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A NOVEL META-HEURISTIC ALGORITHM FOR MULTI-OBJECTIVE
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Abstract. This paper proposes an integrated approach for dynamic facility layout problem consid-
ering the material handling equipment (MHE). The objectives of this problem are minimization of
the fixed costs of MHE, minimization of material handling cost (MHC) and minimization of machine
rearrangement costs (MRC). To be more realistic, MHE fixed costs, MRC and MHC, which might be
of different importance to decision maker, are considered separately in three objective functions. An
integrated model is proposed which is able to simultaneously select the MHE along with the arranging
and re-arranging facilities. The model belongs to the class of multi-objective nonlinear mathematical
programming models. Considering the NP-hard nature of the model and inspiring the existing water
flow like algorithm, a novel Pareto-based meta-heuristic algorithm called multi-objective water flow
like algorithm (MOWFA)is developed to solve the problem. We comprehensively discuss the parameter
tuning of the algorithms utilizing Taguchi method. Finally, the performance of the proposed MOWFA
is evaluated against two well-known meta-heuristic algorithms called non-dominated sorting genetic
algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA). Computational results
indicate the greater efficiency of the algorithm compared to the two addressed algorithms for solving
the given multi-objective problem.
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1. Introduction

Facility layout problem is concerned with determining the efficient layout of machines, cells, or departments.
There are several factors which can directly or indirectly affect the efficiency of a layout, among which the
most important factors are: variation on demand, adding or removing a product, changing the manufacturing
methods and replacing the equipments. All the factors may affect the patterns of material handling between two
machines as well as material handling costs (MHC). According to Tompkins et al. [1], around 20−50 percent of
the total operating costs and 15−70 percent of the total manufacturing costs are concerned with MHC. MHC
is known as the most important metric to determine the effectiveness of a layout and is often considered as the
single objective of facility layout problems. Due to the variations in product demand and changes in product
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mix, MHC fluctuates and often increases. This may cause the current layout to lose its efficiency and make
re-layout of facilities necessary.

Changes in the current layout should be investigated carefully since these may result in high machine-
rearrangement costs (MRC). The problem of preparing the layout and re-layout of the machines in such a
way as to minimize MHC and MRC is called dynamic facility layout problem (DFLP). In DFLP, a planning
horizon divided into a number of periods, is assumed. Any changes which results in changing MHC, gives the
signal of beginning a new period. The objective of DFLP is to determine a layout in each period of horizon
planning so that the sum of MHC and MRC is minimized. Apart from the layout of the machines, material
batch size is another factor which can affect MHC. Material batch size can reduce the number of the required
trips to transfer materials between two machines. The batch size depends on the capacity of material handling
equipment (MHE). There are different MHEs such as forklifts, trucks and automated guided vehicles (AGVs)
with different capacity used to transport materials between machines.

Thus, there is a close relation between layout of machines and the selected transporters. The final solution
is highly dependent on the given part of the problem; in other words, by selecting the best MHE based on an
existing layout, or determining the optimal layout based on pre-specified MHE, a considerable degree of freedom
may be lost in obtaining an overall optimal design (Chittratanawat [2]); thus, it is recommended to study the
problem of allocating MHE to machines in order to handle the materials and solve the problem of machine
layout as an integrated problem. As a result, this paper proposes an integrated approach for DFLP considering
MHE. To be more realistic, the regular costs of material handling, the fixed costs of establishing MHE and
MRC are considered in three separate objective functions. The main reason of this segregation is the nature of
these costs which are significantly important to decision makers. Since the behavior of these objectives are not
monotonic, the problem falls into the class of multi-objective optimization problems (MOOP). The proposed
MOOP is mathematically modeled as a non-linear integer programming model. The mathematical model belongs
to the class of NP-hard problems. Soft computing techniques, specifically evolutionary computations, are usually
employed to find near-optimum solutions. This paper introduces a multi-objective water flow like algorithm
(MOWFA) as an efficient multi-objective evolutionary algorithm to solve the problem. The performance of
MOWFA is compared with two popular algorithms including non-dominated sorting genetic algorithm (NSGA-
II) and non-dominated ranking genetic algorithm (NRGA). The rest of the paper is structured as follows:
Section 2 gives a brief review of the previous studies; then, the mathematical formulation of the problem is
introduced in Section 3. Thereafter, Section 4 describes the proposed methodologies to solve the multi-objective
dynamic facility layout problem (MODFLP). The parameter tuning and computational results for the proposed
algorithm are presented in Section 5. Finally, the conclusion and ideas for future research are given in Section 7.

2. A brief literature review

Layout researches can be categorized into two types of static or dynamic. In static layout, material flow
between machines is constant and an optimal layout is designed for a single time period. On the contrary, if
the layout is evaluated and modified occasionally with respect to material flow changes, it is called dynamic
layout. We give a brief review of the researches regarding the dynamic category. Rosenblatt [3] was the first
one who addressed the problem of dynamic facility layout. Rosenblatt [3] developed a procedure based on
dynamic programming to determine the optimum design which takes into consideration both MHC and MRC,
for multiple periods. In recent years, there have been several efforts to address the DFLP and the research
in this area typically hires heuristic and meta-heuristics solution techniques. Urban [4] suggested a heuristic
steepest-descent pair-wise interchange procedure combined with the concept of forecast windows similar to
CRAFT in order to solve the DFLP. Kouvelis and Kiran [5] proposed a developed dynamic programming to
consider the dynamic aspects in automated manufacturing systems. A heuristic tabu search was proposed by
Kaku and Mazzola [6] for solving the DFLP. Their heuristic technique was based on initializing a solution to
obtain the feasible one. The whole method is divided into two stages: 1. diversifying search and 2. intensifying
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the search to identify the best solution among the promising solutions identified in stage one. The experimental
results showed that tabu search is effective in providing high value solutions for DFLP.

