βn . . . 2βn

⎞
⎟⎠ .

Since βi > 0 for all i = 1, 2, . . . , n and the strategy set U is a box, this affine
variational inequality (VI) is equivalent to the strongly convex quadratic program
(see e.g. [19])

min
x∈U

{
1
2
xT Q̂x + cT x

}
(QP )
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where

Q̂ =

⎛
⎜⎝

2 1 1 . . . 1
1 2 1 . . . 1

. . . . . . . . . . . . . . .
1 1 1 . . . 2

⎞
⎟⎠

is symmetric positive definite and cT = (c1, . . . , cn) with ci = (μi − αi)/βi (i =
1, . . . , n). (see e.g. [14, 19]).

Mathematical convex programming and monotone variational inequality ap-
proaches for determining an equilibrium point to equilibrium Cournot oligopolistic
market models with convex cost functions can be found in [5, 16] respectively. A
model with piecewise-concave cost functions is considered in [19]. In this case, the
model can be formulated as a mixed variational inequality

Find x ∈ U : 〈B̃x− α, y − x〉 + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ U,

with

ϕ(y) := yT By +
n∑

i=1

hi(yi); ϕ(x) := xT Bx +
n∑

i=1

hi(xi),

where B̃ is the matrix whose entries B̃i,j = βi if i 	= j, B̃i,i = 0 for all i, j, and B is
the diagonal matrix whose ith diagonal entry is βi (i, j = 1, 2, . . . , n). In contrast
to the convex cost function case, in this case, since ϕ is not convex, this mixed
variational inequality is not convex and therefore a local equilibrium point may
not be a global one. Algorithms for finding a local equilibrium point are proposed
in [24].

Now we consider the model where the strategy set is a polyhedral convex set
given by

D :=
{

x ∈ U := U1 × U2 × . . .× Un,
Ax ≤ b,

where

Ui :=
{

xi ∈ R : 0 ≤ xi ≤ di > 0 (i = 1, . . . , p ≤ n);
xi ∈ R : 0 ≤ xi (i = p + 1, . . . , n), (2.5)

di (i = 1, . . . , p) are scalars in R.

For each x ∈ D, let

Di(x) :=
{

yi ∈ Ui,
Axyi ≤ b,

where xyi := (x1, . . . , xi−1, yi, xi+1, . . . , xn)T ∈ R
n, and

D(x) := D1(x) ×D2(x)× . . .×Dn(x).

Since D(x) may not be contained in D for some x ∈ D, we take C(x) := D(x)∩D
to ensure that C is a mapping from D to D. Moreover x ∈ C(x) for every x ∈ D.
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Similarly as in the classic model where the strategy set is a constant set, we call
x∗ = (x∗

1, . . . , x
∗
n)T ∈ D a Nash-equilibrium point if

fi(x∗
1, . . . , x

∗
i−1, yi, x

∗
i+1, . . . , x

∗
n) ≤ fi(x∗

1, .., x
∗
n), ∀yi ∈ Di(x∗), ∀i = 1, . . . , n.

(2.6)
In this case, by (2.2) and (2.3) the problem of finding an equilibrium point of

the model can be formulated as the following quasi-equilibrium problem of the
form (see e.g. [12]) {

find x∗ ∈ C(x∗) such that
Φ(x∗, y) ≥ 0, ∀y ∈ C(x∗). (QEP )

3. A vector optimization model with nonindependent

strategy sets

In this section we consider linear Cournot oligopolistic market models with
nonindependent strategy sets by using a vector optimization approach rather than
considering equilibrium Problem (QEP). In practice, this approach can be used
when we are interested in the total profit with weights of all firms rather than
the profit of each firm as in Nash equilibrium approach. Actually, in this case,
there are often constraints for the productions xi, i = 1, 2, . . . , n of the firms
which relate to subjects such as markets, investment of the Govermment and/or
technical factors. In this paper, we assume that the constraints are described by a
system of linear inequalities. The following small example shows that a point that
gives the maximal total profit may or may not be an equilibrium point.

