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Abstract. Dominance measuring methods are a recent approach for dealing with complex decision-
making problems with imprecise, incomplete or partial information within multi-attribute value/utility
theory. These methods compute pairwise dominance values and exploit the information included in the
dominance matrix in different ways to derive measures of dominance intensity to rank the alternatives
under consideration. We review dominance measuring methods proposed in the literature, describing
how their possible drawbacks have been progressively overcome, and comparing their performance with
other existing approaches, like surrogate weighting methods, the adaptation of classical decision rules
to encompass an imprecise decision context, SMAA or Sarabando and Dias’ method. An example of the
selection of cleaning services in a European underground transportation company is used to illustrate
dominance measuring methods in a real complex decision-making problem.
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1. Introduction

The additive model is widely used within multi-attribute value/utility theory (MAVT/MAUT) to rank al-
ternatives in complex decision-making problems. It is considered a valid approach in many practical situations
for the reasons described in [23, 29].

However, the information available in most real complex decision-making problems is not precise. Inputs are
often described within prescribed bounds or as just satisfying certain relations. Different authors refer to this
situation as decision-making with imprecise information, incomplete information or partial information [24,25].

Several reasons are given in the literature that justify why a decision-maker (DM) may wish to provide
imprecise information [28, 32]. For example, performances that reflect social or environmental impacts may be
intangible or non-monetary, and performances may be taken from statistics or measurements. Besides, a DM
might prefer not to reveal his/her preferences in public or could feel more comfortable providing a scale to
represent attribute importance. Moreover, the decision could be taken in a group decision-making situation,
where a negotiation process usually outputs imprecise information.
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Many papers on MAVT/MAUT have dealt with imprecise information. Sarabando and Dias [27] provided a
brief overview of approaches proposed by different authors within the MAVT/MAUT framework to deal with
imprecise information.

For instance, surrogate weighting methods (SWMs) deal with ranked attribute weights to output a best
alternative and/or ranking of alternatives [4,31]. A weight vector is selected from a set of admissible weights to
represent the set, which is then used to evaluate the alternatives by means of the multi-attribute value model.
Commonly used SWMs are rank sum weights (RS ), rank reciprocal weights (RC ), rank-order centroid weights
(ROC ), and equal weights (EW ).

The stochastic multicriteria acceptability analysis (SMAA) method was proposed to provide support when the
weight information is missing [12]. The SMAA-2 method [11] extends the analysis to the sets of weight vectors
for any rank from best to worst for each decision alternative and can be used to identify good compromise
alternatives, whereas SMAA-O [13] is a variant of SMAA for problems in which criteria are measured on
ordinal scales.

Another option described in the literature for dealing with imprecision is based on the concepts of pairwise
and absolute dominance.

The use of absolute dominance values is exemplified by the modification of four classical decision rules
to encompass an imprecise decision context concerning weights and component values/utilities [22, 26]: the
maximax, in which each alternative is rated on the basis of its maximum guaranteed value; the maximin, based
on its minimum guaranteed value; the minimax regret rule, based on the maximum loss of value with respect
to a better alternative; and the central value rule, based on the midpoint of the range of possible performances.

Regarding pairwise dominance, Eum et al. [5, 14, 21] provided linear programming characterizations of dom-
inance and potential optimality for alternatives when information about values and/or weights is incomplete
amd extended the approach to hierarchical structures [21]. Later, the concepts of weak potential optimality and
strong potential optimality were developed in [14]. Besides, dominance and potential optimality with imprecision
in weights, utilities and alternative performances is considered in [15].

A recent approach for dealing with imprecise information is to compute different measures of dominance to
derive a ranking of alternatives. They are known as dominance measuring methods (DMMs). DMMs are based
on the computation of a dominance matrix, D, including pairwise dominance values, which are exploited in
different ways to derive measures of dominance to rank the alternatives under consideration.

In Section 1, we give an overview of the DMMs proposed in the literature and analyze their performance
against the other existing approaches described above. An example concerning the selection of cleaning services
in a European underground transportation company illustrates DMMs in Section 2. Finally, some conclusions
are provided in Section 3.

2. Dominance measuring methods

We consider a decision-making problem with m alternatives {A1, . . . , Am} and n attributes {X1, . . . , Xn},
then the functional form of the additive model is

v(Ai) =
n∑

j=1

wjvj(xij),

where xij is the performance over attribute Xj for alternative Ai, and vj and wj are the component value/utility
function and the weight for attribute Xj , respectively. Note that

∑n
j=1 wj = 1 and wj ≥ 0.

