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NEW CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED
OPTIMIZATION

Badreddine Sellami
1

and Yacine Chaib
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Abstract. In this paper, a new conjugate gradient method is proposed for large-scale unconstrained
optimization. This method includes the already existing three practical nonlinear conjugate gradient
methods, which produces a descent search direction at every iteration and converges globally provided
that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the
efficiency of the new method, which confirms the promising potentials of the new method.
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1. Introduction

Consider the unconstrained optimization problem

min f (x) , x ∈ Rn, (1.1)

where f is a smooth function and its gradient is available. Conjugate gradient methods are very important
methods for solving (1.1), especially for large scale problems, which have the following form

xk+1 = xk + αkdk, (1.2)

where xk is the current iterate point, αk is a positive scalar and called the step length which is determined by
some line search, and dk is the search direction generated by the rule

dk =
{−gk for k = 1;
−gk + βkdk−1 for k ≥ 2,

(1.3)

where gk = ∇f(xk) is the gradient of f at xk, and βk is a scalar. The standard Wolfe conditions [21, 22] are
given by

f(xk + αkdk) − f(xk) ≤ δαkgT
k dk (1.4)

g(xk + αkdk)T dk ≥ σgT
k dk, (1.5)
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where 0 < δ < σ < 1. Also, the strong Wolfe conditions consist of (1.4) and
∣∣g(xk + αkdk)T dk

∣∣ ≤ −σgT
k dk, (1.6)

the scalar βk is chosen so that the method (1.2)–(1.3) reduces to the linear conjugate gradient method in the
case when f is convex quadratic and exact line search (g(xk + αkdk)T dk = 0) is used.

For general functions, however, different formula for scalar βk result in distinct nonlinear conjugate gradient
methods (see [6, 10, 13, 14, 17, 20]) . The best-known formulas for βk are the following Polak–Ribière–Polyak
(PRP)[16,17] and Hestenes–Stiefel (HS) [13] formulas, which are given by

βPRP
k =

gT
k yk−1

‖gk−1‖2 (1.7)

βHS
k =

gT
k yk−1

dT
k−1yk−1

, (1.8)

respectively, where ‖.‖ means the Euclidean norm and yk−1 = gk − gk−1. The PRP and HS methods with the
exact line search are not globally convergent; see the counter example of Powell [18]. Recently, Dai and Yuan
(DY) [6] proposed a nonlinear conjugate gradient method, which has the form (1.2) and (1.3) with

βDY
k =

‖gk‖2

dT
k−1yk−1

· (1.9)

A remarkable property of the DY method is that it provides a descent search direction at every iteration and
converges globally provided that the step size satisfies the Wolfe conditions (1.4) and (1.5). By direct calculation,
we can deduce an equivalent form for βDY

k , namely

βDY
k =

gT
k dk

gT
k−1dk−1

· (1.10)

In [8], Dai and Yuan proposed a family of globally convergent conjugate methods, in which

βk =
‖gk‖2

λ ‖gk−1‖2 + (1 − λ)(dT
k−1yk−1)

, (1.11)

where λ ∈ [0, 1] is a parameter, and proved that the family of methods using line searches that satisfy (1.4) and

σ1g
T
k dk ≤ g(xk + αkdk)T dk ≤ −σ2g

T
k dk, (1.12)

converges globally if the parameters σ1, σ2, and λ are such that

σ1 + σ2 ≤ λ−1. (1.13)

In addition, Sellami et al. [19] proposed a new two-parameter family of conjugate gradient methods, in which

βk =
(1 − λk) ‖gk‖2 + λk(−gT

k dk)
(1 − λk − μk) ‖gk−1‖2 + (λk + μk)(−gT

k−1dk−1)
, (1.14)

where λk ∈ [0, 1] and μk ∈ [0, 1 − λk] are parameters, and proved that the two-parameter family can ensure a
descent search direction at every iteration and converges globally under line search condition (1.4) and (1.12)
where the scalars σ1 and σ2 satisfy the condition

σ1 + σ2 ≤ 1 + μkσ1

1 − λk
.· (1.15)
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Further in [7], Dai and Yuan proposed a three-parameter family of conjugate gradient methods whose βk is
defined as