Example 3.1. Let the Cournot model with two firms is given by taking the
strategy

D :=
{

0 ≤ x1 ≤ 20; 0 ≤ x2 ≤ 30,
2x1 + x2 ≤ 50,

the linear cost functions

h1(x1) := 10x1; h2(x2) := 12x2

with βT = (β1, β2). Then profit functions are

f1(x1, x2) = (12− β1

(
x1 + x2)

)
x1 = −β1x

2
1 − β1x1x2 + 2x1

and
f2(x1, x2) = (15− β2

(
x1 + x2)

)
x2 = −β2x

2
2 − β2x1x2 + 3x2.

Let the weight vector λT = (1, 1), then the total profit of the two firms is the
quadratic form

G(x) := f1(x) + f2(x) = −β1x
2
1 − β2x

2
2 − (β1 + β2)x1x2 + 2x1 + 3x2.

Then by definition, the Nikaido−Isoda bifunction is

Φ(x, y) = 〈B̃x + μ− α, y − x〉+ yT By − xT Bx,
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where
B =

(
β1 0
0 β2

)
; B̃ =

( 0 β1

β2 0

)
.

If we choose β1 = 0.02; β2 = 0.03, the total profit function G(x) attains its
maximum on D at x∗ = (10, 30)T . Then by a simple calculation we have

C(x∗) = [0, 10]× [0, 30]

and
g(x∗) := min

y∈C(x∗)
Φ(x∗, y) = 0.

Thus
Φ(x∗, y) ≥ 0, ∀y ∈ C(x∗)

which shows that x∗ = (10, 30)T is an equilibrium point of the model.

On the other hand, if we choose β1 = 0.02, β2 = 0.04, the total profit func-
tion G(x) attains its maximum at x̄ = (5, 30)T . In this case, by the same simple
calculation as before we get

C(x̄) = [0, 10]× [0, 30]

Since
g(x̄) := min

y∈C(x̄)
Φ(x̄, y) = −5.5 < 0,

x̄ is not an equilibrium.

3.1. A jointly constrained bilinear programming formulation

As usual, for two vectors xT = (x1, . . . , xn), yT = (y1, . . . , yn) ∈ R
n we write

x ≥ y if and only if xi ≥ yi for all i = 1, . . . , n and xj 	= yj for some j.
In the Cournot market model under consideration in this section, we suppose

that the price and the cost functions of all firms are affine and given respectively by

pi(σ) := pi

⎛
⎝ n∑

j=1

xj

⎞
⎠ = αi − βi

n∑
j=1

xj , αi ≥ 0, βi ≥ 0 (i = 1, . . . , n)

and by
hi(xi) = μixi + ξi, μi ≥ 0, ξi ≥ 0 (i = 1, . . . , n).

In this case, the profit function of firm i (i = 1, . . . , n) can be rewritten as

fi(x) = xipi(x)− hi(xi) = −xT Cix + (αi − μi)xi − ξi, (3.1)

where

Ci :=

⎛
⎜⎜⎜⎝

0 0 0 . . . 0
. . . . . . . . . . . . . . .
βi βi βi . . . βi

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎟⎠ .
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Let
f(x) := (f1(x), f2(x), . . . , fn(x)).

then f(.) is a mapping from R
n to R

n. Thus the vector optimization problem to
this Cournot model can be written as

max
x∈D
{f(x) = (f1(x), f2(x), . . . , fn(x)}. (V P )

Recall [20, 27] that a point x∗ ∈ D is a Pareto efficient solution to (VP) (or
Pareto efficient point of f on D) if whenever x ∈ D and fi(x) ≥ fi(x∗) for every
i = 1, . . . , n, then fi(x) = fi(x∗) for every i. In what follows we are interested in
finding an efficient Pareto solution to this vector optimization problem.