The alternative performances could be precise or described under uncertainty by means of uniformly dis-
tributed intervals, i.e.,

xL
ij ≤ xij ≤ xU

ij , i = 1, . . . , m, j = 1, . . . , n.

Besides, imprecision could be also considered regarding DM preferences, both when assessing DM single at-
tribute utilities, which represent DM preferences concerning the possible alternative performances, and weights,
which represent the relative importance of criteria.
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Figure 1. Ranking of alternatives and differences between consecutive alternatives for the
attribute Xj .

In the first case, classes of component value/utility functions could be derived from the elicitation methods [6],
and, consequently, the component value/utility associated with a specific performance would belong to an
interval:

vL
j (xij) ≤ vj(xij) ≤ vU

j (xij), i = 1, . . . , m, j = 1, . . . , n.

Alternatively, ordinal information about the component values/utilities of the alternatives could be consid-
ered [2, 28], i.e., the DM provides a ranking of the alternatives in each attribute. Moreover, rankings of the
difference between the values of consecutive alternatives could be also taken into account for each attribute.
For instance, the DM might consider A3 to be the best of five alternatives for attribute Xj , followed by A5,
A4, A2 and A1 (vj(x3j) ≥ vj(x5j) ≥ vj(x4j) ≥ vj(x2j) ≥ vj(x1j)). Also, the differences between consecutive
alternatives might be ranked Δj2 ≥ Δj,1 ≥ Δj,4 ≥ Δj,3, with Δj,2 = vj(x5j)− vj(x4j), Δj,1 = vj(x3j)− vj(x5j),
Δj,4 = vj(x2j) − vj(x1j) and Δj,3 = vj(x4j) − vj(x2j), as illustrated in Figure 1.

Imprecision concerning weights representing the relative importance of criteria could also be represented by
intervals or by means of ordinal information. An example of an interval would be:

wL
j ≤ wj ≤ wU

j , j = 1, . . . , n,

If we consider ordinal information about weights [2, 27], the DM would provide an attribute importance
ranking, arranged in descending order from the most to the least important attribute:

w ∈ W = {w = (w1, . . . , wn)|w1 ≥ w2 ≥ . . . ≥ wn ≥ 0} , and
n∑

j=1

wi = 1.

As mentioned before, dominance measuring methods (DMMs) are based on the computation of a dominance
matrix, D, including pairwise dominance values, which are exploited in different ways to derive measures of
dominance to rank the alternatives under consideration.
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Figure 2. AP1 and AP2 methods.

A dominance matrix, D, can be defined as follows:

D =

⎛
⎜⎜⎜⎜⎝

− D12 · · · D1(m−1) D1m

D21 − · · · D2(m−1) D2m

D31 D32 · · · D3(m−1) D3m

...
...

...
...

...
Dm1 Dm2 · · · Dm(m−1) −

⎞
⎟⎟⎟⎟⎠ ,

where
Dkl = min{wvk − wvl}
s.t.

vk = (vk1, . . . , vkn),vl = (vl1, . . . , vln) ∈ Vkl

w = (w1, . . . , wn) ∈ W,

(2.1)

where W and Vkl define the feasible region for weights and values associated with the alternatives Ak and Al

for each attribute, respectively. They represent imprecise information.
Note that given two alternatives Ak and Al, alternative Ak dominates Al if Dkl ≥ 0, and there exists at least

one w, vk and vl such that the overall value of Ak is strictly greater than that of Al. This concept of dominance
is called pairwise dominance.

The optimization problems to be solved to derive pairwise dominance values are different depending on how
the imprecision concerning DM preferences is represented, but always we have a linear or quadratic programming
problem that can be solved using the simplex method or Lemke’s method, respectively.

The first DMM was proposed by Ahn and Park [3]. It was applicable when the imprecision concerning the
DM preferences was represented by both intervals or ordinal information.

Ahn and Park compute a dominating measure φ+
k =

m∑
j=1,j �=k

Dkj and a dominated measure φ−
k =

m∑
j=1,j �=k

Djk

for each alternative Ak, and then derive a net dominance as φk = φ+
k − φ−

k .
Ahn and Park proposed two ranking methods for these measures: ranking the alternatives according to either

φ+
k or φk values (denoted as the AP1 and AP2 methods, respectively, see Fig. 2).
Two new DMMs were proposed in [16,18]. The first one, DIM1, was based on the same idea as implemented by

Ahn and Park. It also computed dominating and dominated measures but they were combined into a dominance
intensity rather than a net dominance index, which was used as a measure of the strength of preference.