βk =
(1 − λk) ‖gk‖2 + λkgT

k yk−1

(1 − μk − ωk) ‖gk−1‖2 + μkdT
k−1yk−1 − ωkdT

k−1gk−1

, (1.16)

where λk ∈ [0, 1] , μk ∈ [0, 1] and ωk ∈ [0, 1 − μk] are parameters. With Powell’s restart criterion, namely,

gT
k gk−1 ≤ ξ ‖gk‖2

, (1.17)

where ξ > 0 is some positive constant, which produces a descent search direction at every iteration and converges
globally provided that the line search satisfies Wolfe conditions (1.4) and (1.5). Moreover, a well-established
survey of development of different versions of nonlinear conjugate gradient methods, with special attention
to global convergence properties, is presented by Hager and Zhang [12]. This family of algorithms includes a
lot of variants, well known in the literature, with important convergence properties and numerical efficiency.
Motivated by the good numerical performances of PRP method and the nice global-convergence properties of
DY and HS methods, we can combine the previous methods into one unified method to ensure a descent search
direction at every iteration and converges globally under the Wolfe line search conditions this would allows us to
obtain the best numerical results that can outperform the classical methods. This paper gives a new conjugate
gradient method for large-scale unconstrained optimization. We observe that the formulas (1.7) and (1.8) share
the same numerators meanwhile (1.8) and (1.9) share the same denominators. We can use combinations of these
numerators and denominators to obtain the following new formula which is given by

β∗
k =

λk ‖gk‖2 + (1 − λk)gT
k yk−1

(1 − λk − μk) ‖gk−1‖2 + (λk + μk)(yT
k−1dk−1)

, (1.18)

where λk ∈ [0, 1] and μk ∈ [0, 1 − λk] are parameters.
We see that the above formula for β∗

k is special form of

β∗
k =

φk

φ′
k−1

, (1.19)

where φk satisfies that
φk = λk ‖gk‖2 + (1 − λk)gT

k yk−1, (1.20)

and
φ′

k−1 = (1 − λk − μk) ‖gk−1‖2 + (λk + μk)(yT
k−1dk−1). (1.21)

It is clear that the formula (1.21) is a generalization of the three previous methods.
The rest of this paper is organized as follows. Some preliminaries are given in the next section. Section 3

provides two convergence theorems for the general method (1.2)–(1.3) with β∗
k defined by (1.19). Section 4

includes the main convergence properties of the new method with Wolfe line search. The preliminary numerical
results are described in Section 5. Conclusions and discussions are made in the last section.

2. Preliminaries

For convenience, we assume that gk �= 0 for all k, for otherwise a stationary point has been found. We give
the following basic assumption on the objective function.

Assumption 2.1.
(i) f is bounded below on the level set £ = {x ∈ Rn; f(x) ≤ f(x1)};
(ii) In some neighborhood N of £, f is differentiable and its gradient g is Lipschitz continuous, namely, there
exists a constant L > 0 such that

‖g(x) − g(x̃)‖ ≤ L ‖x − x̃‖ , for all x, x̃ ∈ N . (2.1)
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Some of the results obtained in this paper depend also on the following assumption.

Assumption 2.2. The level set £ = {x ∈ Rn; f(x) ≤ f(x1)} is bounded.
If f satisfies Assumptions 2.1 and 2.2, there exists a positive constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ £. (2.2)

The conclusion of the following lemma, often called the Zoutendijk condition, is used to prove the global
convergence of nonlinear conjugate gradient methods. It was originally given in [23].

Lemma 2.3. Suppose Assumption 2.1 holds. Let {xk}be generated by (1.2) and dk satisfy gT
k dk < 0. If αk is

determined by the Wolfe line search (1.4) and (1.5), then we have

∑
k≥1

(gT
k dk)2

‖dk‖2 < ∞. (2.3)

In the latter section, we need the following lemmas, the first of which is derived from [2], whereas the second is
self-evident and will be used for many times.