The genetic algorithm was first employed by Conway and Venkataramanan [7] to solve DFLP. The developed
methodology evaluated the appropriateness of GA to generate feasible layouts. Balakrishnan and Cheng [8]
proposed an improvement in application of GA procedures to solve DFLP. They adopted a different crossover
and mutation operators and also used a new generational replacement strategy to help increase population
diversity. The computational study showed that their proposed GA was quite more effective than GA proposed
by [7]. Baykasoglu and Gindy [9] denoted the simulated annealing (SA) method to solve the DFLP. Their
approach was a straightforward implementation of SA to solve the DFLP. Using the test problems from [8],
Baykasoglu and Gindy [9] showed that the SA is more capable than developed GAs to achieve better solutions.

Mckendall and Shang [10] proposed three hybrid ant systems (HAS) for solving the DFLPs. In the first
system, a HAS with a pair-wise exchange style was used to improve the solution quality. In the second one
named modified heuristic HAS, the pair-wise exchange heuristic was replaced by an SA procedure. In the third
heuristic system, a look-ahead/look-back strategy was also used. Furthermore, McKendall et al. [11] offered two
SA methods. The first SA heuristic method called SAI, is a direct adaptation of SA for the DFLP. The second
SA heuristic method (SAII) is just like the SAI, except that it has an added look-ahead/look-back strategy.
Krishnan et al. [12] presented a new tool “Dynamic From Between Chart” to analyze the redesigning layouts.
It models the production rate changes using a continuous function.

Rezazadeh et al. [13] applied an extended particle swarm algorithm (PSO) for the DFLP. Balakrishnan and
Cheng [14] studied the performance of algorithms in static and rolling horizons, under forecast uncertainty for the
DFLP. Sahin and Turkbey [15] also suggested a novel hybrid meta-heuristic algorithm based on the SA approach
supplemented with a tabu list. Mckendall and Liu [16] proposed three tabu search (TS) heuristics for DFLP. The
first heuristic was a simple TS heuristic. The second heuristic added diversification and intensification strategies
to the first one, while the third one was a probabilistic TS heuristic. Chen [17] proposed a new encoding and
decoding scheme for solution representation within ant colony algorithm framework. It revealed the significant
impact of solution representation on the efficiency of heuristics in terms of computational time.

It is only recently that researchers have been proposing multi-objective approaches for DFLP. Chen and
Rogers [18] were the first ones who proposed a multi-objective dynamic facility layout model to search about
several features of the facility layout problems such as time and distance-based objective as well as the adjacency-
based objective. They applied a meta-heuristic optimization algorithm called ant colony optimization to solve
the MODFLP. Their results indicated this heuristic technique provides the DFLP with a practical decision
support tool.

Jolai et al. [19] consider a multi-objective DFLP with unequal fixed size departments and pick up/drop
off locations. Their objectives were to minimize the MHC and the MRC and maximize the total adjacency
and distance rate between facilities. They implemented a multi-objective PSO algorithm to solve the problem.
Emami and Nookabadi [20] proposed a model in which both quantitative and qualitative analyses of dynamic
facility layout problems were simultaneously taken into account. In their model, the re-arrangement and material
handling costs have been considered as two distinct functions. Similar to the qualitative objective, the adjacency-
based objective also aims at maximizing the adjacency scores of the facilities.

Most of the previous studies have focused only on minimizing the sum of MHC and MRC as the most
important performance criteria; however, the transporters type used to move the materials between the machines
has not been taken into consideration. On the other hand, in the researches available in the literature, the
importance of MHC and MRC are identical while they may be of different importance to decision makers. To
eliminate these types of shortcomings, this research takes the transporters type into account and proposes a
multi-objective model to capture the costs separately. Furthermore, a novel powerful meta-heuristic algorithm
is devised to optimize the proposed multi-objective problem. All of these contribute to make our approach more
realistic and applicable for solving the layout problem of manufacturing systems.
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3. Mathematical model

In this section, the integrated problem is formulated as a multi-objective non-linear integer programming
model to minimize the sum of MHC, MHE fixed costs and MRC. In order to help a better understanding of
the model presented in the paper, the assumptions, parameters and the decision variables are first defined as
follows:

The problem is formulated under the following assumptions:

1. The material flow between machines is dynamic and predetermined.
2. There is a potential set of MHE with predefined fixed costs.
3. The sizes of the machines and locations are equal.
4. The distances between locations are known in advance.

The parameters and indices are:

N The number of machines/locations;
T The number of periods in the planning horizon;
TR The number of available transporters;
i, j, k, l Index of machines/locations;
t Index of time periods;
tr Index of transporters;
Atijl The cost of shifting machine i from location j to l in period t;
Ctr

t,i,k The material transporting cost between machine i and machine k in period t by transporter tr;
mtr

t The maximum number of vehicles tr available in period t;
captr Transport capacity of transporter tr;
Rt,i,k 1 if any material is transported between machine i and machine k in period t 0 otherwise;
FITr Fixed cost of establishing of transporter tr;
AT tr

t The available time of transporter tr in period t;
T imetr

t,i,k The time is required to complete a tour from machine i to machine k by transporter tr in period t;
AvgT tr

j,l The average time is required to complete a tour from location j to location l by transporter tr;
Ft,i,k The material flow from machine i to machine j in period t;
Dt,j,l The distance between location j and location l in period t.