DIM1 was implemented as follows (see Fig. 3):

(1) Compute dominating indices for each alternative Ak:

DIrow
k+ =

m∑
l=1,l �=k,Dkl>0

Dkl, DIrow
k− =

m∑
l=1,l �=k,Dkl<0

Dkl.
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Figure 3. DIM1.

(2) Compute the dominating intensity DIrow
k for each alternative Ak:

DIrow
k =

DIrow
k+

DIrow
k+ − DIrow

k−
·

(3) Compute dominated indices for each alternative Ak:

DIcol
k+ =

m∑
l=1,l �=k,Dlk>0

Dlk, DIcol
k− =

m∑
l=1,l �=k,Dlk<0

Dlk.

(4) Compute the dominated intensity DIcol
k for each alternative Ak:

DIcol
k =

DIcol
k+

DIcol
k+ − DIcol

k−
·

(5) Calculate a global dominance intensity (GDI) for each alternative Ak, i.e., GDIk = DIrow
k − DIcol

k , k =
1, . . . , m, and rank the alternatives accordingly.

DIM1 improves AP2 by reducing the duplicate information involved in the computations. However, DIM1
has a drawback: the alternatives cannot be ranked if all the elements in D are negative because, since DIrow

k+ = 0
and DIrow

k− , ∀k, their dominance intensity is zero in all cases. This drawback implies that DIM1 is not indepen-
dent of irrelevant alternatives.

The second method, DIM2, overcomes this drawback. It derives a global dominance intensity index to rank
alternatives on the basis that

Dkl ≤ wT (vk − vl) ≤ −Dlk, ∀w ∈ W,vk,vl ∈ Vkl.

DIM2 was implemented as follows (see Fig. 4):

(1) If Dkl ≥ 0, then alternative Ak dominates Al, and the dominance intensity of Ak over Al (DIkl) is 1, i.e.,
DIkl = 1.
Else (Dkl < 0):
– If Dlk ≥ 0, then alternative Al dominates Ak, and DIkl = 0.
– Else (Dlk < 0), DIkl = −Dlk

−Dlk−Dkl
.

(2) Calculate a global dominance intensity (GDI) for each alternative Ak, i.e. GDIk =
∑m

l=1, l �=k DIkl, and
rank the alternatives accordingly.
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Figure 4. DIM2.

Simulation studies were carried out in [18] to compare the DIM1 and DIM2 methods with other existing
approaches (the above modification of four classical decision rules, SMAA [12], SMAA-2 [11] and the AP1 and
AP2 methods) when the imprecision concerning the inputs is represented by value intervals.

We use two measures of efficacy: the hit ratio and the rank-order correlation [3, 4]. The hit ratio is the
proportion of all cases in which the method selects the same best alternative as in the TRUE ranking. Rank-
order correlation indicates how similar the overall alternative ranking structures are in the TRUE ranking and
in the ranking derived from the method. It is calculated using Kendall’s τ [33]:

τ = 1 − 2 × (number of pairwise preference violations)
total number of pair preferences

=
S

m(m − 1)/2
,

where S is the difference between the number of concordant (equally ordered) and discordant (differently
ordered) pairs and m is the total number of alternatives.

The results of simulation studies showed that DIM2 performs better than the AP1 method and the adaptation
of classical decision rules. Although SMAA-2 slightly outperforms DIM2, DIM2 is applicable when incomplete
information about weights is expressed not just as weight intervals but also as weights satisfying linear or non-
linear constraints, weights represented by fuzzy numbers or weights fitting normal probability distributions.

The performance of DIM1 and DIM2 was also compared in [20] with other existing approaches (surrogate
weighting methods, modified classical decision rules and the AP1 and AP2 methods) when ordinal information
represents imprecision concerning weights. As regards average hit ratios, DIM2 and ROC outperform the other
methods and, according to the paired-samples t-test, there is no significant difference between the two. However,
ROC can be only applied when ordinal relations regarding attribute weights are provided.