Lemma 2.4. Suppose that {ai} and {bi} are positive number sequences. If

∑
k≥1

ak = ∞, (2.4)

and there exists two constants c1 and c2 such that for all k ≥ 1,

bk ≤ c1 + c2

k∑
i=1

ai, (2.5)

then we have that ∑
k≥1

ak

bk
= ∞. (2.6)

Lemma 2.5. Consider the following 1-dimensional function,

ρ(t) =
a + bt

c + dt
, t ∈ R1, (2.7)

where a, b, c, and d �= 0are given real numbers. If

bc − ad > 0, (2.8)

ρ(t) is strictly monotonically increasing for t <
−c

d
and t >

−c

d
. Otherwise, if

bc − ad < 0, (2.9)

ρ(t) is strictly monotonically decreasing for t <
−c

d
and t >

−c

d
.
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3. Algorithm

Now we can present a new descent conjugate gradient method, namely NDCG method, as follows

Algorithm 3.1.

Step 0: Given x1 ∈ Rn, set d1 = −g1, k = 1. If g1= 0, then stop.
Step 1: Find αk > 0 satisfying the Wolfe conditions (1.4) and (1.5).
Step 2: Let xk+1 = xk + αkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3: Compute β∗

k+1 by the formula (1.21) and generate dk+1 by (1.3).
Step 4: Set k := k + 1, go to Step 1.

In order to establish the global convergence result for the Algorithm 3.1, we will impose the following basic
lemma.

For simplicity, we define

rk = −gT
k dk

φk
, (3.1)

and

tk =
‖dk‖2

φ2
k

· (3.2)

Lemma 3.2. For the method (1.2) and (1.3) with β∗
k defined by (1.19),

tk = 2
k∑

i=1

ri

φi
−

k∑
i=1

‖gi‖2

φ2
i

, (3.3)

holds for all k ≥ 1.

Proof. Since d1 = −g1, (3.3) holds for k = 1. For i ≥ 2, it follows from (1.3) that

di + gi = β∗
i di−1. (3.4)

Squaring both sides of the above equation, we get that

‖di‖2 = −‖gi‖2 − 2gT
i di + β∗2

i ‖di−1‖2
. (3.5)

Dividing (3.5) by φ2
i and applying (1.19) and (3.2),

ti =
‖di−1‖2

φ′
i−1

2
+ 2

ri

φi
− ‖gi‖2

φ2
i

· (3.6)

Using (1.20)–(1.21) and since, d1 = −g1 we get that

‖d1‖2

φ′
1
2

=
‖g1‖2

‖g1‖4 =
‖g1‖2

φ2
1

· (3.7)

Summing the above expression (3.6) over i, we obtain

tk = t1 + 2
k∑

i=2

ri

φi
−

k∑
i=2

‖gi‖2

φ2
i

· (3.8)

Since d1 = −g1 and t1 =
‖g1‖2

φ2
1

, the above relation is equivalent to (3.3). So (3.3) holds for k ≥ 1. �
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Theorem 3.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2)–
(1.3) and (1.19), if for all k, dk satisfy gT

k dk < 0 and αk is determined by the Wolfe line search (1.4) and (1.5),
and if ∑

k≥1

r2
k = ∞, (3.9)

then we have
lim

k−→∞
inf ‖gk‖ = 0. (3.10)

Proof. (1.3) can be re-written as
gT

i di + ‖gi‖2 = β∗
i gT

i di−1. (3.11)

Squaring both sides of the above equation, we get that

−2gT
i di − ‖gi‖2 ≤ (gT

i di)2

‖gi‖2 , (3.12)

dividing (3.12) by φ2
i and applying (3.3)

tk ≤
k∑

i=1

r2
i

‖gi‖2 · (3.13)

We proceed by contradiction. Assume that

lim
k−→∞

inf ‖gk‖ �= 0. (3.14)

Then there exists a positive constant γ such that

‖gk‖2 ≥ γ, for all k. (3.15)

We can see from (3.13) that,

tk ≤ 1
γ2

k∑
i=1

r2
i . (3.16)

The above relation, (3.9) and Lemma 2.4, yield

∑
i≥1

r2
i

ti
= ∞. (3.17)

Thus, by the definition (3.1) and (3.2), we know that (3.17) contradicts (2.3). This concludes the proof. �

Theorem 3.4. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2)–
(1.3) and (1.19), if for all k, dk satisfy gT

k dk < 0 and αk is determined by the Wolfe line search (1.4) and (1.5),
and if ∑

k≥1

‖gk‖2

φ2
k

= ∞, (3.18)

then we have
lim

k−→∞
inf ‖gk‖ = 0. (3.19)
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Proof. Noting that
tk ≥ 0 for all k, (3.20)

we can get from (3.3)