The decision variables are:

Xt,i,j 1 if facility i is allocated to location j in period t
0 otherwise;

Y tr
t,i,k 1 if transporter tr is selected to handle material from machine i to machine k in period t

0 otherwise;

The proposed multi-objective dynamic facility layout problem is now formulated as a non-linear integer pro-
gramming model. This formulation is an extension of the model presented by McKendall et al. [10]:

Min Z1 =
N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

T∑
t=1

TR∑
tr=1

(
Ft,i,k

captr

)
× Dt,j,l × Ctr

t,i,k × Xt,i,j × Xt,k,l × Y tr
t,i,k (3.1)

Min Z2 =
N∑

i=1

N∑
j=1

N∑
l=1

T∑
t=2

X(t−1)ij × Xtil × At,i,j,l (3.2)
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Min Z3 =
T∑

t=1

N−1∑
i=1

N∑
k=i+1

Tr∑
tr=1

Y tr
t,i,k × FItr (3.3)

N∑
j=1

Xtij = 1 , ∀i = 1, 2, . . . , N, ∀t = 1, 2, . . . , T (3.4)

N∑
i=1

Xtij = 1 , ∀j = 1, 2, . . . , N, ∀t = 1, 2, . . . , T (3.5)

TR∑
tr=1

Y tr
t,i,k = Rt,i,k , ∀i = 1, 2, . . . , N − 1; ∀k = i + 1, 2, . . . , N; ∀t = 1, 2, . . . , T (3.6)

Y tr
t,i,k = Y tr

t,k,i , ∀i, k = 1, 2, . . . , N ; ∀t = 1, 2, . . . , T ; ∀tr = 1, 2, . . . , TR (3.7)

N−1∑
i=1

N∑
k=i+1

Y tr
t,i,k � mtr

t , ∀tr = 1, 2, . . . , TR; ∀t = 1, 2, . . . , T (3.8)

N∑
i=1

N∑
k=1

Ft,i,k

captr
× Y tr

t,i,k × Timetr
t,i,k � AT tr

t , ∀tr = 1, 2, . . . , TR; ∀t = 1, 2, . . . , T (3.9)

Timetr
t,i,k =

N∑
j=1

N∑
l=1

Xt,i,j × Xt,k,l × AvgT tr
j,l,

∀i = 1, 2, . . . , N , ∀k = 1, 2, . . . , N , ∀tr = 1, 2, . . . , TR; ∀t = 1, 2, . . . , T (3.10)

Xt,i,j ∈ {0, 1} , i, j = 1, 2, . . . , N , ∀t = 1, 2, . . . , T (3.11)

Y tr
t,i,k ∈ {0, 1} , i, k = 1, 2, . . . , N , ∀tr = 1, 2, . . . , TR, ∀t = 2, . . . , T. (3.12)

The objective function (3.1) of this model is to minimize the total MHC. Objective function (3.2) minimizes
the MRC and objective function (3.3) minimizes the fixed cost of the MHE. Constraints (3.4) ensure that each
facility should be located in one position while constraints (3.5) ensure that in each position only one facility
should be allocated. Set of constraints (3.6) state that for any pair of machines, if the materials are handled, a
transporter must be assigned. Set of constraints (3.7) guarantee that one type of transporter is assigned to each
pair of machines. Set of constraints (3.8) control the number of available vehicles in each period. Constraints (3.9)
restrict the functions allocated a transporter to its available time. Constraints (3.10) control the time required
to complete a tour between two machines. Constraints (3.11) and (3.12) restrict decision variables. This integer
binary programming model is an extension to the classic DFLP and correspondingly is a complex combinatorial
optimization problem. Next section presents an efficient algorithm to solve the proposed problem.
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4. Solution methodology

On the earth’s surface, gravitation force drives water flows to constantly move to lower altitudes. A flow will
split into multiple sub-flows while moving from higher altitudes to lower ones on a rugged terrain. The mass and
velocity are two main characteristics of a flow which determine the flow’s momentum. When a number of water
flows move to the same position, they will be merged into a single water flow with higher momentum. Governed
by gravity and driven by fluid momentum, flows can run to higher levels or run over bumps to navigate various
terrains. Water flowing will cease and stagnate at lowest local or global depression, when the momentum left
cannot drive out the water out of the hollow.

Inspiring this behavior of water flow, Yang and Wang [21] proposed a new meta-heuristic optimization
algorithm, called water flow-like algorithm (WFA), for solving NP-hard combinational optimization problems.
Tran and Ng [22] proposed a water-flow algorithm to solve scheduling problem. They applied the algorithm to
a maltose syrup production problem, and illustrated it’s ability for solving problems in practical applications.
Wu et al. [23] and Chang and Wu [24] used the WFA logic and developed a heuristic algorithm for solving the
cell formation problem. Their computational results showed that the proposed algorithm has performed better
than other benchmarking approaches in terms of both solution effectiveness and efficiency. Recently, Tran and
Ng [25] used a hybrid WFA for solving multi-objective flexible flow shop scheduling problem with limited
buffers. The performance of the proposed algorithm was investigated by randomly generated test problems. The
computational results proved the effectiveness and efficiency of the WFA.

In WFA, the solution space of a problem is mapped as a geographical terrain and the objective function value
is considered as the altitude of a water flow while each water flow represent a solution agent. Water splitting
and moving to a lower position can be considered as a process of searching for the optimum status. A flow with
larger momentum will generate more sub-flows and its surrounding space will be better explored. The mass and
velocity of each flow are distributed to its sub-flows so that high quality sub-flows are of higher proportion of
the mass and velocity of the addressed flow. When more than two flows move to the same location, they will
merge into a single flow. Mass and velocity are then amassed to create an aggregated flow. The new aggregated
flow is able to reinforce the searching process around its location. Furthermore, to escape local optima, some
water flows may evaporate and return to the terrain by precipitation.

4.1. Multi-objective water flow-like algorithm

In this paper, we have developed a multi-objective version of WFA for discrete optimization problems. Our
multi-objective water flow like algorithm (MOWFA) is based on the Pareto approach. The MOWFA consists of
five main operations: (3.1) flow splitting and moving; (3.2) flow ranking; (3.3) flow merging based on similarity
coefficient method; (3.4) flow evaporation; and (3.5) heuristic precipitation. Physics quantities such as mass,
velocity, fluid momentum, energy, and gravitational acceleration are also used as basic parameters to construct
this algorithm. In the proposed MOWFA, the flows are ranked based on the two key concepts of non-dominated
sorting and crowding distance.