Despite its good performance, we later identified a drawback associated with DIM2. It did not take into
account the size of the intervals [Dkl,−Dlk] and how far they were from 0. Figure 5 illustrates the above
situations in which different intervals lead to the same dominance intensities, Dkl. A new DMM, DIM3, was
proposed in [17, 19] aimed at overcoming these drawbacks. It was based on DIM2 and, specifically, on the fact
that wT (vk − vl) ∈ [Dkl,−Dlk], ∀w ∈ W,vk,vl ∈ Vkl, but DIM3 incorporates the distance from the interval
[Dkl,−Dlk] to 0 to derive a dominance intensity measure to rank the alternatives under consideration:

(1) If Dkl ≥ 0, then alternative Ak dominates Al, and the dominance intensity of Ak over Al is DIkl =
d([Dkl,−Dlk], 0).
Else (Dkl < 0):
– If Dlk ≥ 0, then Al dominates Ak, and DIkl = −d([Dkl,−Dlk], 0).
– Else (Dlk < 0),

DIkl =
[ −Dlk

−Dlk − Dkl
− −Dkl

−Dlk − Dkl

]
× d([Dkl,−Dlk], 0).

(2) Calculate a global dominance intensity (GDI) for each alternative Ak, i.e., GDIk =
∑m

l=1, l �=k DIkl, and
rank the alternatives accordingly.
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Figure 5. Drawbacks of DIM2.

New extensions of DIM2 and DIM3 were proposed in [1]. The first extension weights the dominance intensities
derived in DIM2 and DIM3 according to the distance between the central weight vector (wc

j) and the weight
vector (w∗lk

j ) associated with the optimal Dlk to solve the corresponding optimization problem. Note that the
central weight vector is composed of the midpoints of the different weight intervals in the case of interval weights.

The aim of these extensions is to attach more importance to weight vectors closer to the central weight
vector. To do this, the DIM2 and DIM3 methods must be applied, and the derived dominance intensities are
then weighted using the following expression:

DI∗kl =
DIkl

d(wc
j , w

∗lk
j )

·

The second extension is similar to the above in that weight vectors close to the central weight vector are
given more importance. However, the weighting is now applied not to the dominance intensity values but to the
pairwise dominance values in D. DIM2 and DIM3 are then applied as described before.

More recently, the same idea was extended concerning imprecision in DM preferences regarding both
weights and component values/utilities. Instead of computing the pairwise dominance values (Dkl), the method
calculates:

vkl =
n∑

j=1

wc
jv

c
kj −

n∑
j=1

wc
jv

c
lj ,

where (wc
1, . . . , w

c
n) is the centroid or center of gravity of the polytope representing the weight space, and

(vc
k1, v

c
l1), . . . , (v

c
kn, vc

ln) are the centroids or centers of gravity of the polytopes in the n attributes delimited
by the constraints accounting for alternatives Ak and Al. Note that the centroid is considered as the most
representative point that verifies the constraints delimiting the polytope. Moreover, Dkl ≤ vkl ≤ −Dlk.

The centroid of the polytope associated with constraints on component values in attribute Xj for the alter-
natives Ak and Al is

vc
j = (vc

kj , v
c
lj) =

∫
[0,1]2

V kl
j dv

∫
[0,1]2

dv
,

where V kl
j is the set of constraints concerning component values in attribute Xj for alternatives Ak and Al.

Note that V kl
j ⊂ Vj , which includes the constraints concerning component values in attribute Xj for all the

alternatives.
A technique for finding all the endpoints from a polytope delimited by constraints representing ordinal

information is proposed in [2]. These endpoints can then be averaged to derive the centroid of the polytope.
As the representation of a constraint set as just a point would be an oversimplification, an interval centered

on the central value is built as follows:
Ikl = [IL

kl, I
U
kl],

where IL
kl = vc

kl − mkl and IU
kl = vc

kl + mkl, and

mkl = min{(−Dlk − vc
kl), (v

c
kl − Dkl)}.
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Figure 6. Building Ĩkl.

Then the intervals Ikl = [IL
kl, I

U
kl] rather than [Dkl,−Dlk] are used to compute the dominance intensities in

DIM3.
In [2] the method is applied to deal with ordinal information in both weights and component values. The DM

provides an attribute importance ranking. Besides, the method takes into account a ranking of the alternatives
in each attribute and also a ranking of the difference of values between consecutive alternatives, as in Figure 1.
Rather than intervals, however, triangular fuzzy numbers are built:

Ĩkl = (IL
kl, v

c
kl, I

U
kl),

with the membership function (see Fig. 6).