One efficient and commonly used technique for finding Pareto efficient solutions
to vector optimization problem (VP) is scalarization (see e.g. [21]). It defines the
scalarization function

G(λ, x) :=
n∑

i=1

λifi(x) (3.2)

where λi > 0 (i = 1, . . . , n) are the weights. It is easy to see that if λi > 0 (i =
1, . . . , n), then any optimal solution of the scalarized problem

max{G(λ, x) : x ∈ D} (V P1)

is a Pareto efficient point of f over D. In particular, if λi = 1, ∀i = 1, . . . , n, then
G(λ, x) :=

∑n
i=1 fi(x). Thus, an optimal solution of the function

∑n
i=1 fi(x) over

D is just the maximum of the total profit of the model.
To easy exposition, in the sequel, we take

F (λ, x) := −G(λ, x).

Then, instead of problem (VP1), we can consider the problem

min{F (λ, x) : x ∈ D} (SV P )

Since the solution sets of these two problems coincide, from (3.1) and (3.2), we
have

F (λ, x) = xT Qx + (μ(λ) − α(λ))T x + ξ,

where

α(λ)T = (λ1α1, . . . , λnαn), μ(λ)T = (λ1μ1, . . . , λnμn), ξ =
n∑

i=1

λiξi;

Q :=

⎛
⎜⎝

β1λ1 β1λ1 . . . β1λ1

β2λ2 β2λ2 . . . β2λ2

. . . . . . . . . . . .
βnλn βnλn . . . βnλn

⎞
⎟⎠ .
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Thus problem (SVP) is a quadratic program. Note that, since the matrix Q
may not be positive semidefinite, problem (SVP) is not a convex program, and
therefore finding a global optimal solution to the scalarized problem is a difficult
task when the number of the variables is somewhat large (see [13, 17]). However,
thanks to the specific structure of the matrix Q, we can globally solve (SVP)
by formulating the problem as a jointly constrained bilinear program. For this
purpose, let t :=

∑n
i=1 xi, then

fi(x) = (αi − βit)xi − μixi − ξi,

and the scalarization function now becomes

F (λ, t, x) :=
n∑

i=1

λi(βit + μi − αi)xi + ξ.

Thus the scalarized problem (SVP) can be rewritten as the following:

min

{
F (λ, t, x) :=

n∑
i=1

λi(βit + μi − αi)xi

}
(LSV P )

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + . . . + xn = t;

Ax ≤ b;

0 ≤ xj ≤ dj , j = 1, . . . , p;

xj ≥ 0, j = p + 1, . . . , n;

t ≥ 0.

In this problem, (t, x) are variables and λi > 0 (i = 1, . . . , n) are fixed. It is easy to
see that, if (t∗, x∗) is an optimal solution of problem (LSVP) then x∗ is an optimal
solution of problem (SVP).

For each fixed t ≥ 0, problem (LSVP) is a linear program in the variable x
which can be rewritten as

min

{
F (λ, t, x) :=

n∑
i=1

λi(βit + μi − αi)xi

}
(LSV P (t))

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x2 + . . . + xn = t;

Ax ≤ b;

0 ≤ xj ≤ dj , j = 1, . . . , p;

xj ≥ 0, j = p + 1, . . . , n.

Theorem 3.2. If either βi > 0 or Ui is bounded for all i = p + 1, . . . , n, and the
problem (LSVP) has a feasible solution, then it has an optimal solution, where Ui

is given by (2.5).
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Proof. Denote by D̃ the set of feasible solutions to problem (LSVP). Assume that
D̃ is a nonempty polyhedral convex set in R

n+1. Suppose in contradiction that
problem (LSVP) has no optimal solution, then there exists a sequence {(tk, xk)} ⊂
D̃ such that

lim
k→∞

F (λ, tk, xk) = −∞.

By definition of F , there exists an index i0 such that

p + 1 ≤ i0 ≤ n, lim
k→∞

λi0 (βi0tk + μi0 − αi0)xk
i0 = −∞.