In MOWFA, solution agents are considered as water flows, solution space is mapped to the geographical
terrain and the objective function value is considered by the altitude of a water flow. Searching the solution
space is modeled as the terrain traversed by the flows. Initially, a cloud, representing an iteration, randomly
produces a set of flows into different positions of the ground. The flows are ranked based on non-dominated
sorting and crowding distance metrics. Then, based on the rank, each flow is given a momentum. The flows with
higher momentums are allowed to generate more sub-flows. Then any tow flows at the same location (sub-flows),
are merged into a single flow with higher momentum. In each iteration, the momentum of all flows is decreasing.
The flows with zeros momentum will be evaporated and then are returned to the ground by precipitation. The
way of encoding the flows, flow splitting and moving, flow merging operation, flow evaporation operation and
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Initialize the parameters of WFA algorithms ( ) 
Generate random initial flows (POP) 
Perform non dominated sorting  
Compute crowding distance  
Ranking flows based on non-dominated sorting and crowding distance 
While stop criterion is false  

{ 

       For each flow  Do 
        Flow splitting and moving 
        Searching to find the optimum solution based on neighborhood structures of WFA. 
        End For 
        Flow merging. 
        Water evaporation. 
        If rainfall required Do 
        Precipitation. 
        End If 
       Perform non dominated sorting  
       Compute crowding distance  
       Rank flows based on non-dominated sorting and crowding distance 
       Select the flows for next iteration by eliminating the extra flows. 
} 
 

Figure 1. Pseudo-code of MOWFA.

precipitation used in the MOWFA are described later. To give a better understanding of MOWFA, Figure 1
shows its Pseudo-code.

4.2. A fast non-dominated sorting approach

First, the flows are sorted based on non-domination relationship. The non-domination is an individual factor
and is said to dominate the other one if its objective function is not worse than the other and at least, one
of its objective functions is better than the other one. Figure 2 shows a graphical representation of the fast
non-dominated sorting when minimizing the both objectives is desired. Individuals such as x1, x4, x6 and x7

are assigned ranks as rank 1 since there is no individual superiority to them with respect to f1 (x) and f2 (x).
After elimination of the individuals classified as rank 1, individuals with rank 2 are selected, and this process is
repeated until all individuals are classified. The non-dominated sorting approach will require at most O

(
MN2

)
computations, where M is the number of objectives and N is the number of solutions in the population [26].

A set of front-1 individuals is called Pareto-optimal front.
If two solutions (flows) fall into a same front, a new metric called “crowding distance” is used to evaluate

the individuals. The crowding distance is a measure of how close an individual is to its neighbors. The basic
idea behind the crowding distance is finding the Euclidean distance between each individual in a front based on
their m objectives in m-dimensional hyperspace.

Then, the standard operators of the WFA are performed on the flows to enhance the current flows and
generate new flows as the next generation. Furthermore, we include a heuristic precipitation process in the
algorithm to raise the solution exploitation capability of the search process. The details of the other operations
of the MOWFA for the MODFLP are described in the following subsections.
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Figure 2. Schematic representation of the non-dominated sorting for two objectives [27].

Figure 3. An example of the proposed solution representation (a water flow).

4.3. Encoding the flows

Initially, a set of flows as initial random solutions are randomly distributed on some positions on the ground.
As mentioned earlier, flows are mapped as solutions and must be a representative of decision variables. We
present each flow by two sub-matrixes each of which corresponds to a special area of decision making. The first
sub-matrix, which is related to the way machines are placed in positions, is presented by a 1 × NT vector in
which N is the number of machines and T is the number of periods. The cells 1-T of sub-matrix 1 correspond
to machine layout in period one, cells T+1-2T correspond to machine layout in period two and so on. The
value inside each cell denotes the machine number and the cell’s rank represents the location of the machine.
For example, Figure 3 shows a solution with two periods of time in which during period one, machine 2 is
placed in location 1, machine 4 is placed in position 2, machine 1 is placed in position 3, machine 5 is placed in
position 4 and machine 3 is placed in position 5. The second sub-matrix is related to assigning the transporters
to machines in which the type of selected transporter is pointed to. For instance, in typical solution of Figure 3,
the transporter type 3 is responsible for handling the materials between machines 1 and 2 in period 1.

4.4. Flow splitting and moving

Driven by flow momentum, the flows start to move to new locations and explore the solution space for better
solutions. A flow with higher momentum generates more streams of sub-flows than one with less momentum.
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Figure 4. An example of neighborhood strategies.

The number of sub-flows split from a flow can be computed by equation (4.1),

ni = min
{

n, int
MiVi

T

}
(4.1)

where n̄ is an upper bound imposed on the number of sub-flows, Mi represent the mass and Vi represent the
velocity of the flow “i”. When the momentum of a flow is lower than a predefined base momentum T , no splitting
happens and the flow moves as a single stream to the neighboring location. Furthermore, if a flow has a zero
velocity, it will stagnate at its location. The locations of the split sub-flows are derived from the neighboring
locations of the original flow. In reality, a flow movement is a search procedure from the current location to a
neighboring one. The design of the flow-moving operation is problem-dependent. For more efficiency of proposed
MOWFA, we have designed two neighborhood strategies which are capable of keeping the feasibility of solutions.

In neighborhood strategy type 1, after randomly selecting a period, two different cells of sub-matrix 1 and
two different cells of sub-matrix 2 are selected and swapped (as is depicted in Fig. 4). In neighborhood strategy
type 2, two periods are randomly selected and all the data related to the machine layout and transporter
allocation of these periods are exchanged.

As previously mentioned, the mass of flow i is distributed to its sub-flows. For this purpose, the sub-flows
of flow i are ranked based on non-dominated sorting and crowding distance metric. The mass of sub-flow j
distributed by flow i, Uij , can be obtained from equation (4.2).

Uij =
(

ni + 1 − rankj∑ni

r=1 r

)
× Mi (4.2)

where rankj represents the rank of sub-flow j with respect to the other sub-flows. For instance, if flow i splits
to 5 sub-flows, the mass of rank 1 sub-flow is obtained from equation (4.3).

Uij =
(

5 + 1 − 1
15

)
× Mi =

5
15

× Mi. (4.3)
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Also, velocity of sub-flow j is computed by equation (4.4).

