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SOME MODIFIED YABE–TAKANO CONJUGATE GRADIENT METHODS
WITH SUFFICIENT DESCENT CONDITION
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Abstract. Descent condition is a crucial factor to establish the global convergence of nonlinear con-
jugate gradient method. In this paper, we propose some modified Yabe–Takano conjugate gradient
methods, in which the corresponding search directions always satisfy the sufficient descent property
independently of the convexity of the objective function. Differently from the existent methods, a new
update strategy in constructing the search direction is proposed to establish the global convergence of
the presented methods for the general nonconvex objective function. Numerical results illustrate that
our methods can efficiently solve the test problems and therefore is promising.
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1. Introduction

The problem considered in this paper is
min f(x), (1.1)

where f : R
n → R is smooth and its gradient g(x) = ∇f(x) is available.

Throughout the whole paper, for a sufficiently differentiable function f at xk, we introduce the following
notations: fk = f(xk); gk = g(xk); yk = gk+1 − gk; sk = xk+1 − xk.

Conjugate gradient methods have attracted special attention for solving large–scale unconstrained problems,
due to their low memory and simple computational scheme, that is,

xk+1 = xk + αkdk, (1.2)

where αk > 0 is commonly chosen to satisfy certain line search conditions. Among them, the Wolfe conditions
have attracted special attention in the convergence analyses and the implementations of CG methods, requiring
that

f(xk + αkdk) − f(xk) ≤ ρ1αkgT
k dk, (1.3)

g (xk + αkdk)T
dk ≥ σgT

k dk, (1.4)
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where 0 < ρ1 < σ < 1 are constants. The search direction dk is of the form:

dk =
{−gk, k = 1,
−gk + βkdk−1, k ≥ 2. (1.5)

Different CG methods correspond to different choices for the parameter βk, which in turn lead to quite diverse
computational efficiency and convergence results of the corresponding methods. Well-known formulate for βk

are called the Fletcher–Reeves [18], Polak−Ribière−Polyak [22], Conjugate−Descent [17], Dai–Yuan [8], and
Liu–Store [29] and Hestenes–Stiefel [25] formulae. We refer to an excellent survey [24] for a review on recent
advances in this area.

Conjugacy condition is an important factor in CG methods. The searching directions in CG methods are
often selected in such a way that, when applied to minimize a strongly quadratic convex function, two successive
directions are conjugate if no round-off error exists. But for general nonlinear functions,in most methods, the
search directions rarely satisfy the conjugacy condition.

In 1952, Hestenes and Stiefel derive βHS
k by requiring the search direction dk to be ∇2f(xk)-conjugate to dk−1,

i.e., enforcing dk∇2f(xk)dk−1 = 0. For the general function, this condition is replaced by the pure conjugacy
condition dT

k yk−1 = 0, which is independent of the objective function and line search used. By introducing a
constant τ > 0, Dai and Liao [9] replaced the HS conjugacy condition by the the Dai–Liao (DL) conjugacy
condition

dT
k yk−1 = −τgT

k sk−1, (1.6)

and the Dai–Liao (DL) CG method

βDL
k =

gT
k yk−1

dT
k−1yk−1

− τ
gT

k sk−1

dT
k−1yk−1

· (1.7)

The DL conjugacy condition has been intensively studied. More recently, much effort was directed to utilize
second order information to improve the numerical efficiency of conjugate gradient methods based on the
condition (1.6) with higher order accuracy in the approximation of the curvature of the objective function.
For example, Babaie-Kafaki et al. [4] and Yabe and Takano [35] applied a revised form of the modified secant
equation proposed by Zhang and Xu [39] and Zhang et al. [40] and the modified secant equation proposed
by Yuan [37] (see also [38]). Zhou and Zhang [43] applied the modified secant equation proposed by Li and
Fukushima [26,27]. Li et al. [28] used the modified secant equation proposed by Wei et al. [32]. Ford et al. [21]
employed the Multi-step quasi-Newton conditions proposed by Ford and Moghrabi [19, 20, 30].