Since λi0 > 0, by the assumption, there exists k0 ∈ N such that

(βi0tk + μi0 − αi0) < 0, ∀k > k0

and
lim

k→∞
xk

i0 = +∞.

This is a contradiction, since if limk→∞ xk
i0 = +∞ then βi0 > 0 and limk→∞ tk =

+∞ implies
lim

k→∞
(βi0tk + μi0 − αi0) = +∞. �

Remark 3.3. The assumption that the production set Ui of firm i is bounded,
when its reduced price coefficient βi = 0 (i = p + 1, . . . , n), is quite appropriate
in practice. In fact, if it is not the case, the firm can produce an arbitrarily large
production to obtain an arbitrarily large profit.

Corollary 3.4. If either βi > 0 or Ui is bounded for all i = p + 1, . . . , n and the
feasible set D is not empty then the vector optimization problem (VP) has a Pareto
efficient solution.

3.2. Finding a Pareto efficient solution to the model

We suppose that the strategy set of the model is bounded and given by

D :=
{

x ∈ U := U1 × U2 × . . .× Un,
Ax ≤ b,

where
Ui = {xi : 0 ≤ xi ≤ di, i = 1, 2, . . . , n}. (3.3)

Let
Tmax := max

x∈D
{x1 + x2 + . . . + xn} (3.4)

and
Tmin := min

x∈D
{x1 + x2 + . . . + xn}. (3.5)
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Obviously, by (3.3), if D is not empty, then 0 ≤ Tmin ≤ Tmax < +∞ and the scalar
Problem (LSVP) can be rewritten as

min

{
F (λ, t, x) :=

n∑
i=1

λi(βit + μi − αi)xi

}
(LSV P1)

subject to

⎧⎪⎨
⎪⎩

x1 + x2 + . . . + xn = t;
Ax ≤ b;
0 ≤ xj ≤ dj , j = 1, . . . , n;
Tmin ≤ t ≤ Tmax.

Obviously this problem always has an optimal solution whenever the strategy set
D 	= ∅.

For an interval I := [t0I , t
1
I ] ⊆ [Tmin, Tmax], we denote by α(I) the optimal value

of the problem

α(I) := min

{
F (λ, t, x) :=

n∑
i=1

λi(βit + μi − αi)xi

}
(LSV P1(I))

subject to

⎧⎪⎨
⎪⎩

x1 + x2 + . . . + xn = t;
Ax ≤ b;
0 ≤ xj ≤ dj , j = 1, . . . , n;
t0I ≤ t ≤ t1I .

We consider the relaxed problem

β(I) := min
(t,τ,x)

{
F (λ, τ, x) :=

n∑
i=1

λi(βiτ + μi − αi)xi

}
(LSV P2(I))

subject to

⎧⎪⎨
⎪⎩

x1 + x2 + . . . + xn = t;
Ax ≤ b;
0 ≤ xj ≤ dj , j = 1, . . . , n;
t0I ≤ t ≤ t1I ; t

0
I ≤ τ ≤ t1I .

Theorem 3.5.

(i) For each fixed λ then problem (LSV P1(I)) and (LSV P2(I)) always have op-
timal solutions.

(ii) Suppose that (t∗, τ∗, x∗) is an optimal solution to problem (LSV P2(I)). If
t∗ = τ∗ then (t∗, x∗) also is an optimal solution to problem (LSV P1(I)).

(iii) The optimal solution of problem (LSV P2(I)) attains at a feasible solution
(t̄, τ̄ , x̄) with τ̄ = t0I .

Proof.

(i) is obvious, from the compactness of the feasible domains and continuity of F .
(ii) is obvious by the definition.
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(iii) For each fixed τ ∈ I, let

l(τ) := min
(t,x)

{
F (λ, τ, x) :=

n∑
i=1

λi(βiτ + μi − αi)xi

}
(LSV Pτ (I))

subject to

⎧⎪⎨
⎪⎩

x1 + x2 + . . . + xn = t;
Ax ≤ b;
0 ≤ xj ≤ dj , j = 1, . . . , n;
t0I ≤ t ≤ t1I .