μi,j =

{√
V 2

i + 2gδi,j if V 2
i + 2gδi,j > 0

0 otherwise
(4.4)

δi,j = mean lim
k

δk
i,j

where “g” is the gravitational acceleration and δk
i,jδ

k
i,j represents the altitude drop from flow i to its sub-flow

j in objective function k which means the improvement of kth objective function when moving from current
solution i to neighborhood solution j. The value of δk

i,jδ
k
i,j for each of minimization and maximization objective

functions is computed separately (using Eq. (4.5)) and then is averaged,

δk
i,j =

{
fk

i − fk
i,j , for minimization

fk
i,j − fk

i , for maximization (4.5)

where fki fk
i represents the value of objective function kof flowiand fk

i,jf
k
i,j represents the value of kth objective

function of sub-flow j distributed by flow i.

4.5. Flow-merging operation

When more than two flows arrive at the same location, they will merge into a single flow with bigger
momentum. Whether the location of two flows are the same or not is investigated by our proposed criterion
called similarity coefficient (SC). If the SC between two flows is greater than a predefined threshold, their
locations are supposed to be identical and the merging takes place. Figure 5 is proposed to find the SC between
two flows a and b:

( )
1 1

,
N T

tia tibi t
ab

X X
SL

N T
= =

∂
=

×
∑ ∑

 

If 1abSL =  

( )
1 1 1

2

,
N N T

tika tikbi k t
ab

Y Y
SC

N T
= = =

∂
=

×
∑ ∑ ∑

 

Else 

0abSC =  

End If 
 

/ abSL  is the rate of similarity in terms of layout of machines / 

/ tiaX  and tibX  are the location of machine i  in period t  in the flows a  and b  respectively / 

/ N  is the number of machines / 
/ T  is the number of periods / 

/ abSC  is the rate of similarity coefficient / 

/ ,tika tikbY Y  are selected transporter between machine i and k in the period t  in  the flows a and b respectively / 

 

Figure 5. Determining the similarity coefficient between two flows a and b.
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In Figure 5, ∂ (A, B) is the similarity between two especial bits given by equation (4.6).

∂ (A, B) =
{

1 if A = B
0 otherwise. (4.6)

According to Figure 5, the SC between two flows is zero if there is only a small difference in machine layout
design. This is because the layout of machines has a great impact on the objective functions. If SCab exceeds a
predefined threshold, the flows a and b are recognized as identical flows and merged. Suppose that the flows a
and b are sharing the same location, then both flows a and b will be removed and the new flow will be generated
based on the characteristics presented in equations (4.7)–(4.8).

Mnew = Ma + Mb (4.7)

Vnew =
VaMa + VbMb

Ma + Mb
· (4.8)

The new generated flow is quite similar to flow a and b in terms of sub-matrix 1. But, since sub-matrix 2
(transporter allocation) of flows a and b may be different, the structure of the merged flow in sub-matrix 2
(transporter allocation) is followed by the flow with higher rank. Therefore, by reducing the number of agents
which are representative of similar positions, MOWFA avoids doing redundant searches.

4.6. Flow evaporation operation

It is natural that flows of water evaporate after possible movement and return to the ground through precip-
itation. In MOWFA, water evaporation and precipitation mechanism help the algorithm to escape from local
optima. If a flow falls into a local optimum, it will be stagnated and so loss the capability of moving, merging
or splitting. To overcome this problem and release the flow from the local optima, the trapped flow is forced to
evaporate into the atmosphere.

The proposed MOWFA establishes a velocity-based evaporation according to the flows with smaller velocities
so that they will evaporate more speedily than flows with larger velocities. The formulation of the velocity-based
evaporation proposed by [28], is presented in equations (4.9)–(4.10).

Mi = (1 − ρi)Mi (4.9)

ρi =

⎧⎪⎪⎨
⎪⎪⎩

1, if μi,j = 0
0, if

μi,j

Vi
� 1

1 − μi,j

Vi
if 0 � μi,j

Vi
� 1.

(4.10)

4.7. Heuristic precipitation

After a number of iterations, the evaporated water will return to the ground by precipitation operator. In
this paper, a seasonal rainfall is applied periodically in which the precipitation takes place when the number
of evaporated flows reaches to a predefined level. In order to enhance the algorithm’s diversity, the location of
returned flow is deviated far away from the location of flow before evaporation. In this way, the bits of flow are
arranged inversely (Fig. 6).

Finally, all the initial flows, all the generated sub-flows and the flows generated via precipitation are gathered
and form a new population. Then in this population, the members are ranked by non-dominated sorting and
crowding distance criteria. By eliminating the overflow members, a population is constructed as initial population
of next generation. The process continues to be performed until the stopping criteria are satisfied.
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Figure 6. An example of generated solution based on heuristic precipitation.

4.8. Stopping criterion of the algorithms

For stopping MOWFA, first we define the set of m iterations as a round. Then, in every iteration, the best
value of every objective function is determined. If, the mean change of all the objective functions between two
successive rounds remains constant within 0.95% confidence interval, the algorithm is terminated.

5. Computational experiments

In order to verify and evaluate the results obtained by MOWFA some computational experiments are con-
ducted and the performance of MOWFA is compared with one of the NSGA-II and NRGA algorithms. To do
this, a set of test problems are randomly generated. There are 4 different problem sizes. The first contains
problems with 6 machines in 5 periods, second contains problems with 6 machines in 10 periods, third contains
problems with 15 machines in 5 periods and the fourth contains problems with 15 machines in 10 periods. For
each problem size, we generate eight instances. Note that throughout this paper all calculations were performed
a PC with Intel Core2 Duo 2.26 GHz CPU and 2 GB RAM. Moreover, algorithms were coded in MATLAB
software (Version 7.10.0.499, R2010a).

5.1. Multi-objective performance metrics

In multi-objective optimization algorithms, convergence to the Pareto optimal front and the maintenance
of a diverse set of solutions are two objectives. There is no single metric to evaluate the performance of the
algorithms to satisfy these objectives. In this paper, five metrics of spacing, mean ideal distance, diversity,
number of found solutions in Pareto front and number of function evaluations have been used to measure the
algorithms’ convergence and diversity.