2
k∑

i=1

ri

φi
≥

k∑
i=1

‖gi‖2

φ2
i

· (3.21)

Direct calculation show that,

4
k∑

i=1

r2
i

‖gi‖2 ≥ 4
k∑

i=1

ri

φi
− 2

k∑
i=1

‖gi‖2

φ2
i

≥ 0. (3.22)

Or equivalently,

4
k∑

i=1

r2
i

‖gi‖2 ≥ 4
k∑

i=1

ri

φi
−

k∑
i=1

‖gi‖2

φ2
i

≥
k∑

i=1

‖gi‖2

φ2
i

· (3.23)

Thus if (3.18) holds, we also have that ∑
k≥1

(gT
k dk)2

‖gk‖2
φ2

k

= ∞. (3.24)

Because (3.13) still holds, it follows from (3.24), the definition of rk and Lemma 2.4, that

∑
k≥1

(gT
k dk)2

‖gk‖2 ‖dk‖2 = ∞. (3.25)

The above relation and Lemma 2.3 clearly give (3.10). This completes our proof. �

Thus we have proved two convergence theorems for the general method (1.2) and (1.3) with β∗
k defined

by (1.19).
It should also be noted that the sufficient descent condition, namely

gT
k dk ≤ −c ‖gk‖2

, (3.26)

where c is a positive constant, is not invoked in Theorems 3.2 and 3.3. The sufficient descent condition (3.26)
was often used or implied in the previous analysis of conjugate gradient methods (see [1,2,11]). This condition
has been relaxed to the descent condition (gT

k dk < 0) in the convergence analysis [6] of the FR method and the
convergence analysis [9] of any conjugate gradient method.

4. Global convergence of new conjugate gradient method

In this section, we establish some global convergence of the new method (1.19) under certain line searches
conditions.

We consider the method (1.2) and (1.3) with φk satisfying

φk = λk ‖gk‖2 + (1 − λk)gT
k yk−1, (4.1)

where λk ∈ [0, 1]. (4.1) and (1.3) show that

gT
k dk = −‖gk‖2 + β∗

kgT
k dk−1

= −‖gk‖2 +
λk ‖gk‖2 + (1 − λk)gT

k yk−1

(1 − λk − μk) ‖gk−1‖2 + (λk + μk)yT
k−1dk−1

gT
k dk−1. (4.2)
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The above relation imply that

gT
k dk = − (1 − λk − μk) ‖gk−1‖2 − λkgT

k dk−1 − (1 − 2λk − μk)yT
k−1dk−1

(1 − λk − μk) ‖gk−1‖2 + (μk + λk)yT
k−1dk−1

‖gk‖2
. (4.3)

Thus by (4.2), we deduce an equivalent form of β∗
k,

β∗
k =

λkgT
k−1dk−1 + yT

k−1dk−1

(1 − λk − μk) ‖gk−1‖2 + μk(−dT
k−1gk−1) + λk(yT

k−1dk−1)
‖gk‖2

gT
k dk−1

· (4.4)

Substituting (4.3) into (4.1), we obtain that

φk =
λkgT

k−1dk−1 + yT
k−1dk−1

gT
k dk−1

‖gk‖2
. (4.5)

By this relation, we can show an important property of φk under Wolfe line searches and hence obtain the global
convergence of the new method (4.4) under some assumptions.

Theorem 4.1. Suppose that x1 is a starting point for which Assumption 2.1 and 2.2 hold. Consider the method
(1.2)–(1.3)–(1.19) and (4.1), if gT

k dk < 0 for all kand αk is computed by the Wolfe line search (1.4) and (1.5),
then we have

φk

‖gk‖2 ≤ (1 − λk − σ)−1. (4.6)

Further, the method converges in the sense that

lim
k−→∞

inf ‖gk‖ = 0. (4.7)

Proof. Since (1.5), we have that
g(xk + αkdk)T dk ≥ σgT

k dk. (4.8)

By direct calculation, it shows that

dT
k−1yk−1 ≥ (1 − σ)(−gT

k−1dk−1). (4.9)

Dividing (4.5) by ‖gk‖2 and applying (4.9) implies the truth of (4.6). Therefore, by (2.2) and (4.9) we have that

∑
k≥1

‖gk‖2

φ2
k

= ∞. (4.10)