Conjugate gradient methods based on the secant conditions above do not always generate a descent search
direction theoretically, but they perform well in practice for solving large–scale unconstrained optimization
problems. Thus, it is very indispensable to derive a conjugate gradient method which employs second order
information of the objective function and generates a descent search direction.

In an effort to make a modification on the CG method in order to achieve the sufficient descent condition,
that is, there exists a constant c > 0 such that

dT
k gk ≤ −c‖gk‖2, ∀k ∈ N. (1.8)

The papers by Hager and Zhang [23], Dai and Kou [7], Y. Narushima, H. Yabe and J.A. Ford [31], Zhang,
Zhou and Li [41], Cheng [6], Andrei [2, 3], Yu [36] and Dong [11–16] proposed several conjugate gradient
methods together with their global convergence, in which their search directions satisfy (1.8) independently of
the line search used. Extensive numerical results showed the exploitation of new techniques greatly enhance the
numerical efficiency.

My concern, also my hope for further study the Yabe–Takano (YT) method, in this paper, is that the sufficient
descent property and global convergence can simultaneously shine through to efficiently enhance the numerical



SOME MODIFIED YABE–TAKANO CONJUGATE GRADIENT METHODS WITH SUFFICIENT DESCENT CONDITION 69

efficiency. Furthermore, it is indeed highly desirable to establish the global convergence for the general nonconvex
objective function of interest.

The remainder of this paper is organized as follows. In Section 2, the motivation and our method are proposed.
Section 3 is devoted to proving the global convergence of our proposed method under the Wolfe line search.
In Section 4, we extend this new technique to the other CG methods. In Section 5, some numerical results are
given to illustrate the efficiency and robustness of the algorithms. Conclusions are stated in the last section.

2. Motivation and properties

Following Dai and Liao, Yabe and Takano [35] incorporated a nonnegative parameter ρ into the modified
secant condition by Zhang et al. [39, 40], and presented the YT method, in which

βY T
k =

gT
k �k−1

dT
k−1�k−1

− τ
gT

k sk−1

dT
k−1�k−1

, (2.1)

where τ > 0 is a constant and

�k−1 = yk−1 + ρ
θk−1

sT
k−1uk

uk. (2.2)

In (2.2), the parameter θk is presented by

θk−1 = 6(fk−1 − fk) + 3(gk−1 + gk)T sk−1 (2.3)

and uk ∈ R
n satisfying sT

k−1uk 	= 0.
Although the DL and YT methods had a reasonable conjugacy condition, and seldom generated uphill search

direction in actual computation, its direction may not be a descent one in theory. Moreover, Andrei [1] pointed
out that these methods are very dependent on the parameter τ .

Also, the original YT method is globally convergent for uniformly convex function provided that the search
direction is a descent direction and the strong Wolfe line search is used.

Obviously, the above strict conditions greatly rule out the application of the YT method. To overcome this
defect, Zheng et al. [42] presented a modified YT method, in which

dMY T
k = −gk + βY T

k dk−1 − gT
k dk−1

dT
k−1�k−1

(�k−1 − τsk−1) , (2.4)

and the property dT
k gk = −‖gk‖2 always holds.

As an important point, under mild condition, they establish the global convergence of the MYT method
above for the convex objective function. However, the aforementioned methods suffer from one or two of the
following problems:

• 1. The MYT method rely on the convexity of the objective function, that is, the global convergence of the
MYT method is established for convex objective function.

• 2. By the relationship sk = αkdk, we rewrite the search direction dMY T
k as follows

dMY T
k = −gk + βY T

k dk−1 − gT
k dk−1

ωT
k−1dk−1

(ωk−1 − τsk−1)

= −gk +
gT

k ωk−1

ωT
k−1dk−1

dk−1 − τ
gT

k sk−1

ωT
k−1dk−1

dk−1 − gT
k dk−1

ωT
k−1dk−1

(ωk−1 − ταk−1dk−1)

= −gk +
gT

k ωk−1

ωT
k−1dk−1

dk−1 − gT
k dk−1

ωT
k−1dk−1

ωk−1. (2.5)
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We obviously obtain from (2.5) that the search direction dMY T
k is independent of the choice of the parameter τ ,

or equivalently, which corresponds to τ = 0.
In this paper, we consider another approach to generate an efficient and robust conjugate gradient algorithm.