5.1.1. Spacing metric

Zitzler [29] suggested spacing metric that calculates the relative distance between consecutive solutions in
the non-dominated set obtained as equation (5.1).

S =

√√√√ 1
nos − 1

nos∑
i=1

(
di − d

)2
(5.1)

where di is the sum of the differences in objective function values between solution i and it’s two nearest
neighbors for each objective and d̄ is the average of all di’s. When the solutions are nearly uniformly spaced,
the spacing measure will be small. Thus, an algorithm with a smaller spacing is preferred.
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5.1.2. Mean ideal distance (MID)

This metric proposed by Zitzler and Thiele [30] measures the convergence rate of Pareto fronts to an ideal
point (0, 0),

MID =
1

NOS

NOS∑
i=1

ci (5.2)

where ci =

√
J∑

j=1

f2
ji and fji is the jth objective function of ith solution. The low value of MID means that the

solutions in Pareto front are high-quality solutions.

5.1.3. Diversity metric

This metric, proposed by Zitzler Thiele [30], evaluate scatter of solutions in the Pareto front. As a rule,
whatever the scale is bigger, better.

D =

√√√√ J∑
j=1

(
max

i
fji − min

i
fji

)2

. (5.3)

5.1.4. Number of found solutions in Pareto front (NOS)

Count the number of the solutions in Pareto optimal front. Thus, more solutions in Pareto frontier imply
better performance of the algorithm [31].

5.1.5. Number of function evaluations (NOF)

In order to give a general perspective to the readers about the algorithms’ speed, the number of function
evaluations is considered as a performance metric. The speed of running the algorithms to find near optimum
solutions is one of the most important indexes in order to evaluate the algorithms.

5.2. Tuning algorithm’s parameters

The value of the parameters significantly affects the quality of the algorithms. Algorithms cannot reach to
the appropriate final solutions if their parameters are not adjusted properly. In this section, we investigate the
behavior of proposed MOWFA in different levels of parameters and determine the best level of the parameters.
The full factorial design of experiment is a conventional statistical method used for tuning the parameters, but
this method is not always well-organized because its calculations are increasingly complex when the number of
parameters is high. Therefore, in this paper, to limit the number of the experiments, a practical experimental
design technique, known as Taguchi method, is used. Taguchi method is a fractional factorial experiment that
is proposed by Taguchi as an efficient alternative for full factorial experiments.

In order to apply the Taguchi method, the levels of the factors should first be determined. The initial levels
of factors are shown in Table 1. The presented factors include the actual names along with their brief names.

In the Taguchi method, the values of quality characteristics obtained through the experiments are transferred
into a measure called signal to noise (S/N) ratio. The frame of this ratio is different for each response type.
equation (5.4) formulates S/N for a larger-the-better response type, where yi is the ith observed value of the
response (quality characteristic) and n is the number of observations in a trial.

S

N
= −10 log

(
1
n

n∑
i=1

y2
i

)
· (5.4)

Multi-objective coefficient of variation (MOCV), proposed by Rahmati et al. (2013), is considered as the response
for the experiments.

MOCV =
MID

Diversity
· (5.5)
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Table 1. Algorithm parameter ranges along with their levels.

Solving methodology Parameter Description Level 1 Level 2 Level 3 Level 4

NSGA-II

Popsize Initial pop size 30 70 140 200
Pc Percent of cross over 0.7 0.8 0.85 0.9
Pm Percent of mutation 0.1 0.15 0.17 0.2

Round Number of generations 200 300 400 500

NRGA

Popsize Initial pop size 50 100 150 200
Pc Percent of cross over 0.7 0.8 0.85 0.9
Pm Percent of mutation 0.1 0.15 0.2 0.3

Round Number of generations 200 350 500 600

MOWFA

Popsize Number of initial flows 30 50 70 90
M0 Initial mass of original low 20 30 40 50
V0 Initial velocity of original flow 10 20 30 30

Round Number of Iterations 100 200 300 400

Table 2. The orthogonal array and computational results to tune NSGA-II and NRGA.

Exp No.
NSGA-II NRGA

Popsize Pc Pm Iteration MOCV 1 MOCV 2 MOCV 3 S/N MOCV 1 MOCV 2 MOCV 3 S/N
1 1 1 1 1 1.02 1.29 1.69 −2.68 1.27 1.55 2.06 −4.41
2 1 2 2 2 0.66 0.49 0.42 5.47 0.99 0.85 0.74 1.25
3 1 3 3 3 0.72 0.84 0.77 2.15 0.90 1.03 0.96 0.33
4 1 4 4 4 0.87 0.98 0.82 0.99 1.05 1.20 1.00 −0.71
5 2 1 2 3 0.55 0.58 0.60 4.75 0.67 0.71 0.77 2.86
6 2 2 1 4 1.11 0.69 0.60 1.62 1.33 0.86 0.74 −0.10
7 2 3 4 1 0.89 0.82 0.71 1.83 1.08 1.00 0.90 0.03
8 2 4 3 2 1.11 0.85 0.95 0.21 0.79 0.89 0.74 1.84
9 3 1 3 4 0.39 0.41 0.43 7.79 0.49 0.50 0.55 5.78
10 3 2 4 3 0.52 0.74 0.60 4.07 0.63 0.89 0.73 2.42
11 3 3 1 2 0.68 0.59 0.71 3.58 0.83 0.74 0.89 1.66
12 3 4 2 1 0.68 0.52 0.84 3.17 0.84 0.64 1.01 1.43
13 4 1 4 2 0.68 0.62 0.59 4.00 0.86 0.75 0.75 2.08
14 4 2 3 1 0.35 0.47 0.52 6.89 0.47 0.52 0.65 5.17
15 4 3 2 4 0.57 0.59 0.66 4.32 0.71 0.71 0.80 2.60
16 4 4 1 3 0.61 0.62 0.72 3.70 0.72 0.77 0.92 1.87

As mentioned earlier, in Pareto-based algorithms, two main goals including acceptable convergence and diver-
sity are considered. Since, MID measures the convergence rate of the algorithm and diversity measures, the
diversification in Pareto front. MOCV is a comprehensive combination of major metrics which is used as a
single response in the Taguchi method. Tables 2 and 3 summarize the experimental results of NSGA-II, NRGA
and MOWFA. Regarding equations (5.4) and (5.5) these tables present S/N and MOCV as well.