Thus (3.10) follows from Theorem 3.3. �

In the following, we can show that, for any λk ∈ (0, 1], the method (1.2)–(1.3)–(1.19) and (4.1) ensures the
descent property of each search direction and converges globally under line search condition (1.4) and (1.12)
where the scalars σ1 and σ2 satisfy certain condition. For this purpose, we define

rk = − gT
k dk

‖gk‖2 , (4.11)

and

lk =
gT

k+1dk

gT
k dk

, (4.12)
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it is obvious that dk is a descent direction if and only if rk > 0. For The above relation, (4.3) and (4.12), we
can write

rk =
(1 − λk − μk) − [μk(1 − lk−1) + λk(2 − lk−1) + lk−1 − 1] rk−1

(1 − λk − μk) + [(μk + λk)(1 − lk−1)] rk−1
· (4.13)

The following theorem indicates that, if αk is computed by the Wolfe line search (1.4) and (1.12), then the
search direction dk satisfies the descent property.

Theorem 4.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2)–
(1.3)–(1.19) and (4.1), where λk ∈ [0, 1), μk ∈ [0, 1 − λk] and αk satisfies the line search conditions (1.4)

and (1.12) with
1
2
≤ σ1 ≤ 1 and σ2 > 0, if

σ1 − σ2 ≤ 2(1 − μk) − 3λk

1 − λk − μk
, (4.14)

then we have for all k ≥ 1
0 < r̄k < (1 − σ1)−1. (4.15)

Proof. The right hand side of (4.13) is a function of λk, μk, lk−1 and rk−1, which is denoted as
h(λk, μk, lk−1, r̄k−1). We prove (4.15) by induction. Noting that d1 = −g1 and hence r̄1 = 1, we see that (4.15)
is true for k = 1. We now suppose that (4.15) holds for k − 1, namely,

0 < r̄k−1 < (1 − σ1)−1. (4.16)

It follows from (1.12)
−σ2 ≤ lk−1 ≤ σ1. (4.17)

Then by Lemma 2.5, the fact that λk ∈ (0, 1] and the fact that μk ≥ 0, we get that

r̄k ≤ h(λk, μk, σ1, r̄k−1) < h(λk, μk, σ1, (1 − σ1)−1)

= 1 +
1 − λk − σ1

(1 − 2λk − 2μk)(1 − σ1)

≤ 1 +
1 − σ1

(1 − 2λk − 2μk)(1 − σ1)

≤ 1 +
σ1

1 − σ1
= (1 − σ1)−1. (4.18)

On the other hand, by Lemma 2.5 and relation (4.14), we also have that

r̄k ≥ h(λk, μk,−σ2, r̄k−1) > h(λk, μk,−σ2, (1 − σ1)−1)

= 1 +
1 + σ2 − λk

(1 − σ1)(1 − λk − μk) − (μk + λk)(1 + σ2)
≥ 0. (4.19)

Thus (4.15) is true for k, by induction, (4.15) holds for k ≥ 1, and hence the descent property

gT
k dk < 0, ∀k

holds, as long as gk �= 0. �
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By Theorem 4.2, we can immediately give the following convergence result for new conjugate gradient
method (1.19).

Theorem 4.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the method (1.2)–
(1.3)–(1.19) and (4.1), where λk ∈ [0, 1), μk ∈ [0, 1 − λk]. If the step length αk is computed by the Wolfe line

search (1.4) and (1.12) with
1
2
≤ σ1 ≤ 1 and σ2 > 0, and if the scalars σ1 and σ2 satisfy the condition (4.14),

then the method converges in the sense that,

lim
k−→∞

inf ‖gk‖ = 0.

Proof. To show the truth of (3.10), by Theorem 3.2, it suffices to prove that

max {r̄k−1, r̄k} ≥ c1, (4.20)

for all k ≥ 2 and some constant c1 ≥ 0. In fact, if

r̄k−1 ≤ 1, (4.21)

by Lemma 2.5, the fact that λk ∈ (0, 1] and the fact that μk ≥ 0, we can get that

r̄k ≥ h(λk, μk,−σ2, 1) Δ= c2. (4.22)

