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Abstract. Virtual screening of chemical libraries following experimental assays of drug candidates
is a common procedure in structure-based drug discovery. However, virtual screening of chemical li-
braries with millions of compounds requires a lot of time for computing and data analysis. A priori
classification of compounds in the libraries as low- and high-binding free energy sets decreases the
number of compounds for virtual screening experiments. This classification also reduces the required
computational time and resources. Data analysis is demanding since a compound can be described by
more than one thousand attributes that make any data analysis very challenging. In this paper, we
use the hyperbox classification method in combination with partial least squares regression to deter-
mine the most relevant molecular descriptors of the drug molecules for an efficient classification. The
effectiveness of the approach is illustrated on a target protein, SIRT6. The results indicate that the
proposed approach outperforms other approaches reported in the literature with 83.55% accuracy using
six common molecular descriptors (SC-5, SP-6, SHBd, minHaaCH, maxwHBa, FMF). Additionally, the
top 10 hit compounds are determined and reported as the candidate inhibitors of SIRT6 for which no
inhibitors have so far been reported in the literature.
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1. Introduction

Drugs are necessary for the prevention and treatment of diseases. Many diseases such as cancer, diabetes,
and Alzheimer constantly threaten the quality of life of humans. Although new and effective drugs are always in
high demand, the ability to design and discover them has not been very successful over the years due to the lack
of systematic approaches that can integrate different aspects of the drug discovery process. The process of drug
development is challenging, time consuming, expensive, and requires consideration of different aspects such as
effectiveness, side effects, and toxic effects. Combinatorial chemistry has emerged as a new paradigm in the field
of drug discovery as it provides a large library of compounds at a time. Moreover, the number of commercially
available compounds are also continuously increasing. So the process of compound selection and prioritization
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is very crucial to reduce the time and computational cost of screening the libraries of compounds [23,29,39]. To
fulfill these challenges, several multidisciplinary approaches are required in the process of drug development.

Structure-based drug design methods are an integral part of drug development for known 3D structures of
potential drug binding sites, which are the active sites. In structure-based drug design, a known 3D structure
of a target bound to its natural ligand is determined either by X-ray crystallography or by NMR to identify
its binding site, also called the active site. For the discovery of drug candidates for a known target, this is the
starting point of structure-based drug design. Once the ligand bound 3D structure is known, a virtual screening
of large collections of chemical compounds from different databases, such as ZINC [16], can be performed.
Virtual screening provides a score based on the steric and electrostatic interactions of the drug candidates with
the target protein. The scoring function provides a computational estimate such as binding free energy (BFE)
and binding constant for the activity of the drug candidate on the target site. Next, selected drug candidates
with relatively high binding affinity (low BFE) are tested with in vitro and in vivo assays [17, 22]. However,
virtual screening of those small molecule libraries with millions of compounds requires considerable computing
and data analysis time. To reduce computational time and resources during the virtual screening, we have
combined a machine learning and virtual screening approach.

Our motivation behind this study is to filter the initial small molecule libraries that contain compounds
that may be deemed unsuitable for screening against a particular target protein by using a classification algo-
rithm, mixed-integer linear programming based hyperbox (MILP-HB) [38]. The objective is to screen out the
compounds in the initial library that have high-BFE and to select low-BFE compounds that are specific to
the target protein. For this purpose, we targeted SIRT6 protein to find novel inhibitor (low-BFE) compounds.
The biological importance of SIRT6 protein is discussed in the next section in detail. In our approach, to clas-
sify compounds as low- and high-BFE sets, we used the partial least square regression (PLSR) combined with
MILP-HB method that takes the molecular descriptors as attributes of the model.

PaDEL-Descriptor [43] software was used to calculate the molecular descriptor values of the compounds
in the small molecule library. The software provided 1975 descriptors in 12 categories of fingerprints for each
compound. Since the number of descriptors were excessively high, most of them were expected to be irrelevant
for the prediction of BFE values for the specific target protein. It was, therefore, important to select a subset
of descriptors that were most informative about BFE values between the compounds and target protein. The
molecular descriptor set was reduced by using the Unsupervised Forward Selection (UFS) method [40]. Then,
a PLSR model [42] was constructed to eliminate the redundant set of descriptors for the prediction of BFE
values. The purpose of using a PLSR model was to find the most informative molecular descriptors to be
used in building the MILP-HB classifier. After conducting regression analysis, selecting the relevant molecular
descriptors for MILP-HB, and making preliminary classification studies, significance tests were performed on
the descriptors selected by the regression method to improve the classification accuracies. The strength of the
MILP-HB algorithm not only comes from combining regression with classification but also the ability to improve
the classification accuracies by its iterative approach. Previous studies showed that its classification efficiency
and accuracy is superior to alternative methods [1, 7, 8, 18].