Figures 7 and 9 shows how the index values of S/N are changing at different levels of the algorithms. Levels
where the index S/N has reached the maximum are selected as the optimal levels. Optimal parameter levels of
the algorithms are highlighted in Table 1.

5.3. Algorithm’s evaluation

In this section, we present results of numerical experiments for the proposed algorithm, compared to those for
NSGA-II and NRGA using random generated test problems. Since the meta-heuristic algorithms are naturally
stochastic, each instance of the problem is replicated 45 times and the averaged results are reported. The results
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Table 3. The orthogonal array and computational results to tune MOWFA.

Exp No.
MOWFA

Popsize M0 V0 Round MOCV 1 MOCV 2 MOCV 3 S/N

1 1 1 1 1 1.35 0.99 1.15 −1.38

2 1 2 2 2 1.13 1.08 0.90 −0.36

3 1 3 3 3 0.44 0.29 0.16 10.03

4 1 4 4 4 1.24 1.07 0.91 −0.69

5 2 1 2 3 0.55 0.59 0.74 3.99

6 2 2 1 4 0.44 0.57 0.41 6.40

7 2 3 4 1 1.11 1.33 0.98 −1.21

8 2 4 3 2 0.30 0.19 0.13 13.23

9 3 1 3 4 0.22 0.21 0.04 15.04

10 3 2 4 3 0.34 0.25 0.17 11.69

11 3 3 1 2 0.89 0.98 1.01 0.35

12 3 4 2 1 1.02 1.09 1.12 −0.64

13 4 1 4 2 0.50 0.52 0.58 5.46

14 4 2 3 1 0.09 0.16 0.17 16.80

15 4 3 2 4 0.50 0.49 0.65 5.15

16 4 4 1 3 0.95 1.04 1.06 −0.15
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Figure 7. The mean S/N ratio plot for each level of the factors for NRGA.

are shown in Appendix A where obtained values of five performance measures are given. Figure 10 shows these
results graphically. Figure 10a shows the algorithms’ performances using the spacing metric. Since the standard
spacing is less, it can be concluded that the NRGA algorithm has the worst performance among the algorithms.
MOWFA and NSGA-II are approximately performing similarly.

Figure 10b compares MID metric of the algorithms. It is clear that in almost all instances the MOWFA
algorithm performs better in finding high quality solutions. As shown in Figure 10c, in terms of Diversity
metric, MOWFA gives better values compared with the two other algorithms for the most of the test problems.
Also, it is clear that the performance of NSGA-II and NRGA is at the same level. As shown in Figure 10d, based
on NOS metric, the performances of all the algorithm are approximately equivalent; however, as the problem
size increases, the quality of NRGA is decreasing.
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Figure 9. The mean S/N ratio plot for each level of the factors for MOWFA.

Figure 10e illustrates the superiority of the proposed MOWFA algorithm in comparison with NSGA-II and
NRGA in terms of NOF. According to Figure 10e, for small-sized problems, the MOWFA performs similar to
other algorithms, while for the large-sized problems, MOWFA considerably outperforms than the two other
algorithms, especially than NSGA-II.

Figure 11 is a graphical representation of the obtained Pareto front for problems 1, 9, 17 and 25. As shown in
Figure 11, the solutions from MOWFA are of the best values of all objective functions which in turn is a good
evidence for the effectiveness MOWFA in terms of MID.

In order to statistically verify the results shown in Figure 10, we used the analysis of variance (ANOVA)
test and statistically compared algorithms according to each of metrics separately. In this case, the value of
each metric is transformed to a normalized performance measure named relative percentage deviation (RPD),
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Table 4. ANOVA test.

Metric’s name F -value P -value Test results
Spacing 22.82 8.63e–09 Null hypothesis is rejected

MID 86.28 6.47e–22 Null hypothesis is rejected
Diversity 13.45 7.37e–05 Null hypothesis is rejected

NOS 29.97 8.98e–11 Null hypothesis is rejected
NOF 38.58 6.30e–13 Null hypothesis is rejected

Figure 10. Comparison of the proposed algorithm according to spacing metric MID metric,
diversity metric, metric NOS and NOF metric.

obtained by the following formula:

RPD (i, j, k) =
Algsol (i, j, k) − minsol (j, k)

minsol (j, k)
× 100. (5.6)

In equation (28), Algsol (i, j, k) shows the value of performance measure j in problem number k that has been
obtained by algorithm i and minsol (j, k) is the best value of performance measure j between all algorithms for
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Figure 11. Visual presentation of obtained Pareto-front four test problem 1, 9, 17 and 25.

problem number k. The ANOVA results are shown in Table 4, in which rejecting the Null hypothesis indicates
that there is significant difference between algorithms.

Based on the outputs of ANOVA test, it is clear that the algorithms have significant differences in terms of
all performance metrics which necessitate the use of Tukey test to statistically rank algorithms. The results of
the 95% Tukey simultaneous confidence intervals are shown in Figure 12. The results prove well performance
of the algorithms based on the mean and Tukey intervals. As Figure 12, we can say that NRGA has the lowest
spacing performance among all the algorithms. But, the efficiency of the MOWFA and NSGA-II is at the same
quality. In terms of MID metric, the MOWFA algorithm is dramatically better than two other algorithms. Also
NSGA-II can perform better than NRGA. Better performance of the MOWFA in terms of Diversity metric can
be shown in Figure 12. Based on NOS index the MOWFA and NSGA-II are statistically at the same level.
Based on Figure 12 we can prove that MOWFA is the most preferable technique in terms of the required NOF.
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Figure 12. The 95% Tukey simultaneous confidence intervals for the metrics.