Specifically, we take a little modification to the YT method, given by

dDY T1
k = −gk + βDY T1

k dk−1 − gT
k dk−1

dT
k−1λk−1

λk−1. (2.6)

In (2.6), the parameter βDY T1
k and λk−1 are defined by

βDY T1
k =

gT
k λk−1

dT
k−1λk−1

− ξ
gT

k sk−1

dT
k−1λk−1

, (2.7)

λk−1 = yk−1 + ρ
max{0, θk−1}

sT
k−1uk

uk, (2.8)

where the parameter θk−1 is defined by (2.3) and ξ and ρ are two positive constants.

Lemma 2.1. Suppose that the search direction is defined by (2.6) and the steplength αk satisfies the Wolfe
conditions (1.3) and (1.4). Then it satisfies the sufficient descent condition, i.e.,

dT
k gk ≤ −‖gk‖2, ∀k ∈ N. (2.9)

Proof. We prove this lemma by induction. For k = 1, it holds since d1 = −g1. Assume that the conclusion of
this lemma holds for k − 1.

Subsequently, we prove that (2.9) holds for k. We obtain from (1.4) and the relationship sk = αkdk that

dT
k−1λk−1 ≥ yT

k−1dk−1 > −(1 − σ)gT
k−1dk−1 > (1 − σ)||gk−1||2 > 0. (2.10)

For all k > 1, multiplying (2.6) by gT
k , we have

gT
k dk = −||gk||2 + βDY T1

k gT
k dk−1 − gT

k dk−1

dT
k−1λk−1

gT
k λk−1 = −||gk||2 − ξ

gT
k sk−1

dT
k−1λk−1

gT
k dk−1 ≤ −||gk||2.

In order to ensure the global convergence of our method, we propose a new update strategy in constructing
the search direction, presented by

dk =
{−gk, Υk‖dk−1‖ ≥ μ‖gk‖,

dDY T1
k , Υk‖dk−1‖ < μ‖gk‖, (2.11)

where
Υk = max{‖gk‖ · ‖λk−1‖, ξ|gT

k sk−1|} (2.12)

and μ is a positive constant.
For convenience, we call the corresponding method as DYT method (D denotes descent) here and formally

state the steps of this method as follows.

Algorithm 2.2 (DYT1 method).

Step 1. Given positive constants ε, μ, ξ, ρ1 < σ < 1, and choose an initial point x1 ∈ Rn, set k = 1.
Step 2. Test a criterion for stopping the iterations. If ‖gk‖ < ε, then stop, otherwise calculate βDY T1

k by (2.7)
and dk by (2.11).

Step 3. Determine the steplength αk by the Wolfe conditions.
Step 4. Set xk+1 = xk + αkdk and k = k + 1. Return to Step 2.
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3. Global convergence of the DYT1 method

In this part, we come to show the convergence of our method. Throughout the paper, we assume, for the sake
of contradiction, that there exists a constant ε > 0 such that the relation ||gk|| ≥ ε holds for all k, otherwise a
stationary point has been found.

The following assumption and Zoutendijk condition is often needed in convergence analysis.

Assumption 3.1. The level set, defined by Ω = {x ∈ Rn|f(x) ≤ f(x1)} with x1 to be the initial point, is
bounded.

Theorem 3.2 ([34]). Suppose that Assumption 3.1 hold. Consider the conjugate gradient method defined by
(1.2), where the search direction dk satisfies gT

k dk < 0 and the steplength αk satisfies the Wolfe conditions (1.3)

and (1.4), then
∑
k≥1

(gT
k dk)2

||dk||2 < ∞.

Theorem 3.3. Suppose that Assumption 3.1 hold. Let {xk} and {dk} be generated by Algorithm 2.2. If there
exists a constant ε > 0 such that the relation ||gk|| ≥ ε holds for all k ∈ N , then there exist a constant c > 0
such that

||dk|| ≤ c||gk|| ∀k ∈ N. (3.1)

Proof. It should be first noted that dk 	= 0, ∀k ∈ N , otherwise, as in the proof of Lemma 2.1, we can see that
||gk|| ≤ ||dk|| holds.