Since c2 ∈ (0, 1) , we then obtain
max {r̄k−1, r̄k} ≥ c2, (4.23)

for all k ≥ 2. By the definition (3.1) of rk and relation (4.1), we have that

rk =
r̄k

1 + (1 − λk)ηk
, (4.24)

where ηk = −gT
k gk−1

‖gk‖2 . Which, with (4.23) and Lemma 2.5, implies that (4.20) holds with c1 = c2. This completes

our proof. �

Thus we have some general convergence results achieved for the new method (4.4). It is easy to see from (4.4)
that the new method include the three nonlinear conjugate gradient methods mentioned above. Letting λk ≡ 0
and μk ≡ 0, from Theorem 4.2, we again obtain the convergence result of the PRP method in [16, 17]. For the
case when λk ≡ 1 and μk ≡ 0 the method is proved to generate a descent search direction at every iteration and
converges globally provided that the stepsize satisfies the Wolfe conditions (1.4) and (1.5) (see [5]). If λk ≡ 0 and
μk ≡ 1, then the method ensures a descent direction for general functions and is proved to global convergence
under strong Wolfe line search (1.4) and (1.6) of the method HS (see [13]).

5. Numerical experiments

In this section, we report some numerical results obtained with the new proposed conjugated gradient method.
The code is written in Fortran and compiler settings on the PC machine (AMD, 1.61 GHZ, 960 M memory)
with Windows operation system. There are a number of 68 large-scale unconstrained optimization test problems
in generalized or extended from CUTE [3, 4] collection. For each test function we have taken seven numerical
experiments with the number of variables increasing as n = 1000, 2000, 3000, 4000, 5000, 8000, 10 000.
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Figure 1. Performance files based on iterations.

We adopt the performance profiles by Delan and Moré [15] to compare the performance between the following
four conjugate gradient algorithms

– PRPSW : the PRP method with the strong Wolfe conditions, where δ = 10−2 and σ = 0.1.
– PRPSW

+ : the PRP method with nonnegative values of βk = max
{
0, βPRP

k

}
, proposed by Powell [18] and

analysed by Gilbert and Nocedal [11], under the strong Wolfe conditions, where δ = 10−2 and σ = 0.1.
– NDCGSW : Algorithm 3.1 with the Wolfe conditions (1.4) and (1.12), where the scalars σ1 and σ2 satisfy

the condition (4.14), in addition, δ = 10−2, σ1 = σ2 = σ = 0.1, λk = λ = 0.5 and μk = μ = 0.4.
– NDCGW : Algorithm 3.1 with the standard Wolfe conditions, where δ = 10−2, σ = 0.1, λk = λ = 0.5 and

μk = μ = 0.5

During our experiments, the strategy for the initial step length is to assume that the first-order change in the
function at iteration xk will be the same as that obtained at the previous step [17]. In other words, we choose
the initial guess α0 satisfying

α0 = αk−1
Ψk−1

Ψk
∀k > 1,

where Ψk = gT
k dk, when k = 1, we choose α0 =

1
‖g(x1)‖ . In the case when an uphill search direction does occur,

we restart the algorithm by setting dk = −gk, but this case never occurs for NDCGSW and NDCGW . We stop
the iteration if the inequality ‖gk‖∞ ≤ 10−5, where ‖.‖∞ is the maximum absolute component of a vector.
Figures 1–3 give performance profiles of the four methods for the number of iterations, function and gradient
evaluations, and the CPU time, respectively.

From the above three figures, we can see that all the methods are efficient. The new method NDCG performs
better than the PRPSW and PRPSW

+ methods, for the given test problems. These obtained preliminary results
are indeed encouraging.
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Figure 2. Performance files based on function and gradient evaluations.

Figure 3. Performance files based on CPU time.
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In the performance profile plot, the top curve corresponds to the method that solved the most problems in
time that is within a factor τ of the best time. The percentage of the test problems for which a method is
reported as the fastest is given on the left axis of the plot. The right side of the plot gives the percentage of the
test problems that were successfully solved by each of the methods. In essence, the right side is a measure of
the algorithm’s robustness.

In Figure 1, we compare the performance based on number of iterations. Since the top curve in Figure 1
corresponds to NDCGSW , this algorithm is clearly the fastest for this set of 68 test problems. In particular,
NDCGSW is fastest for about 43% (29 out of 68) of the test problems, and it ultimately solves 95% of the
test problems. Notice that relative to the number of iterations, NDCGW and PRPSW have almost identical
performance (fastest for 27 problems) achieving better than PRPSW

+ (fastest for 24 problems). Also, it is
interesting to observe in Figure 1 that the NDCGSW and NDCGW codes are the top performer, relative to the
iteration metric, for values of τ ≥ 4.5.