The comparison of MILP-HB classification accuracy with the accuracies of the classification methods available
in the WEKA data mining package [11] was also made. WEKA is a collection of machine learning algorithms
for data mining tasks. It contains 63 different classification methods, but in this paper, we reported only 12
methods that provided the highest accuracy to save space. A brief overview of these classifiers was presented
in the ‘Strategies and Methods’ section. Comparison of classification accuracies between MILP-HB and WEKA
classifiers were reported in the ‘Data and Results’ section. Our approach outperformed all of the classifiers
available in WEKA with 83.55% accuracy. We concluded that the 6 most significant descriptors (SC-5, SP-6,
SHBd, minHaaCH, maxwHBa, FMF) that we selected by using PLSR provide the highest classification accuracy
with MILP-HB method. Then, 4 million compounds in the small molecule library were classified according to
those 6 molecular descriptors as low- and high-BFE sets by using MILP-HB. About 2.4 million compounds
were classified as low-BFE compounds that were further subjected to virtual screening by docking to SIRT6
protein. After molecular docking, the compounds with minimum BFEs were selected and analyzed according
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to important characteristics such as docking positions, hydrogen bonding interactions with the residues at the
NAD+ binding site and pocket occupancy. The top 10 hit compounds were determined and reported as the
candidate inhibitors of SIRT6. BFEs of the selected candidates were in the range of −11.2 to −11.9 kcal/mol.

2. The biological importance of sirtuin6

Sirtuins belong to the Class III family of histone deacetylase enzymes (HDACs) that require the cofactor
NAD+ as a substrate [10, 13]. Sirtuins catalyze the removal of an acetyl moiety from the ε-amino group of
lysine residues within protein targets to yield the deacetylated protein product, nicotinamide, and 2'-O-acetyl-
ADP-ribose. Sirtuins regulate various biological processes, such as cell survival, transcription, metabolism, DNA
damage/repair, and longevity by deacylating different proteins, including histones, transcription factors, and
metabolic enzymes [10].

There are seven mammalian Sirtuins (SIRT1-7) that show different intracellular localization and deacetylate
different sets of substrate proteins. Among the Sirtuins, SIRT6 is a key enzyme in multiple molecular pathways
related to aging, DNA repair, telomere maintenance, glycolysis and cancer [13]. SIRT6, which is localized in
the nucleus, displays deacetylase and weak ADP-ribosyl transferase activity [13, 25]. Within the nucleus it is
associated with heterochromatic regions [28] and modifies two key enzymes involved in double-strand break
repair, PARP1 [19] and CtIP [27]. Also, SIRT6 is shown to be involved in Base Excision Repair (BER) and its
loss leads to age-associated degenerative processes [30].

Recent studies showed that SIRT6 deficiency promotes tumor-genesis by promoting increased glycolysis by
regulating the expression of glycolytic genes, including the glucose transporter GLUT1, in a HIF1∝-dependent
manner [44]. In addition, p53 positively regulates the transcriptional levels of SIRT6 under normal conditions
in tumor cells [20]. Moreover, SIRT6 has been shown to interact with the relA subunit of NFB and deacetylate
histone H3 lys9 at the NFB target gene promoters resulting in silencing gene transcription involved in apoptosis
and cellular senescence [21].

It is obvious that regulating the activity of the SIRT6 with small molecule inhibitors will enable us to use
molecules in the treatment of metabolic disorders, such as diabetes (as blood glucose-lowering agents), in aging
related degenerative processes, and in cancer (as chemosensitizers) [9]. Additionally, such molecules will help us
to study SIRT6 dependent biological processes and pathways in vitro and in vivo. In this context, availability of
the SIRT6 crystal structure (pdb id: 3K35) represents an important tool for structure-based in-silico screenings
and for general understanding of the mode of action of SIRT6 and of its chemical modulators.