From the βi ≥ 0, xi ≥ 0, ∀i = 1, . . . , n, it follows that for every fixed (t, x) ∈ D,
if τ2 ≥ τ1 then F (λ, τ2, x) ≥ F (λ, τ1, x). Thus, l(τ) is nondecrease on I.

Let β(I) := l(t0I), then β(I) is a lower bound of α(I). �

Bisection Rule 1. Let a < b be fixed scalars.

Step 0: Set I0 := [a, b], u0 := a, v0 := b, Γ0 := {I0}, k ← 0 and go to Step 1.
Step 1: Choose Ik any interval in Γk and let uk < ξk ≤ vk be an arbitrary point.

Denote by tk the midpoint of interval [uk, ξk].
Step 2: Set

I−k := [uk, tk], I+
k := [tk, vk], Γk+1 := (Γk \ Ik) ∪ {I−k , I+

k }.

Let k ← k + 1 and go back to Step 1.

Lemma 3.6.

(i) The bisection rule 1 generates an infinite nested subintervals {Ikj} of the
interval [a, b] such that Ikj+1 is obtained from Ikj by the above bisection rule.

(ii) The three corresponding subsequences {ukj}, {tkj}, {ξkj} convergence to the
same limit point t∗.

Proof.

(i) The first assertion is obvious from the bisection rule 1. For the sake of simple
notation, we denote also the subsequence of subintervals by {Ik}.

(ii) Since uk < tk < ξk for every iteration k = 0, 1, 2, . . ., and tk = 1
2 (uk + ξk), it

is easy to see that if the conclusion of lemma is not true then

uk → u∗, tk → t∗, ξk → ξ∗ as k → +∞

and u∗ < t∗ < ξ∗, which implies that there exists k0 such that

uk < tk0 < ξk, ∀k > k0.

At k := k0 + 1, according to the bisection rule 1, if the interval Ik is obtained
from Ik0 then Ik = I−k0

or Ik = I+
k0

.
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First consider the case when Ik = I−k0
. By the algorithm ξk = ξk0+1 < tk0 , which

is a contradiction.
If Ik = I+

k0
then uk = uk0+1 = tk0 is again a contradiction. �

Using the above bisection rule we can describe the main algorithm as follows.

Algorithm 3.1.
Initialization: Compute Tmax, Tmin by solving problems (3.4) and (3.5). Set I0 :=
[Tmin, Tmax] and compute β0 := β(I0). Denote by (t0, x0) the obtained optimal
solution of problem (LSV P2(I0)). Let α0 := F (λ, t0, x

0).
Set Γ0 := {I0}, k ← 0 and go to Step 1.

Iteration k with k = 0.1 . . .

Step 1:

1a) If αk ≤ βk, then terminate; xk is an optimal solution.
1b) If αk > βk, then define

I−k := [t0Ik
, ξk]; I+

k := [ξk, t1Ik
]

where ξk is the midpoint of the interval Ik.

Step 2: Compute β(I+
k ) and β(I−k ). Let (t̄k+1, x̄

k+1) be the currently best feasible
point obtained as computation of β(I+

k ) and β(I−k ), and let

αk+1 := min{αk, F (λ, t̄k+1, x̄
k+1)} = F (λ, tk+1, x

k+1),
Δk := (Γk \ Ik) ∪ {I+

k , I−k },
Γk+1 := {I ∈ Δk : β(I) < αk+1}.

Step 3: Set Ik+1 ∈ Γk+1 such that

β(Ik+1) = min{β(I) : I ∈ Γk+1}.

Let βk+1 := β(Ik+1), k ← k + 1 and go back to Step 1.
This completes the description of the algorithm.

Remark 3.7.