μĨkl
(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x − IL
kl

vc
kl − IL

kl

, if IL
kl ≤ x ≤ vc

kl

1, if x = vc
kl

x − IU
kl

vc
kl − IU

kl

, if vc
kl ≤ x ≤ IU

kl

0, otherwise.

Then the dominance intensities are computed as follows:

• If vc
kl ≥ 0, then DIkl = d(Ĩkl, 0, f), where d refers to Tran and Duckstein’s distance [30], and f is a weight

function for differentiating risk-averse, risk-neutral or risk-prone DMs, as explained later.
• Else (vc

kl < 0), DIkl = −d(Ĩkl, 0, f).

We compute a dominance intensity measure for each alternative Ak, DIMk =
∑m

l=1,l �=k DIkl, and rank alter-
natives according to DIMk values.

As mentioned above, the method is based on Tran and Duckstein’s distance between fuzzy numbers, which
can be expressed for the particular case of the distance from a triangular fuzzy number ã = (a1, a2, a3) to a
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constant (specifically 0) by:

• If f(α) = α (neutral), then

d2(ã, 0, f) = a2
2 +

1
3
a2(a3 + a1) +

1
18

[(a3 − a2)2 + (a2 − a1)2] − 1
18

[(a2 − a1)(a3 − a2)].

• If f(α) = 1 (risk-prone), then

d2(ã, 0, f) = a2
2 +

1
2
a2(a3 + a1) +

1
9
[(a3 − a2)2 + (a2 − a1)2] − 1

9
[(a2 − a1)(a3 − a2)].

• If f(α) = α2 (risk-averse), then

d2(ã, 0, f) = a2
2 +

1
4
a2(a3 + a1) +

1
144

[(a3 − a2)2 + (a2 − a1)2] − 1
96

[(a2 − a1)(a3 − a2)].

Note that f(α), which serves as a weight function, is a positive continuous function in [0, 1], and the distance
is computed as a weighted sum of distances between two intervals along all of the α-cuts from 0 to 1.

Thanks to the presence of function f , DM participation is flexible. For example, when the DM is risk-neutral,
f(α) = α is a reasonable assumption. A risk-averse DM might want to attach more weight to information at a
higher α level by using other functions, such as f(α) = α2 or a higher power of α. A constant (f(α) = 1), or
even a decreasing f function, can be utilized for a risk-prone DM.

The results of Monte Carlo simulation techniques [2] demonstrate that the proposed method is clearly better
than the DMMs described above. Its performance is very similar to the method proposed by Sarabando and
Dias [27], which was likewise developed to deal with ordinal information about DMs’ preferences. Beside, Sara-
bando and Dias’ method is less computationally demanding. However, it accounts only for ordinal information
in both weights and component values, whereas DMMs are applicable when imprecision concerning the DM’s
preferences and alternative performances are simultaneously represented in different ways, as demonstrated in
the illustrative example introduced in the next section. Moreover, in the last extension of DIM the DM attitude
toward risk can be incorporated to the analysis.

3. An illustrative example

We consider the selection of a supplier for cleaning services in a European public underground transportation
company, where several conflicting criteria must be taken into account simultaneously, such as improving service
levels and reducing total service costs.

The GMAA [6, 7, 9] decision support system was used in [8] to deal with this selection problem based on
decision analysis methodology. However, most of the attributes under consideration were subjective, and the
DMs found it difficult to appraise the offers on their basis. Moreover, DMs also found it difficult to elicit the
weights representing the relative importance of criteria by means of the trade-off weighting method [7, 10].
However, they stated that they would feel more comfortable if ordinal information were allowed about the
relative importance of criteria and about the appraisal of offers with respect to some attributes.

In this example, we allow DMs to use ordinal information both for attribute weights and for the appraisal
of some offers with respect to some attributes. Moreover, rankings of the difference between the values of
consecutive offers can be also taken into account for the different attributes.

First we built an objective hierarchy including all the relevant aspects related to the problem under consid-
eration, aimed at improving DM understanding of the decision, see Figure 7.

There are five main top-level objectives: Delivery conditions and human resources (Delivery Con), which
accounts for the level of consistency and coherence of the human resources allocated to the services; Technical
merit and resources (Tech Resourc), which is an important efficiency factor leading to a significant reduction
in labor cost; Price (Price), which represents the lowest price offered by suppliers; Quality control procedures
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Figure 7. Objective hierarchy.