3. Strategies and methods

Strategies followed in this study are summarized in Figure 1. First, the Molecular Dynamics (MD) simulation
was performed on SIRT6 protein. This step was applied to calculate binding energies at realistic conditions that
are close to physiological conditions. Then, a small molecule library was prepared by using several databases.
Library size was decreased from 7 million to 4 million compounds by applying Lipinski’s rule of five criteria [24].
After that, virtual screening was performed on a subset of randomly selected compounds to calculate BFE
values.

A data mining study was conducted to classify the compounds as low- and high-BFE classes using the MILP-
HP method.BFE of NAD+ (−8.3 kcal/mol), which is a substrate of SIRT6, was used as a threshold to classify
molecules as low-BFE (above −8.3 kcal/mol) or high-BFE (below −8.3 kcal/mol) sets. Molecular descriptors of
the compounds were generated by using PaDEL software. The descriptor set was reduced first by UFS and then
by the PLSR model. The 15 descriptors with the highest regression coefficients were added to the set of 15 most
significant descriptors, and the first 6 of them were used as input for the initial classification by MILP-HB. The
accuracy of the MILP-HB classification was compared with other classifiers in the WEKA data mining package.
Then, this approach with 6 specific molecular descriptors, SC-5, SP-6, SHBd, minHaaCH, maxwHBa and FMF,
helped us to reduce the size of library from 4 million to 2.4 million compounds. The remaining 2.4 million
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1) MD Simulation

(i) Performed on SIRT6 with a pdb id:3K35 (NAMD).

2) Library Preparation

(i) Compounds were collected from various databases (7 million).

(ii) The compounds in the library were filtered using Lipinskis Rules (4 million).

3) Virtual Screening

(i) A subset of compounds was selected randomly from the library.

(ii) Molecular docking was performed and BFEs were calculated.

(iii) The compounds were randomly divided into two for data classification

study: training set and testing set.

4) Feature Extraction

(i) Molecular descriptors of the compounds in the training set were generated.

(ii) UFS was used to reduce the descriptor set.

(iii) PLSR model was constructed to further eliminate redundant descriptors.

5) Training of MILP-HB Classifier

(i) BFEs and 6 most significant descriptors of compounds in the training set

were used.
(ii) Accuracy of MILP-HB was compared with other classifiers in use (training

accuracies were considered).

6) Final MILP-HB Classification and Molecular Docking

(i) Compounds in the library were classified as low- and high-BFE sets.

(ii) 2.4 million compounds in low-BFE set were docked to SIRT6.

(iii) Top 10 hit compounds were determined and reported as candidate inhibitors.

Figure 1. Systematic approach used in the study.

compounds in the low-BFE set were docked to SIRT6. Finally, the compounds with minimum BFEs were
selected and analyzed and, finally, the top 10 hit compounds were determined and reported as the candidate
inhibitors of SIRT6.

3.1. Molecular dynamics simulation

The reported structure of human SIRT6 was in a complex with adenosine-5-diphosphoribose at 2.0 Å [31].
MD simulations were carried out by using the NAMD software, version 2.6 with the PARAM22 version of the
CHARMM force field [26, 32]. The protein was solvated in a rectangular box including TIP3P water molecules
and counter ions. First, the system was minimized through 10 000 steps by keeping the backbone fixed, and then
backbone atoms were relaxed through 10000 steps. Next, the system was heated to 310 K with 10 K increments
(10 ps simulation at each increment). After the equilibration of the system, a MD simulation was carried out
with constant temperature (310 K) and pressure control using the Langevin piston method. The time-step of
the simulation was set to be 2 fs and the bonded interactions, the van der Waals interactions (12 Å cut-off),
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and the long-range electrostatic interactions with particle-mesh Ewald (PME) were included in the calculations
to define the forces acting on the system. The distances between the atoms of the molecules are calculated. A
survey of the algorithms can be found in [36]. The damping coefficient was set to be 5 ps−1 using Langevin
dynamics to handle pressure control. At the end of the MD simulation, the final structure was employed for
molecular docking calculations.

3.2. Library preparation and virtual screening

The small molecule library was prepared by collecting over 7 million compounds from commercially available
Ambinter catalogue-2014 (www.ambinter.com) and publicly available ZINC (http://zinc.docking.org) [16],
PubChem [4] and ChEMBL (www.ebi.ac.uk/chembl) [3] databases. Virtual screening was performed as de-
scribed previously [2]. Before virtual screening, the library was subjected to the Filter-it software (version 1.0.2)
to eliminate the compounds that violate Lipinski’s rule of five [24] such as molecular weight, the number of
hydrogen bond acceptors and donors, and logP value. Analysis by Filter-it software revealed 4 million com-
pounds (4M library), which satisfy Lipinski’s rule of five. For molecular docking calculations, docking software
AutoDock Vina (version 1.1.2) which was available for public access was employed (http://vina.scripps.
edu/) [37]. This version of AutoDock Vina predicts the optimal conformations of the receptor-ligand complex
and report binding affinity scores by assuming a structure model with a rigid receptor (protein) and a flexible
ligand.