(1) For each interval I = [t0I , t
1
I ], to compute β(I) we have to solve one linear

program

min

{
F (λ, t0I , x) :=

n∑
i=1

λi(βit
0
I + μi − αi)xi

}

subject to

⎧⎪⎨
⎪⎩

x1 + x2 + . . . + xn = t;
Ax ≤ b;
0 ≤ xj ≤ dj , j = 1, . . . , n;
t0I ≤ t ≤ t1I .
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(2) The midpoint bisection used in the above algorithm does not take into account
the iteration point obtained through the bounding operation. Here we give a
branching bisection which uses the iteration point as well as the objective
function. Suppose that we are in case 1b) of Step 1 with Ik := [t0Ik

, t1Ik
]. Let

(t̃k, x̃k) be the optimal solution for the problem of computing β(Ik).
Define

I−k := [t0Ik
, ξk], I+

k := [ξk, t1Ik
]

where ξk is the midpoint of interval [t0Ik
, t̃k]. We will refer to this branching as

an adaptive bisection.
(3) If we are interested only in an ε-solution, then at each iteration k, an interval

I can be deleted from Γk if

|αk − β(I)| ≤ ε max{|αk|, 1}.

In particular, if |αk−βk| ≤ ε max{|αk|, 1}, then we call (λ, tk, xk) an ε-solution,
and αk is an ε-optimal value of problem (LSVP).

We are now turning to the convergence of the above algorithm. Let F∗ denote
the optimal value of the problem (LSVP). From the definition of βk, αk and xk

it follows that βk ≤ βk+1 ≤ F∗ ≤ αk+1 ≤ αk for all k. Hence if the algorithm
terminates at some iteration k, i.e. αk ≤ βk, then βk = F∗ = αk = F (λ, tk, xk).
Thus xk is an optimal solution. If the algorithm does not terminate, then we have
the following convergence result:

Convergence of the algorithm. αk ↘ F∗, βk ↗ F∗ and any cluster point
of {xk} is an optimal solution of problem (LSVP).

Proof. Since {βk} is nondecreasing and {αk} is non-increasing, β∗ := limβk, α∗ :=
lim αk exist.

From Lemma 3.6 one has

t0k → t∗, ξk → t∗, t̃k → t∗ as k → +∞.

Let
ᾱk := F (λ, t̃k, x̃k),

where (t̃k, x̃k) is the optimal solution of the problem for computing β(Ik). Obvi-
ously, for all k, αk ≤ ᾱk and

ᾱk − βk = (t̃k − t0Ik
)

n∑
i=1

λiβix̃
k ≤ T β̄(t̃k − t0Ik

),

where β̄ := max{βi : i = 1, . . . , n}. This implies that ᾱk converges to β∗. Note
that for all k, one has

βk ≤ αk ≤ ᾱk.

Thus, αk converges to α∗ = β∗ = F∗.
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Now let x∗ be any cluster point of {xk}. For simplicity of notation, we may
suppose that xk → x∗. By continuity of F , we have

αk = F (λ, tk, xk)→ F (λ, t∗, x∗) = F∗ as k → +∞. �

An illustrative example. To illustrate the algorithm we consider a Cournot
model with three firms (n = 3). The price, cost functions, strategy set for each
firm and the constraint matrix A are given as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1(x) := 14.5− 0.02(x1 + x2 + x3), h1(x1) := 8.2x1, U1 := [0, 30];
p2(x) := 16.4− 0.04(x1 + x2 + x3), h2(x2) := 10.7x2, U2 := [0, 40];
p3(x) := 17.2− 0.01(x1 + x2 + x3), h3(x3) := 9.4x3, U3 := [0, 50];

A :=

⎛
⎝ 2 1 1

3 −1 1
−1 −1 0

⎞
⎠ , b :=

⎛
⎝ 90

60
−20

⎞
⎠ .

In this example

α = (14.5, 16.4, 17.2); β = (0.02, 0.04, 0.01); μ = (8.2, 10.7, 9.4).