6. Conclusion

This paper explained how to develop a more realistic mathematical model for dynamic facility layout problem.
Such models can be applied in manufacturing systems with a variety of MHE. In addition to minimizing MHC
and MRC, reducing the fixed/fixing cost of the MHE by selecting a safer MHE was also considered as the
other objective of the proposed model. To solve the problem, a new meta-heuristic algorithm inspired from the
existing water flow like algorithm called MOWFA was proposed. Various test problems were designed to evaluate
the performance of the algorithm in comparison with two well-known multi-objective evolutionary algorithms
called NSGA-II and NRGA. The experimental results indicated that our proposed algorithm outperforms both
NSGA-II and NRGA and it is also able to improve the quality of the solutions. The MID measure showed
that the MOWFA could achieve better the objective-function values, especially in large-sized problems. Also,
the MOWFA was so faster than the two other algorithms; this can show its applicability for the large-sized
real-world problems. The presented model was still open for incorporating other features, such as transporter
failure, machine breakdown and random processing time. Another clue for a future research is to consider the
proposed algorithm on other types of combinatorial optimization problems. As another direction, it could be
interesting to work on some other meta-heuristics and compare them with the given algorithms.
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Appendix A.

Table A.1. Multi-objective performance measures obtained for each algorithm.

Spacing MID Diversity

MOWFA NRGA NSGA-II MOWFA NRGA NSGA-II MOWFA NRGA NSGA-II

P1 4364 4311 2517 89 170 107 245 85 720 102 056 93 258 102 825

P2 2928 3125 2985 63 720 99 720 70 301 92 867 95 507 65 781

P3 2778 3874 3223 68 162 84 268 82 671 92 266 92 721 57 835

P4 2660 4712 3135 77 740 99 636 97 115 89 727 47 798 97 404

P5 4184 4282 3536 88 359 112 199 78 194 33 551 91 797 77 049

P6 3600 3768 3087 64 243 96 525 82 667 62 843 67 231 58281

P7 2659 5385 3829 56 215 82 645 57 337 37 288 66 708 101 320

P8 2780 3240 3817 76 389 99 850 91 132 108 879 88 495 65 230

P9 2969 3539 3150 108 094 164 423 108 605 102 685 85 674 55 295

P10 3016 4193 2081 111 321 171 307 149 924 133 687 68 388 81 878

P11 2679 4327 2245 128 346 154 520 125 884 120 610 50 642 64 082

P12 3092 4056 3164 114 660 137 378 162 938 68 065 73 147 72 590

P13 2675 3846 3386 111 383 165 054 147 971 146 458 136 729 122 052

P14 3241 4713 2785 105 834 146 264 151 001 123 827 112 637 63 483

P15 2832 3749 2221 128 319 178 727 171 941 99 148 80 979 86 176

P16 2979 3782 4342 123 021 183 561 136 524 107 005 85 610 79 217

P17 5074 6149 5935 15 901 190 025 176 880 75 429 96 786 90547

P18 5118 8359 7322 151 633 221 223 221 693 863 43 105 678 105 563

P19 5180 7611 5524 205 728 236 400 196 257 98 305 83 073 53 921

P20 6250 6197 6741 179 172 235 829 198 488 121 580 88 626 81 865

P21 7035 8531 7195 178 895 251 686 218 866 113 301 76 071 88 086

P22 6201 8311 6767 189 820 251 138 231 416 158 760 102 014 90 023

P23 6792 6251 5966 186 711 211 750 179 490 156 124 117 459 96 406

P24 7787 8538 5369 179 168 236 281 204 928 165 063 84 770 146 450

P25 8693 9971 8774 235 733 347 238 300 896 164 189 145 473 90 855

P26 10 368 10 928 9718 230 223 354 887 311 530 179 110 99 619 147 893

P27 8966 11 440 9838 253 287 416 590 307 895 184 045 132 195 116 752

P28 8391 11 718 9819 239 873 364 283 340 194 185 933 132 107 123 084

P29 9207 11063 8729 254 977 394 400 352 149 184 908 164 806 93 441

P30 9209 10 271 8087 263 560 395 843 304 959 195 043 126 198 134 747

P31 10 641 12 461 9246 269 918 359 465 328 036 195 429 136 831 124 167

P32 9729 11 624 7705 273 595 357 401 396 082 200 425 140 932 146 759
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NOS NOF* 102

MOWFA NRGA NSGA-II MOWFA NRGA NSGA-II

P1 12 7 14 23 075 20 833 22 916

P2 13 10 19 24 491 19 287 23 747

P3 12 9 16 18 743 20 912 26011

P4 9 15 11 18 335 23 206 24 098

P5 9 10 14 24 308 24 101 19 158

P6 10 13 15 25 613 18 224 21 047

P7 14 12 14 20 355 21 585 25 784

P8 11 11 10 21 191 19 215 21 807

P9 15 9 19 35 907 62 173 61 021

P10 18 16 11 32 382 59 457 68 730

P11 14 8 14 30 102 37 164 66 658

P12 10 13 17 39 461 65 003 59 471

P13 16 8 16 47 504 41 041 50 179

P14 17 13 23 39 940 36 675 46 817

P15 11 13 12 33 215 60 239 46 830

P16 14 11 16 36 061 33 964 68 700

P17 18 16 16 90 888 102 456 130 278

P18 11 14 19 107 114 128 744 155 434

P19 12 9 17 104 367 114 636 131 606

P20 14 9 19 89 960 100 856 148 224

P21 22 9 16 92 478 116 691 172 430

P22 14 17 22 91 947 127 904 158 870

P23 19 17 20 91 275 105 495 156 189

P24 13 17 19 103 861 110 974 145 701

P25 22 20 28 448 618 541 867 757 899

P26 20 18 24 384 950 545 010 739 484

P27 21 22 32 439 349 483 017 719 259

P28 23 18 29 402 728 489 441 655 397

P29 22 17 27 395 391 478 866 716 287

P30 20 19 27 383 603 416 241 735 609

P31 22 17 33 400 575 411 374 843 477

P32 25 21 31 414 777 482 183 862 108
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