3.3. Generation of molecular descriptors and feature extraction

Molecular descriptor values of the compounds in the small molecule library were generated by PaDEL-
Descriptor [43] software. The software calculated the molecular descriptors developed by the Chemistry De-
velopment Kit (CDK) and provided 1875 descriptors (1444 1D, 2D descriptors and 431 3D descriptors) in
12 categories of fingerprints like atom type electrotopological state descriptors, Crippen’s logP and MR, ex-
tended topochemical atom descriptors, McGowan volume, molecular linear free energy relation descriptors, ring
counts and count of chemical substructures identified by Laggner. The selection of the best molecular descrip-
tors for the training set, which defines low- and high-BFE classes (Fig. 2), was carried out for the MILP-HB.
High number of repetitions in some of the descriptor values that possess the same value for at least 90% of the
compounds were eliminated. Since the number of descriptors was much higher than the number of molecules,
there was high multi-collinearity between the columns of the data set. We further reduced the descriptor set by
using UFS [40] which chooses the maximal linearly independent columns with a minimal amount of multiple
correlations by discarding the descriptors with standard deviation less than the predefined minimum standard
deviation.

A PLSR model was constructed to select most informative descriptor set for the prediction of BFEs. PLSR
was implemented by using the MINITAB statistical software (version 17) and the constructed model has an R2

value of 0.95. In the PLSR model BFEs constitute the dependent variables (responses) and descriptor values
are the independent variables. The 15 molecular descriptors (SC-5, SP-6, SHBd, minHaaCH, maxwHBa, FMF,
MDEN-23, ndssC, nHBint2, ATSc2, C1SP3, minsCH3, nAtomP, BCUTp-1l, VC-5) with the highest regression
coefficient were added to the ’15 most significant descriptor’ set, and the first 6 were used as input for the initial
classification by MILP-HB.

3.4. MILP-HB classification and significance analysis

We used the MILP-HB method to classify the molecules. Each class is represented by several hyperboxes
that enclose the molecules of the class and the hyperboxes of different classes do not overlap. The power of the
method is due to its ability to construct multiple hyperboxes for each class that better fit the structure of the
data. Basically, the existence of hyperboxes is represented by binary variables, ybl takes the value 1 if box l
exists and it is 0 otherwise. The boundaries of box l is indicated by continuous decision variables Xlmn, which
is the bound n for box l on attribute (descriptor) m. The binary variable ypik represents the misclassification

www.ambinter.com
http://zinc.docking.org
www.ebi.ac.uk/chembl
http://vina.scripps.edu/
http://vina.scripps.edu/
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INPUT:
BFEs of compounds in the training set

1) Obtain the molecular descriptors of the
molecules (PaDEL)

2) Descriptor selection by a regression
model (PLSR)

3) Classification of molecules based on
the selected descriptors (MILP-HB)

4) Significance analysis

5) Are there more significant descriptors?

6) Update descriptor set

OUTPUT:
6 best descriptor set, molecular classifier

Yes

No

Figure 2. Schematic representation of the classification approach.

of sample i to class k. Sample data (set of molecules) is represented by the parameters, aim which denotes the
value of descriptor m of molecule i and Dik which is the class k of molecule i. The mixed-integer programming
model is constructed with these decision variables and supplementary variables along with relevant constraints
minimizes the objective function in equation (3.1):

z =
∑

i

∑

k

ypik +
∑

l

ybl. (3.1)

Here, the purpose is to enclose the sample data by a set of hyperboxes for each class using the minimum
number of hyperboxes and misclassified data. See [38] for the fundamental model. The efficiency of the method
was improved in [8] by determination of problematic instances, i.e. instances covered by hyperboxes of multiple
classes, finding seeds for problematic instances of each class, and elimination of intersections between hyperboxes.
We used the approach in [8] and the mixed-integer programming model was built with the 6 most significant
descriptors we obtained from PLSR and solved by the Cplex 12.3 solver [15] using Gamside [35]. The same
approach has been successfully implemented in classifying drug molecules considering their IC50 values on
target proteins [1, 12]. Additionally, inhibitors of human cytochrome P450 enzymes have been classified with
respect to BFE and pIC50 using common 6 molecular descriptors [7].