Let λ := (3, 2, 5) be the weight vector. In this case, problem (LSVP(t)) takes the
form

min{F (λ, t, x) = (0.06t− 18.9)x1 + (0.08t− 11.4)x2 + (0.05t− 39)x3}

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + x2 + x3 = t;
2x1 + x2 + x3 ≤ 90;
3x1 − x2 + x3 ≤ 60;
−x1 − x2 ≤ −20;
0 ≤ x1 ≤ 30, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 50, 20 ≤ t ≤ 90.

Choose ε = 0.005. Now, we use the algorithm to find an ε-solution to this problem.
Initialization: Compute Tmin by solving the linear program

min{x1 + x2 + x3}

subject to

⎧⎪⎨
⎪⎩

2x1 + x2 + x3 ≤ 90;
3x1 − x2 + x3 ≤ 60;
−x1 − x2 ≤ −20;
0 ≤ x1 ≤ 30, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 50.

we obtain Tmin = 20.
Compute Tmax by solving the linear program

max{x1 + x2 + x3}

subject to

⎧⎪⎨
⎪⎩

2x1 + x2 + x3 ≤ 90;
3x1 − x2 + x3 ≤ 60;
−x1 − x2 ≤ −20,
0 ≤ x1 ≤ 30, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 50
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we have Tmax = 90. Let I0 := [20, 90], Γ0 := {I0}. Compute

β0 = β(I0) = −2292, α0 = α(I0) = −1893, Γ0 := {I0}.
Iteration 0:
Step 1:

1b) Bisect the interval I0 = [20, 90] to obtain

I−0 := [20, 55], I+
0 := [55, 90].

Step 2: Compute:

β(I−0 ) = −1614.9, α(I−0 ) = −1505.5

β(I+
0 ) = −2108.5, α(I+

0 ) = −1991.

Let

α1 := α(I+
0 ) = −1991, x1 = (10, 20, 50), Δ0 = {I−0 , I+

0 }, Γ1 = {I+
0 }.

Step 3: Set
I1 := I+

0 = [55, 90], β1 := β(I+
0 ) = −2108.5

Iteration 1:
Step 1:

1b) Bisect the interval [55, 90] to get

I−1 := [55, 72.5], I+
1 := [72.5, 90].

Step 2: Compute:

β(I−1 ) = −2039.9, α(I−1 ) = −1967.5

β(I+
1 ) = −2026.2, α(I+

1 ) = −1991.

Let

α2 := α(I+
1 ) = −1991, x2 = (10, 20, 50), Δ1 = {I−1 , I+

1 }, Γ2 = {I−1 , I+
1 }.

Step 3: Set
I2 := I−1 = [55, 72.5], β2 := β(I−1 ) = −2039.9,

In iteration 2, at Step 1 we further bisect the interval [55, 72.5] to get

I−2 := [55, 63.75], I+
2 := [63.75, 72.5],

and the algorithm proceeds similarly. At iteration 7 we have

α8 = −1991, x8 = (10, 20, 50)T , β8 = −1998.6.

Since |α8 − β8| < ε max{|α8|, 1}, we terminate the algorithm at iteration 8 to
obtain x∗ := x8 = (10, 20, 50), an ε- optimal solution to the problem (SVP), which
is an efficient point of the model. At this efficient solution the total profit of three
firms is 447.
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Table 1.

Size Algorithm 3.1 Interior-point
n m Average time Average iter. Average time Average iter Glob
50 10 0.38 222.0 0.06 51.4 8
100 20 6.53 126.5 0.19 102.2 9
150 30 9.37 125.7 0.50 153.9 10
200 30 6.68 82.3 0.99 203.2 10
250 50 15.37 86.2 1.86 254.9 9
300 50 31.69 150.5 3.42 306.4 8
400 30 16.84 121.3 8.22 406.6 10
500 30 21.52 132.5 17.07 506.3 7
500 100 61.90 42.2 17.25 506.1 10
500 200 98.54 20.5 17.55 509.0 9
600 30 20.85 97.0 43.03 607.6 10
700 30 22.15 101.6 50.63 707.8 8
850 20 19.22 111.9 99.35 856.4 10
1000 50 175.95 317.9 177.89 1013.2 10
1200 20 32.57 131.5 342.49 1205.7 9