Clearly, it suffices to consider the case where Υk‖dk−1‖ < μ‖gk‖ is satisfied.
From the definition of βDY T1

k in (2.7), we obtain that

|βDY T1
k | =

∣∣∣∣∣ gT
k λk−1

dT
k−1λk−1

− ξ
gT

k sk−1

dT
k−1λk−1

∣∣∣∣∣
≤ |gT

k λk−1| + |ξgT
k sk−1|

dT
k−1λk−1

≤ 2
Υk

dT
k−1yk−1

≤ 2μ
‖gk‖

||dk−1||
1

dT
k−1yk−1

≤ 2
μ

ε2(1 − σ)
‖gk‖

||dk−1|| ,

where the third and last inequalities follows from (2.12) and(2.10), respectively.
The above inequality together with (2.11) gives

||dk|| ≤ ||gk|| + |βDY T1
k | · ||dk−1|| + ||gk||||dk−1||

dT
k−1λk−1

||λk−1||

≤ ||gk|| + 2
μ

ε2(1 − σ)
||gk|| + Υk

||dk−1||
dT

k−1yk−1

≤ ||gk|| + 2
μ

ε2(1 − σ)
||gk|| + μ

‖gk‖
||dk−1||

||dk−1||
ε2(1 − σ)

≤ ||gk|| + 3
μ

ε2(1 − σ)
||gk|| (3.2)

Letting c = 1 + 3
μ

ε2(1 − σ)
, the conclusion is seen to hold.

In the end of this section, we state the convergence result of our method.
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Theorem 3.4. Suppose that Assumption 3.1 hold. Let {xk} be generated by the Algorithm 2.2. Then gk = 0
for some k or lim inf

k→∞
||gk|| = 0.

Proof. We proceed by contradiction. If the conclusion does not hold, there exists a constant ε > 0 such that

||gk|| ≥ ε, ∀k ∈ N ; (3.3)

otherwise a stationary point has been found. We obtain from Theorem 3.2 that

∑
k≥1

(c)−2 ||gk||2 ≤
∑
k≥1

||gk||4
||dk||2 <

∑
k≥1

(gT
k dk)2

||dk||2 < ∞, (3.4)

where the first inequality follows from (3.1) and the second one from (2.9). So we have lim
k→∞

||gk|| = 0, which

contradicts (3.3). Therefore the conclusion holds.

4. Generalization of the new technique

In this section, we intend to take the advantages of the results on the new versions of the YT method in
Section 2 and the HZ method to construct new methods. For simplicity, we only give the search dierction dk of
these algorithms, the other steps are as same as Algorithm 2.2.

We first introduce a constant ζ and propose a new parameter for βk:

βY THZ
k =

gT
k λk−1

dT
k−1λk−1

− ζ
‖λk−1‖2

(dT
k−1λk−1)2

gT
k dk−1. (4.1)

Algorithm 4.1 (DYT2 method).

dk =

⎧⎨
⎩

−gk, Γk‖dk−1‖ ≥ μ‖gk‖,
−gk + βY THZ

k dk−1 − gT
k dk−1

dT
k−1λk−1

λk−1, Γk‖dk−1‖ < μ‖gk‖, (4.2)

Algorithm 4.2 (YT–HZ method).

dk =
{−gk, Γk‖dk−1‖ ≥ μ‖gk‖,
−gk + βY THZ

k dk−1 Γk‖dk−1‖ < μ‖gk‖, (4.3)

In (4.2) and (4.3), where Γk = ‖gk‖ · ‖λk−1‖, μ > 0,and ζ >
1
4

are constant.

Analogously, we can establish the global convergence of these Algorithms.

Theorem 4.3. Suppose that Assumption 2.2 hold. Let βk be generated by (4.1) and dk be generated by (4.2)
and (4.3). Then the sufficient descent condition (1.8) holds. Furthermore, the Algorithms 4.1 and 4.2 converge
in the sense that lim inf

k→∞
||gk|| = 0 holds.

Proof. We first consider the sufficient descent condition. For k = 1, it holds since d1 = −g1. Assume that the
conclusion of this theorem holds for k.