(Quality Mean), which accounts for accredited quality certifications and how quality systems and procedures are
deployed; and Graffiti prevention and cleanup (Graffiti), which is one of the most common incidents detracting
from the appearance of the underground buildings.

The Delivery conditions and human resources objective is split into three sub-objectives, Workload, Workload
allocation and Cost optimization program. Workload (Workload) quantifies how much effort is deployed in
terms of resources to achieve service performance objectives. Workload allocation (Wrk. Allocat) measures the
coherence and consistency of the allocation of the resources throughout the underground facilities and buildings.
Cost optimization program (Cost optimiz) measures the suitability of supplier cost reduction initiatives using two
additional sub-objectives: Suitability of cost reduction initiatives (Suit Reduct), which quantifies how applicable
and realistic the cost reduction initiatives are as things now stand and how they will ensure significant cost
savings; and Cost reduction target setting and performance monitoring (Target Set), in which suppliers will be
rewarded inasmuch as their offers include procedures and measures to successfully budget for and track cost
savings.

Technical merit and resources (Techn. Resources) is also split into two sub-objectives: Quantity of technical
means and Technical resources suitability. Suppliers will be rewarded inasmuch as their offers include large
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Table 1. Attribute with continuous scale.

Unit Range

A1: Workload Absolute Percentage Error (APE) [0,50]

A2: Wrk. Allocat Mean Absolute Percentage Error (MAPE) [0,100]

A5: Techn. Means Number of pieces of equipments [0,90]

A8: Price Monetary Units [1500,3000]

amounts and extensive use of technical resources for Quantity of technical means (Techn. Means). Technical
resources suitability (Res. Suitab.) is measured taking into account two additional sub-objectives: Equipment
suitability to client’s buildings (S. Buildings), which quantifies their appropriateness for underground facilities
and possible adverse environmental impacts; and Cleaning product technical documentation (Clean. Doc.), which
accounts for how well technical documentation describes the cleaning products.

Quality control procedures is measured in terms of two sub-objectives: Number of quality certifications (Qual.
Certif) and Quality measuring systems and procedures (Sys/Doc/Proc). For the first, suppliers will be rewarded
for having quality certifications accredited by national or European quality committees and institutions, whereas
the second accounts for how quality systems and procedures are deployed.

This sub-objective is split into three sub-objectives: Supplier quality control capabilities (Control Capa.),
which quantifies current supplier capabilities in terms of the supplier’s quality assurance organization, its struc-
ture, number of resources, current skills and attested competencies; Poor performance corrective actions (Correc.
Act.), which measures the proposed procedures and action plans to be put in place to solve poor performance
and incidents when delivering cleaning services; and Quality performance monitoring (P. Monitoring), which
accounts for the measuring system to be implemented, i.e., what will be inspected, how the inspection will
be carried out and the measurement criteria to be used during inspection are evaluated to verify that they
guarantee greater objectivity, completeness and high-quality services.

Finally, Graffiti prevention and cleanup takes into account two sub-objectives, past experiences and graf-
fiti cleanup procedures and products. Past experiences in graffiti prevention and cleanup (Experience) verifies
supplier competence, assessing details on how the supplier has successfully implemented these specific services
for other clients. Graffiti cleanup procedures and product features (Proc and Prods) is measured by taking into
account three additional sub-objectives: Suitability of graffiti cleanup procedures (Suit. Proced), which measures
their appropriateness for underground facilities and possible adverse environmental impacts, Technical solution
for prevention and cleanup (Tech. Solut) and Suitability of graffiti cleaning products (Suit. Produc), which
quantify how well the technical documentation describes the equipment, leading to a clear identification and
understanding of the equipment and product performance, respectively.

Next, attributes were established for the lowest-level objectives to indicate to what extent they were achieved
by the respective offers. Table 1 shows the attribute names, units and ranges for four out of the 16 attributes
under consideration measured on a continuous scale. Ordinal information about the component utilities of the
offers was considered for the remaining attributes, as described later.

The units for A1: Workload and A2: Wrk. Allocat, i.e., APE and MAPE, represent the following:

• If the number of offers is odd and greater than 3, they are ordered from the highest to the lowest value, and
a mean (M) is assessed discarding the highest and lowest values.

• If the number of offers is even and greater than 2, the mean is assessed considering all values. Then, we
discard the offer whose difference with respect to the mean is the highest, positive or negative. A new mean
(M) is now assessed taking the remaining values.