4. Computational results and experiments

For evaluation, the algorithm was written on Matlab and tested on different
groups of problems. Each group contains 10 problems of the same size (n, m),
but having input data generated randomly. For each problem we suppose that the
upper bound for every xi is randomly generated in the interval [100, 500] and the
data input are the followings:

• λ: 1× n-vector whose elements are positive real numbers that sum to 10;
• α: 1× n-vector of integer numbers in the interval [20, 30];
• β: 1× n-vector of real numbers in the interval [0.01, 0.05];
• μ: 1× n-vector of integer numbers in the interval [10, 20];
• A: m× n-matrix of integer numbers in the interval [0, 20];
• B: m× 1-vector of integer numbers in the interval [500, 5000].

The program runs using Matlab version 7.11 installed on a Windows 7 machine,
RAM 6Gb, CPU Intel Core2 Duo 2.26Ghz. To evaluate the proposed algorithm we
compared with the interior-point algorithm for quadratic programming using the
quadprog implementation of Matlab. Both algorithms run on the same data set
which was randomly generated. For each size m×n of the matrix A, the program
runs with 10-matrices whose entries are randomly generated. For Algorithm 3.1,
we terminate the program at iteration k, whenever the difference between the cur-
rently best upper and lower bounds satisfies the condition αk−βk ≤ ε max{1, |αk|}
with ε = 10−4

The obtained results are reported in Tables 1 and 2 where we use the following
headings:

• n: the number of firms;
• m: the number of the rows of matrix A;
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Table 2.

Size Algorithm 3.1 Interior-point
m Average time Average iter. Store Average time Average iter.
10 8.44 54 53 81.69 817
30 22.71 76 32 81.14 817
50 26.17 43 14 124.92 820
70 45.54 42 12 140.52 821
100 56.11 30 14 82.37 824

• Average time: the average time (in second) needed to solve one problem;
• Average iter: the average numbers of iterations for one problem.
• Glob: the number of problems for which a global optimal solution was obtained

by the interior algorithm.
• Store: the maximum number of intervals to be stored.

From Table 1 one can conclude that, for the running time, Algorithm 3.1 works
well when m is small or median (less than 50), but n may be much larger. In
contrast, for the interior point algorithm, m may be large, but the running time
increases quickly as n- gets larger. Furthermore, we emphasize that for the pro-
posed branch-and-bound algorithm the obtained solutions are always global ones,
while for the interior algorithms, the obtained solutions may not be global ones. In
fact, for 150-tested problems, by using the obtained local solution as the starting
point to run again the program, about 90 percentage of the obtained solutions are
global. Following a suggestion of one referee we have tested Algorithm 3.1 with
ten problems for each m = 10, 30, 50, 70, 100 with the same n = 800. The obtained
results presented in Table 2 below show that Algorithm 3.1 really is sensitive with
m as the referee remarked.

5. Conclusion

In this paper we have used a vector-optimization approach to Cournot oligopolis-
tic market equilibrium models having jointly constrained strategy set. By intro-
ducing an extra variable, the problem of finding an efficient Pareto point for gen-
eralized Cournot oligopolistic market models has been converted into a jointly
constrained bilinear program. We have proposed a branch-and-bound algorithm
for globally solving the latter problem. By employing the specific structure of the
model, the branching operation can perform adaptively in one- dimensional inter-
vals that makes the algorithm efficient. We have compared the proposed algorithm
with the interior algorithm using the quadprog implementation of Matlab. Compu-
tational results on a lot of randomly generated problems show that the proposed
algorithm works well when the number of the joint constraints is median, the
number of the variables may be much more larger.
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