If the negative gradient direction is used, then sufficient descent condition (2.9) holds. Furthermore, for all
k > 1, multiplying (4.2) by gT

k+1, we have

gT
k+1dk+1 = −||gk+1||2 + βY THZ

k+1 gT
k+1dk − gT

k+1dk

dT
k λk

gT
k+1λk = −||gk+1||2 − ζ

‖λk‖2(gT
k+1dk)2

(dT
k λk)2

≤ −||gk+1||2.
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Also, we mainly consider the search direction in the YT–HZ method for Γk+1‖dk‖ < μ‖gk+1‖. We obtain
form (4.3) and Cauchy inequatily that

gT
k+1dk+1 = −||gk+1||2 + βY THZ

k+1 gT
k+1dk

= −||gk+1||2 −
gT

k+1λk

dT
k λk

gT
k+1dk − ζ

‖λk‖2

(dT
k λk)2

(gT
k+1dk)2

≤ −||gk+1||2 +
||gk+1||||λk||

dT
k λk

gT
k+1dk − ζ

‖λk‖2

(dT
k λk)2

(gT
k+1dk)2

= −
(

1 − 1
4ζ

)
||gk+1||2 −

( ||gk+1||
2
√

ζ
−
√

ζ
‖λk‖

(dT
k λk)

gT
k+1dk

)2

≤ −
(

1 − 1
4ζ

)
||gk+1||2.

Subsequently, we establish the global convergence of the Algorithms 4.1 and 4.2. In the rest of this section,
we assume there exists a constant ε > 0 such that ||gk|| > ε for all k, otherwise a stationary point has been
found. The main result can be proved in a very similar way to the proof of Algorithm 2.2. The only remarkable
difference is at the point where we have to prove that there exists a positive constant M , such that

|βk| ≤ M
‖gk‖

||dk−1|| · (4.4)

From the definition of βDY HZ
k in (4.1) we obtain that

|βDY HZ
k | ≤ ||gk||||λk−1||

dT
k−1λk−1

+ ζ

(
||λk−1||

dT
k−1λk−1

)2

||gk||||dk−1||

≤ μ
‖gk‖

||dk−1||
1

dT
k−1yk−1

+ ζ

(
μ

||dk−1||
)2 ||gk||||dk−1||

(dT
k−1yk−1)2

≤
(

μ

ε2(1 − σ)
+ ζ

μ2

(1 − σ)2ε4

) ‖gk‖
||dk−1|| ·

Setting M =
μ

ε2(1 − σ)
+ ζ

μ2

(1 − σ)2ε4
, we finish the proof.

5. Numerical experiments

Finally, we report some numerical results on 73 nonlinear unconstrained test problems, 26 out of which are
from the CUTEr collection established in [5]. For each test problem, the dimension n is set to 6000 and the
Fortran expression of its function and gradient can be downloaded from Andrei’s website4. There are 2 problems
that are eliminated from the given problems above, that is “Extended Cliff” and “VARDIM”, which lead an
overflow error during the iteration.

Here we utilize the source code Fortran 77 on Hager’s webpage5. In the line search procedure, the Wolfe
conditions (1.3) and (1.4) were used with ρ1 = 10−4, σ = 0.9. The implementations are run on PC with 1.3 GHz
CPU processor and 760 MB RAM memory.

We uniformly set ρ = 10−6, u = sk−1 in λk−1 defined by (2.8). Furthermore, since too many restarts may
reduce the speed of convergence, the parameter μ is set as large as possible such that the relation Γk < μ‖gk‖
holds for most of indices k. The parameter μ in our methods use exactly the same setting with μ = 1020. We
stop the iteration if the inequality ||gk|| < 10−6 is satisfied.

4http://www.ici.ro/camo/neculai/SCALCG/evalfg.for
5http://clas.ufl.edu/users/hager/papers/CG/Archive/

http://clas.ufl.edu/users/hager/papers/CG/Archive/
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The whole numerical results, including the CPU time in seconds and the number of iterations, the number
of function and gradient evaluations implementation for each method, can be found in:

http://shuxueyou.blog.sohu.com/307224137.html.