The step following the initial MILP-HB classification is the significance analysis. It is possible to improve
the initial classification accuracy by replacing the weakest descriptors in the 6 most significant descriptor set
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used in MILP-HB with the most informative descriptors of the 15 most significant descriptor set. The impact
of each descriptor is evaluated by comparing the within class variance of descriptor values with the variance of
the whole set of molecules. Equation (3.2) given below exhibits the F distribution.

S2
ij/σ2

i

S2
ik/σ2

i

= S2
ij/S2

ik = fvn. (3.2)

F distribution is used for hypothesis testing where S2
ij is the variance of the set of values of descriptor i for

the whole set of molecules and S2
ik is the variance of the set of values of descriptor i for molecule class k. The

null hypothesis H0: S2
ij = S2

ik, claims that variance of molecule class k has the same variance with the whole
molecule set for descriptor i. We expect in class variance to be smaller than the variance of the whole molecule
set for a descriptor to be significant. Then, alternative hypothesis Ha: S2

ij > S2
ik claims that molecule class k has

smaller variance than the whole set. For a strong descriptor we expect to have low p values both for low- and
high-BFE classes.

3.5. Current classification tools in use

We compared the accuracy of the MILP-HB method with the classifiers in the WEKA data mining pack-
age [11]. Among the classifiers of WEKA that we considered, OneR (One Rule) is a very simple but accurate
method. It builds a one-level decision tree, learns a rule from each attribute, and selects the rule having the
smallest error rate as the one rule [41]. Another method called logit boost (additive logistic regression) is for
boosting any of the classifiers that manage weighted data. It uses the logistic regression system for the learn-
ing process [12]. SMO (sequential minimal optimization) is a method to train a support vector classifier using
polynomial kernels by breaking a large quadratic programming (QP) optimization problem into smaller QP op-
timization problems [33]. A Bayesian network is a directed acyclic graph, with nodes representing the variables
and with probabilities attached to the edges. A Bayesian network is specified by the training run and is then
used to perform inference maximizing the likelihood [14]. A naive Bayes classifier is based on an application
of Bayes’ theorem and the naive assumption that the variables are independent of each other. The classifier is
trained and a parameter estimation of the probability model, i.e., the independent features probability model,
is performed using the maximum likelihood method. A threshold-based classifier puts an upper limit on a prob-
ability output through a distribution classifier such that the misclassification error is minimized [41]. A decision
stump classifies the data according to a threshold value obtained by maximizing a likelihood function and usually
utilizes a boosting algorithm [34]. K-star30 and LWR (locally weighted regression) are instance-based classi-
fiers. In contrast to neural networks or decision trees, which use training to build global representations of their
target functions, instance-based learning constructs query-specific local models, fitting the training instances in
a neighborhood around the query point. K-star is an improved version of the k-nearest-neighborhoods method,
and LWR assigns instance-based weights to be used in linear regression [6]. IB1 is listed as a lazy classifier,
in the sense that it stores the training instances and does not really do any work until the classification time.
IB1 is an instance based learner. It finds the training instance closest in Euclidean distance to the given test
instance. IBk is a k-nearest-neighbor classifier that uses the same idea [41].

4. Data and results

4.1. Molecular dynamics simulation

An energy minimization and MD simulation with NAMD software was performed for the refinement of
atom coordinates of SIRT6 (pdb id: 3K35) as described previously to bring the 3D structure of the SIRT6
at physiological conditions [2, 5]. This procedure is required to have a before docking calculation in order to
calculate binding energies at realistic conditions. The simulation showed a slight increment after minimization
up to approximately 0.4 ns, and then no significant deviations for the rest of the simulation were observed,
which demonstrated the convergence of RMSD and the stability of the given structure within 1 ns time period.
The final structure at the end of the MD simulation was employed for molecular docking calculations.
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Table 1. Significance test results for the 6 most significant descriptors.