In Figure 2, we compare performance based on the number of function and gradient evaluations. For our
CUTEr test set, we found that, on average, the CPU time to evaluate the derivative of f was about 2 times
the CPU time to evaluate f itself. Figure 2 gives the performance profiles based on the metric NF + 2NG,
where NF is the number of function evaluations and NG is the number of gradient evaluations. Relative to this
metric, NDCGSW achieves the top performance (fastest for 32%), followed by PRPSW

+ (fastest for 30%), then
PRPSW (fastest for 25%), and then NDCGW (fastest for 11%). Also, it is interesting to observe in Figure 2
that the NDCGSW and NDCGW codes are the top performers, relative to the number of function and gradient
evaluations, for values of τ ≥ 5.

In Figure 3, we use CPU time to compare the performance of the conjugate gradient codes NDCGSW ,
NDCGW , PRPSW , and PRPSW . Figure 3 indicates that, relative to the CPU time metric, NDCGSW is fastest
(fastest for 70%), then PRPSW

+ and NDCGW almost identical performance (fastest for 65%), and then PRPSW

(fastest for 63%). Hence, NDCGSW and NDCGW codes are the top performers, relative to the CPU time metric,
for values of τ ≥ 7.

In conclusion, Figures 1–3 suggest that our proposed method NDCG exhibits the best overall performance
since it illustrates the highest probability of being the optimal solver, followed by the PRPSW and PRPSW

+

conjugate gradient methods relative to all performance metrics.

6. Conclusions and discussions

In this paper, we have proposed a new conjugate gradient method, and studied the global convergence of these
method. First, we can see that, the descent property of the search direction plays an important role in establishing
some general convergence results of the method in the form (1.19) with weak Wolfe line search (1.4) and (1.5),
namely, Theorems 3.2, 3.3 and 4.1. Next, from Theorems 4.2 and 4.3, we proved that the new method (1.19) can
ensure a descent search direction at every iteration and converges globally provided that the stepsize satisfies
the Wolfe conditions (1.4) and (1.12) where the scalars σ1 and σ2 satisfy the condition (4.14). In summary, our
computational results show that this new descent nonlinear conjugate gradient method, namely NDCG method
not only converges globally, but also outperforms the original PRP method. The results, we hope, can stimulate
more study on the theory and implementations on the conjugate gradient methods with the Wolfe line search.
For future research, we should investigate to find the practical performance of the method (4.4).

Appendix A

The following table lists the names of the 68 test problems.
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Table A.1. Test problems.

n Problem n Problem n Problem n Problem
1 ARWHEAD 2 BD1 3 BDEXP 4 BEALE
5 BIGGSB1 6 BROWNAL 7 BROYDN7D 8 COSINE
9 CRAGGLVY 10 DENSCHNB 11 DENSCHNF 12 DIXMAANA
13 DIXMAANB 14 DIXMAANG 15 DIXMAANE 16 DIXMAANF
17 DIXMAANG 18 DIXMAANI 19 DIXMAANJ 20 DIXMAANK
21 DIXMAANL 22 DIXON3DQ 23 DQDRTIC 24 DQRTIC
25 EDENSCH 26 EG2 27 ENGVAL1 28 FLETCHCR
29 FREUROTH 30 GHUMPS 31 GROSEN 32 GPSC1
33 HIEBERT 34 HIMMELBLAU 35 LIARWHD 36 MARATOS
37 NONCVXU2 38 NONDIA 39 NONDQUAR 40 PENALTY1
41 PENALTY 42 POWELL 43 POWELLBS 44 POWELLSG
45 POWER 46 PPQ2 47 PSC1 48 QF1
49 QF2 50 QP1 51 QP2 52 QUARTC
53 RAYDAN1 54 RAYDAN2 55 ROSEN 56 SINQUAD
57 SQ1 58 SQ2 59 SROSENBR 60 TRIDIA
61 WHITEHOLST 62 WOODS 63 TRIDIAG1 64 TRIDIAG2
65 EXTRIGON 66 GTRIDIAGI 67 DIAG2 68 CLIFF
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