The following 6 CG methods are test, including

• 1. The HZ method [23]: the CG method with the truncation, that is, the parameter βk =

max
{

βHZ
k ,

−1
||dk−1||min{η, ||gk−1||}

}
, where η = 0.1.

• 2. The YT method: the CG method with the parameter βY T
k defined by (2.1), where uk = sk−1, τ = 0.1

and ρ = 10−6 in (2.2).
• 3. The MYT method [42]: the three–term CG method with the search direction dMY T

k defined by (2.4),
where uk = sk−1, τ = 0.1 and ρ = 10−6.

• 4. The DYT1 method (Algorithm 2.2): the three–term CG method with the search direction dDY T1
k defined

by (2.11), where ρ = 10−6, uk = sk−1 and ξ = 0.1.
• 5. The DYT2 method (Algorithm 4.1): the three–term CG method with the search direction dY THZ

k defined
by (4.2), where ρ = 10−6, uk = sk−1 and ζ = 0.1.

• 6. The YT–HZ method (Algorithm 4.2): the CG method with the search direction dDY T2
k defined by (4.3),

where ρ = 10−6, uk = sk−1 and ζ = 0.5.

Further to demonstrate the efficiency of our methods, the use of profiles of Dolan and Moré [10] will present a
wealth of information including efficiency and robustness. More analytically, the left side of the figure presents
the percentage of test problem for which a method performs fastest, the right side gives the percentage of the
test problems that are successfully solved. The top curve is the method that solved the most problems in a time
that was within a factor ω of the best time.

Since there are too many lines collapsing at ω = 1, it is difficult to see which algorithm was more efficient.
As constructively suggested by a reviewer, to present a detailed numerical comparison, two different scales have
been considered for ω-axis: ω ∈ [1, 2], to perceive what happens for the values of ω near to 1; and ω ∈ [1, 10], to
perceive which is the trend for the large values of ω.

From Figure 1, it concludes that the most efficient algorithm in terms of number of iteration was DYT2,
being the fastest for 56% of the problems, followed by DYT1, YT–HZ, HZ, MYT and YT that were the most
efficient for respectively 45%, 42%, 40%, 40%, and 35% of the problems.

Figure 1. Performance profile of iterations.

http://shuxueyou.blog.sohu.com/307224137.html
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Figure 2. Performance profile of function evaluations.

Figure 3. Performance profile of gradient evaluations.

In Figures 2 and 3, we compare the performance of our method with that of other methods based on the
numbers of function evaluations and its gradient evaluations. As can be seen form these figures, the performance
profile illustrate that the DYT2 method and the MYT method approximately solve 56% and 39% of the test
problems with the least numbers of function evaluations and its gradient evaluations while the DYT1 method, the
YT–HZ, and HZ method approximately solve about 44%, which almost have identical performance. Therefore,
our methods outperforms slightly other method with respect to numbers of the function evaluations.

From Figures 1−3, we can observe that, for ω > 1.5, our proposed and “DYT1” methods numerically
outperforms with slight superiority to the other methods. There figures graphically illustrate that the curve of
“DYT1” is always the top performer for almost all values of ω. However, the best performance, relative to the
CPU time in Figure 4, is obtained by the “HZ” method, which solve 60% of the test problems with the least
CPU time. The other methods have the second best performance in which it solves about 40% in the same
situation. On the other hand, the right graphics on the right side of the above four figures illustrate that all
algorithms can ultimately solve 100% of the test problems. Thus, the above methods have efficient roundness
with respect to the iteration and CPU time.
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Figure 4. Performance profile of CPU time.

Numerical comparisons of the HZ method, the YT method, the MYT method and our proposed methods
show that the DYT1 method, which requires fewer iterations, but needs slightly more CPU time during the
iteration, is efficient for solving these test problems. The possible reason is that our presented search direction
needs slightly more computational cost for inner-products than that of the other methods.

6. Conclusion

In this paper, we proposed some modifications to the Yabe–Takano method, in which the search direction
always satisfy the sufficient descent condition. Under mild condition, we can establish the global convergence
of our proposed method even if the objective function is nonconvex. Numerical results show that our proposed
method is efficient for solving the optimization problems.
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