Descriptor Class Sample var. p value
all data 0.005

FMF low-BFE class 0.003 0.015
high-BFE class 0.004 0.077

all data 0.274
maxwHBa low-BFE class 0.033 0.001

high-BFE class 0.498 0.994
all data 0.019

minHaaCH low-BFE class 0.002 0.001
high-BFE class 0.033 0.989

all data 0.115
SHBd low-BFE class 0.105 0.371

high-BFE class 0.127 0.664
all data 1.969

SP-6 low-BFE class 1.358 0.077
high-BFE class 0.806 0.001

all data 0.038
SC-5 low-BFE class 0.032 0.249

high-BFE class 0.034 0.317

4.2. MILP-HB classification and significance analysis

In order to start the classification of the molecules based on the high- or low-BFE values, we prepared a
training dataset. First, virtual screening was performed for randomly chosen 1000 compounds from 4M library
to calculate BFE values. Secondly, 100 compounds (50 of which have BFE values above the threshold value and
the other 50 have BFE values below the threshold value) were randomly chosen and used as the training set for
MILP-HB classification. BFE of NAD+ (−8.3 kcal/mol), which is a substrate of SIRT6, was used as a threshold
to classify molecules as low-BFE (above −8.3 kcal/mol) or high-BFE (below −8.3 kcal/mol) sets. Finally, the
15 molecular descriptors with the highest regression coefficient of the PLSR model were added to the ‘15 most
significant descriptor’ set, and the first 6 were used as input for the initial classification by MILP-HB. Initial
classification by MILP-HB resulted in 83.55% accuracy for low- and high-BFE sets.

The following step of the training MILP-HB classification is the significance analysis. It is possible to improve
the prediction accuracy by replacing the least informative descriptors in the 6 most significant descriptor set
used in MILP-HB with the strongest descriptors of the 15 most significant descriptor set. The impact of each
descriptor was evaluated by comparing the within class variance of descriptor values with the variance of the
whole set of molecules.

From a strong descriptor, we expect to have low p values both for low- and high-BFE classes. In the significance
analysis, we compared the p values of the 6 most significant descriptor set with the p values of the remaining 9
significant descriptor set and replaced the weak descriptors with the stronger ones. MILP-HB was implemented
with the updated descriptor set. If there was any improvement in classification accuracy, we continued with the
new set, otherwise we stopped the iteration. Our initial classification with 10-fold cross validation provided the
accuracy of 83.55%. In order to check if we could find stronger descriptors to get higher accuracy, we calculated
p values both for the best 6 and remaining 9 descriptor sets as shown in Tables 1 and 2, respectively.

The p values of the descriptors SHBd and SC-5 among the 6 most significant descriptors are higher than 0.2
for both low- and high-BFE classes. Especially for the high-BFE class, p values are as high as 0.664 and 0.317
for SHBd and SC-5 respectively. In order to increase the classification accuracy, we replaced them with the ones
in the remaining 9 significant descriptors. In this set, descriptors BCUTp-1I, nAtomP and ndssC have p values
close to or less than 0.1 for high-BFE class which means that they may have higher classification power for high-
BFE class than the descriptors SHBd and SC-5. Since the p value of BCUTp-1I for low-BFE class is very high,



CLASSIFICATION OF SMALL MOLECULE INHIBITORS OF SIRTUIN6 395

Table 2. Significance test results for the remaining 9 significant descriptors.

Descriptor Class Sample var. p value

all data 0.005

VC-5 low-BFE class 0.005 0.521

high-BFE class 0.005 0.439

all data 0.072

BCUTp-1l low-BFE class 0.103 0.932

high-BFE class 0.044 0.025

all data 32.075

nAtomP low-BFE class 32.634 0.539

high-BFE class 23.330 0.107

all data 0.005

minsCH3 low-BFE class 0.005 0.381

high-BFE class 0.005 0.327

all data 4.155

C1SP3 low-BFE class 3.844 0.389

high-BFE class 4.108 0.493

all data 1.291

nHBint2 low-BFE class 1.111 0.286

high-BFE class 1.478 0.720

all data 0.007

ATSc2 low-BFE class 0.006 0.293

high-BFE class 0.008 0.690

all data 1.376

ndssC low-BFE class 1.610 0.747

high-BFE class 1.020 0.121

all data 0.396

MDEN-23 low-BFE class 0.453 0.714

high-BFE class 0.347 0.307

Table 3. Selected 6 PaDEL descriptors for MILP-HB classification.