• If the number of offers is 2 or 3, the mean (M) is assessed considering all values.
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Table 2. Offer performances.

Offer 1 Offer 2 Offer 3 Offer 4 Offer 5 Offer 6

A1: Workload 5.62 11.85 14.61 29.21 33.31 36.19

A2: Wrk. Allocat 13.63 30.66 19 5.78 16.27 26.6

A5: Techn. Means 23 19 63 31 80 24

A8: Price 1808.8 1932.9 1708.3 1799.4 1754.9 2199.3

Table 3. Ordinal information concerning performances.

Ordinal information

A3: Suit Reduct Offer3>Offer5>Offer2>Offer1>Offer4>Offer6

A4: Target Set Offer3>Offer1>Offer4>Offer2>Offer6>Offer5

A6: S. Buildings Offer3>Offer2>Offer4>Offer6>Offer1>Offer5

A7: Clean Doc. Offer4>Offer5>Offer1>Offer6>Offer2>Offer3

A9: Qual. Certif Offer1=Offer2=Offer3=Offer4>Offer5>Offer6

A10: Control Capa Offer3>Offer4>Offer2>Offer1>Offer5>Offer6

A11: Correct. Act. Offer4>Offer5>Offer3=Offer1>Offer2>Offer6

A12: P. Monitoring Offer3=Offer4>Offer1>Offer2>Offer5>Offer6

A13: Experience Offer3=Offer4=Offer5=Offer6>Offer2>Offer1

A14: Suit. Proced Offer3>Offer6>Offer4>Offer5>Offer2>Offer1

A15: Tech. Solut Offer3>Offer4>Offer6>Offer5>Offer2>Offer1

A16: Suit. Produc Offer5>Offer6>Offer4>Offer3>Offer2>Offer1

Then, the absolute percentage error and the mean absolute percentage error for the jth offer, APEj and
MAPEj , are:

APEj =
ABS(M − valuej)

M
, MAPEj =

1
N

×
N∑

i=1

(M − valuej) × 100
M

,

where N is the number of offers. Consequently, the best value for the attributes is 0, while the worst values are
50 and 100, respectively.

Six offers were considered for analysis. Table 2 shows the scores or performances of the different attributes
using a continuous scale. Note that although the table reports precise performances, percentage deviations
accounted for uncertainty about some performances. Specifically, a 20% and a 15% Workload deviation was in-
troduced for Offers 5 and 6, and for Offer 4, respectively; a 10% and a 20% Wrk. Allocat deviation was introduced
for Offers 3 and 6, and for Offer 2, respectively; and a 30% and a 15% Techn. Means deviation was introduced
for Offers 3 and 5, respectively.

Besides, Table 3 shows ordinal information concerning the appraisal of the six offers for the remaining
attributes.

Moreover, rankings of the difference between the values of some consecutive offers were also taken into account
by DMs for some attributes, see Table 4.

For instance, for A16: Suit. Produc, we have Δ16,5 ≥ Δ16,4 ≥ {Δ16,1, Δ16,2, Δ16,3}, where

Δ16,1 = v16(Offer5) − v16(Offer6), Δ16,2 = v16(Offer6) − v16(Offer4),
Δ16,3 = v16(Offer4) − v16(Offer3), Δ16,4 = v16(Offer3) − v16(Offer2),
Δ16,5 = v16(Offer2) − v16(Offer1).

This means that the difference in the appraisal of offers 2 and 1 is greater than the difference in the appraisal
of offers 3 and 2, which is greater than the remaining differences between offers for that attribute.
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Table 4. Ordinal information about the difference between the values of consecutive offers.

Ordinal information

A10: Control Capa Δ10,5 ≥ {Δ10,1 Δ10,2, Δ10,3, Δ10,4}
A11: Correct. Act. Δ11,4 ≥ {Δ11,1, Δ11,2, Δ11,3, Δ11,5}
A12: P. Monitoring Δ12,2 ≥ {Δ12,3, Δ12,4, Δ12,5}
A13: Experience Δ13,4 ≥ Δ13,5

A14: Suit. Proced Δ14,5 ≥ {Δ14,1, Δ14,2, Δ14,3, Δ14,4}
A16: Suit. Produc Δ16,5 ≥ Δ16,4 ≥ {Δ16,1, Δ16,2, Δ16,3}

Figure 8. Imprecise component utility functions.

Regarding the quantification of the DMs preferences, Figure 8 shows the imprecise component utility functions
assigned by the DMs to those attributes for which no ordinal information about the offer performances were
provided. Note that utility functions are decreasing for A1: Workload, A2: Wrk. Allocat and A11: Price, and
increasing for A7: Tech. Means.

Looking at the appearance of the component utility functions we realize that the DM’s attitude toward risk
is prone for the four attributes. Thus, we will consider this situation in Tran and Duckstein’s distance when
applying the extension of DIM3 with triangular fuzzy numbers to rank the offers.

As mentioned before, ordinal information was also used by DMs to represent the relative importance of the
attributes as follows:

w8 > 3w1 > w5 > w9 > w13 > w2 > {w3, w4, w6, w7, w10, w11, w12, w14, w15, w16},
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Table 5. Offer ranking.

1st 2nd 3th 4th 5th

Dominance intensity 0.4921 0.0216 –0.0997 –0.1351 –0.2789

Ranking Offer1 Offer3 Offer4 Offer5 Offer2

i.e., the most important attribute for the decision is Price (w8), which is at least three times more important
than Workload (w1). The next most important attributes are Tech. Means (w5), Qual. certif (w9), Experience
(w13) and Wrk. Allocat (w2). Finally, Wrk. Allocat is more important than the remaining attributes.

Taking into account all the above information, the simplex method was used to solve the corresponding linear
optimization problems to compute pairwise dominance values to derive the following dominance matrix :

D =

⎛
⎜⎜⎜⎜⎜⎝

− −0.0372 −0.1373 −0.0983 −0.1566 0.1857
−0.4249 − −0.3816 −0.3141 −0.2769 0.0125
−0.3439 −0.2244 − −0.2434 −0.1986 0.0475
−0.3741 −0.2308 −0.2603 − −0.3091 0.0392
−0.4428 −0.2532 −0.3299 −0.2866 − 0.0002
−0.5763 −0.4608 −0.5322 −0.5077 −0.4447 −

⎞
⎟⎟⎟⎟⎟⎠ .

Note that Offer 6 is dominated since all values in the last column are positive. Thus, it can be discarded for
further analysis.

Table 5 shows the offer ranking derived from the last extension of DIM3 with triangular fuzzy numbers.
Dominance measuring methods are the only methods that can be used for the incomplete information under
consideration, i.e., performance intervals, ordinal information about the component values of some offers and
rankings of the difference between the values of some consecutive offers, and ordinal information about weights.
Note that the extension of DIM3 with triangular fuzzy numbers accounts for DM’s attitude toward risk.

Note that Offer 1 is best ranked, followed by offers 3, 4, 5 and 2. The three best ranked offers are the same
than in the ranking reported in [8], in which the uncertainty about the offer performances and the imprecision
concerning weights were both represented by intervals.

4. Conclusion

Dominance measuring methods (DMMs) have been shown to be a valid approach for dealing with complex
decision-making problems with imprecise, incomplete or partial information within multi-attribute value/utility
theory.

We have reviewed different DMMs for dealing with imprecise information about decision-maker preferences,
identifying drawbacks associated with the original DMMs and describing other DMMs aimed at overcoming
these shortcomings. The performance of these methods has been compared in the literature with other existing
approaches on the basis of two efficiency measures (the hit ratio and the rank-order correlation.

The results of the applied Monte Carlo simulation techniques demonstrate that DIM2 outperforms AP1,
AP2 and the adapted classical decision rules when both intervals and ordinal information about weights are
considered. Besides, SMAA-2 slightly outperformed DIM2 when intervals were considered, and there was no
significant difference between DIM2 and the ROC method when ordinal information was considered (DIM2
outperformed the other surrogate weighting methods).

However, ROC and SMAA-2 are only applicable when ordinal information about weights is considered and
DMMs are more general since other linear restrictions could be considered to derive the dominance matrix.
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Besides, the last extension of DIM3 with triangular fuzzy numbers outperforms previous DMMs, and there
is no significant difference between DIM3 and the method proposed by Sarabando and Dias when dealing with
ordinal information concerning both weights and component values.

However, Sarabando and Dias account only for ordinal information regarding both weights and component
values, whereas DMM is applicable when imprecision concerning DM preferences and alternative performances
are simultaneously represented in different ways and the DM’s attitude toward risk can be incorporated to the
analysis, as demonstrated in the illustrative example.
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