Descriptor Description Descriptor Java Class
SC-5 Simple cluster, order 5 ChiCluster
SP-6 Simple path, order 6 PaDELChiPath
SHBd Sum of E-States for strong H bond donors Electrotop.StateAtomType

minHaaCH Min. atom-type H E-State Electrotop.StateAtomType
maxwHBa Max. E-States for weak H bond acceptors Electrotop.StateAtomType

FMF Complexity of a molecule FMF

we discarded it and formed a new descriptor set as an input for MILP-HB by replacing SHBd and SC-5 with
nAtomP and ndssC. The new descriptor set provided lower classification accuracy than the initial descriptor
set. Hence, the classification algorithm terminates. We concluded that the 6 most significant descriptors that
we selected by using PLSR provide the highest classification accuracy with the MILP-HB method. See Table 3
for a description of the selected PaDEL molecular descriptors.

4.3. Comparison of accuracy with current classification tools in use

We used the 6-best descriptor set and conducted classification analysis 10 times with the formerly selected
100-molecule set. Table 4 summarizes the average accuracies and standard deviations of both WEKA classifiers
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Table 4. Comparison of MILP-HB with WEKA classifiers by 10-fold cross validation.

Classification Method Average Accuracy (%) Std. Dev.
MILP-HB 83.55 1.20
BayesNet 82.10 1.20
SMO 81.70 0.67
Logit Boost 79.90 1.29
NBTree 79.30 1.77
Decision Stump 78.30 2.06
Threshold 77.70 3.97
JRip 76.80 1.62
OneR 76.30 3.09
NaiveBayes 75.40 1.35
LWL 75.40 2.37
K-star 74.70 1.57
IBk 72.80 0.92

and the MILP-HB method. The MILP-HB method provided the highest accuracy for classifying the molecules
as having high- and low-BFE values. Among the WEKA classifiers, BayesNet and SMO provided the highest
classification accuracies that were higher than 80%. The MILP-HB method is the most reliable of all, having
the same standard deviation with Bayesnet classifier but providing a higher accuracy level. This result indicates
that MILP-HB is the most accurate classifier compared to classification methods available in WEKA that can
be combined with virtual screening for the structure-based drug design.

4.4. Virtual screening and candidate inhibitors of sirt6

The docking software AutoDock Vina (version 1.1.2) was employed for molecular docking calculations. This
version of AutoDock Vina predicts the optimal conformations of the receptor-ligand complex and reports binding
affinity scores by assuming a structure model with a rigid receptor (protein) and a flexible ligand.

NAD+ is used as a cofactor by SIRT6 to transfer an acetyl group from its substrate proteins to the ADP-
ribose moiety of NAD+; this cleaves the coenzyme and releases nicotinamide and O-acetyl-ADP-ribose [13].
Therefore, NAD+ binding pocket (active site) was selected as the target region for virtual screening. Then, the
library of 2.4 million compounds were screened based on the BFEs. Top 10 hit compounds were determined and
reported as the candidate inhibitors of SIRT6. BFEs of the selected candidates were in the range of −11.2 to
−11.9 kcal/mol which were quite low compared with BFEs of SIRT6 true substrate NAD+ (−8.3 kcal/mol). Last,
top 10 hits were further analyzed according to important characteristics such as docking positions, hydrogen
bonding interactions with the residues at the NAD+ binding site and close proximity, van der Waals interactions,
exposed surface area, and pocket occupancy. Their interactions with the residues at the NAD+ binding site are
listed in Table 5 (see Tab. A.1 in the Appendix for molecular structure and formula of the compounds).

Virtual screening and detailed docking analysis revealed that critical residues which interact with NAD+ are
Asp61, Phe62, Arg63, Trp69, Trp186, Ser214, Gln216 and Ile217. The SIRT6-NAD+ complex exhibits several
polar interactions through residues Asp61, Arg63, Trp186, Gln216 and Ile217 which stabilizes the ligand-protein
interaction (Fig. 3). Detailed analysis showed that the nicotinamide ring of NAD+ makes hydrogen bonds with
Arg63 and Gln216. Additionally, compounds A1, A4, A9 and A10 were predicted to form a number of hydrogen
bonds with different residues in the NAD+ binding active site, as observed in the SIRT6-NAD+ complex.
Namely, such interactions were predicted to occur with Arg63 and Gln216. Moreover, the adenine part of
NAD+ was predicted to form a pi-pi stacking interaction with Trp186 which also occurs with compounds A1,
A2 and A6. Additionally, compound A2 exhibits another pi-pi stacking with Phe62. Interestingly, compounds
A3, A7 and A8 do not make any polar interactions with SIRT6 but exhibit van der Walls interactions with
residues Phe62, Trp69 and Trp186.
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Table 5. BFEs and interacting residues of the top 10 hit compounds.

ID BFE (kcal/mol) Interacting Residues
NAD+ –8.30 Asp61, Phe62, Arg63, Trp69, Trp186, Ser214, Gln216, Ile217
A1 –11.60 Lys13, Asp61, Phe62, Arg63, Trp69, Hsd131, Trp186, Gln216
A2 –11.30 Arg63, Phe62, Trp69, Hsd131, Trp186, Ser214, Gln216
A3 –11.40 Phe62, Arg63, Trp69, Leu184, Asp185, Trp186, Thr213, Gln216
A4 –11.90 Asp12, Phe62, Arg63, Trp69, Val113, Trp186, Ser214, Gln216
A5 –11.30 Asp12, Asp61, Phe62, Arg63, Trp69, Val113, Trp186, Gln216
A6 –11.30 Lys13, Asp61, Phe62, Arg63, Trp69, Val113, Trp186, Gln216
A7 –11.40 Asp12, Phe62, Arg63, Trp69, Gln111, Trp186
A8 –11.60 Asp12, Phe62, Arg63, Trp69, Met155, Ile183, Trp186, Gln216
A9 –11.30 Asp12, Phe62, Arg63, Trp69, Val113, Leu184, Trp186, Gln216
A10 –11.80 Lys13, Phe62, Arg63, Trp69, Val113, Trp186, Ser214, Gln216

Figure 3. Interactions between NAD+ and SIRT6: NAD+ is shown as grey sticks, amino acid
residue belonging to the SIRT6 are shown as green sticks (Asp61, Arg63, Trp186, Gln216 and
Ile217). Hydrogen bonds are represented as black dotted lines.

5. Conclusion

Virtual screening has become one of the major components in the structure-based drug discovery approach
within the last few years. When the 3D structure of the protein is known, structure-based screening is preferred.
However, virtual screening of chemical libraries with millions of compounds requires a lot of computing and
data analysis time. Our motivation behind this study was to filter the initial small molecule libraries which
contain compounds that may be deemed unsuitable for screening against a particular target protein by using
a classification algorithm, MILP-HB, in combination with partial least squares regression. The effectiveness of
the approach was illustrated on a target protein SIRT6. The availability of the crystal structure of SIRT6 makes
structure-based drug design a viable approach to discover novel molecules that could inhibit the activity of
the SIRT6 which plays an important role in metabolic disorders such as diabetes, in aging-related degenerative
processes, and in cancer.

We constructed a PLSR model to select the 15 most informative descriptors among 1875 descriptors of PaDEL
and by applying significance analysis we verified that the best 6 descriptor set provides the highest accuracy.
We compared the average accuracies of MILP-HB and WEKA classifiers to justify the classification power of
MILP-HB. The results indicated that the proposed approach outperformed other approaches reported in the



398 M. TARDU ET AL.

literature with 83.55% accuracy using the common 6 molecular descriptors (SC-5, SP-6, SHBd, minHaaCH,
maxwHBa, FMF). As a final step, we constructed a MILP-HB classifier based on the whole set of 100 molecules
so as to classify the molecules among the set of 4 million small molecules library to have high and low-BFE values
and discard the high-BFE class of molecules for further consideration. 1.6 million molecules were classified as
high-BFE and constitute 40% of the whole set. This further elimination of molecules by MILP-HB has provided
us to reduce the computational time for virtual drug screening that requires a lot of time for the docking of
millions of compounds. The remaining 2.4 million compounds in the low-BFE class were docked to SIRT6.
Due to lack of any known inhibitors of SIRT6 in the literature, top 10 hit compounds were determined and
reported as the candidate inhibitors of SIRT6. BFEs of the selected candidates were in the range of −11.2 to
−11.9 kcal/mol. We concluded that the values of descriptors SC-5, SP-6, SHBd, minHaaCH, maxwHBa, FMF
of an upcoming molecule suffice to predict its BFE class as high or low for SIRT6.

Appendix A

Table A.1. Molecular structure and formula of the compounds.

Compound ID Formula Structure

A1 C28H24N2O5

A2 C26H23N3O4

A3 C23H19NO5

A4 C19H17NO4

A5 C21H16O4

A6 C26H21N3O3

A7 C27H22N2O5

A8 C27H19NO4

A9 C21H16Cl2N4O3

A10 C28H20N2O6
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