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NETWORK ROBUSTNESS AND RESIDUAL CLOSENESS

Aysun Aytaç1,∗ and Zeynep Nihan Odabaş Berberler2

Abstract. A central issue in the analysis of complex networks is the assessment of their robustness and
vulnerability. A variety of measures have been proposed in the literature to quantify the robustness of
networks and a number of graph-theoretic parameters have been used to derive formulas for calculating
network reliability. In this paper, we study the vulnerability of interconnection networks to the failure
of individual nodes, using a graph-theoretic concept of residual closeness as a measure of network
robustness which provides a much fuller characterization of the network.
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1. Introduction

Networks and complex systems are used for modeling different systems such as chemical systems, neural
networks, social systems or the Internet and the World Wide Web. Study of network topology receives great
attention in various research fields such as operations research, physical sciences, biological sciences, computer
sciences, and mathematics. Graph theory has become one of the most powerful mathematical tools in the analysis
and study of the architecture of an interconnection network. It is well known that the underlying topology of
an interconnection network is modeled by a graph G = (V,E), where V (G) is the set of processors and E (G)
is the set of communication links in the network.

A central issue in the analysis of complex networks is the assessment of their robustness and vulnerability.
Robustness of the network topology is a key aspect in the design of computer networks. The study of network
robustness receives great attention in all fields of network research. Vulnerability is an important concept in
network analysis. The vulnerability of a communication network is defined as the measurement of the global
strength of its underlying graph. The design of a good communication network must take into account notions
such as reliability and vulnerability. When the network requirements are expressed in terms of graph theoretical
parameters, the problem of analysis and design of networks becomes finding a graph G satisfying some specified
requirement.

Communication systems are often subjected to failures and attacks. A variety of measures have been proposed
in the literature to quantify the robustness of networks and a number of graph-theoretic parameters have been
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used to derive formulas for calculating network reliability. For instance, connectivity of a graph is an important
and the earliest measure of robustness of a network [12]. However, the connectivity only partly reflects the ability
of graphs to retain connectedness after vertex or edge deletion. Other improved measures were introduced and
studied, such as toughness [24], scattering number [11], integrity [2], tenacity [16], etc. In contrast to connectivity,
these measures consider both the cost to damage a network and how badly the network is damaged. These
parameters are appropriate when graph failure means that the graph has become disconnected or trivial. From
an algorithmic point of view, it is unfortunate that problem of recognizing these measures of general graphs is
NP-complete [8]. This implies that these measures are of no great practical use within the context of complex
networks.

The concept of residual closeness is introduced by Dangalchev [4] as a useful measure of graph vulnerability.
The aim of residual closeness is to measure the vulnerability even when the removal of vertices does not
disconnect the graph. In this model, the vertices fail independently of each other. In [4], it is argued that
residual closeness is the most appropriate approach for modeling the robustness of network topologies in the
face of possible node or link destruction. Residual closeness can reflect the vulnerability of graphs better than
or independent of the other parameters existing in literature. Since residual closeness is considered to be a
reasonable measure for the vulnerability of graphs, it is of particular interest to evaluate the residual closeness
of different classes of graphs. We studied the closeness and residual closeness in wheels and cycles and related
networks [1, 32]. Turacı and Aytaç also studied these parameters [22,23].

The aim of this article is to obtain general bounds, general results and efficient formulas for the closeness
and residual closeness of graphs.

In this paper, we consider simple finite undirected graphs without loops and multiple edges. Let G = (V,E)
be a graph with a vertex set V = V (G) and an edge set E = E (G). The order of G is the number of vertices
in G. The distance d (u, v) between two vertices u and v in G is the length of a shortest path between them. If
u and v are not connected, then d (u, v) = ∞, and for u = v, d (u, v) = 0. The eccentricity of a vertex v in G
is the distance from v to a vertex farthest away from v in G. The diameterof G, denoted by diam (G), is the
largest distance between two vertices in V (G). The degree degG (v) of a vertex v ∈ V (G) is the number of edges
incident to v. The maximum degree of G is ∆ (G) = max {degG (v) |v ∈ V (G)}. A vertex of degree zero is an
isolated vertex or an isolate. A vertex of degree one is called a leaf or an endvertex, and its neighbor is called a
support vertex. For any leaf vertex v and support vertex w, the edge vw is called a pendant edge [7, 9, 10,13].

The paper proceeds as follows. In Section 1, the definitions of closeness and residual closeness and known
results are given. Sharp upper and lower bounds for the closeness are discussed in terms of order and diameter of
a graph in Section 2. Section 3 and 4 include several results on closeness of graphs for which diam (G) is small,
and having specific types of vertices. Formulas for the closeness and residual closeness of the graphs obtained
via unary and binary graph operations are given in Section 5. Section 6. concludes the paper.

2. Closeness and residual closeness

The closeness of a graph is defined as C =
∑
i

C (i), where C (i) is the closeness of a vertex i and C (i) =∑
j 6=i

2−d(i,j) [4]. This definition can also be used for disconnected graphs.

Let dk (i, j) be the distance between vertices iand j in the graph, received from the original graph where
all edges incident to vertex k are deleted. Then the closeness after removing vertex k is defined as Ck =∑
i

∑
j 6=i

2−dk(i,j) [4].

The vertex residual closeness (VRC) of the graph is defined as R = min
k
{Ck} [4].
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Theorem 2.1 [4].

The closeness of

(a) the complete graph Kn with n vertices is C (Kn) = (n (n− 1))/2;
(b) the star graph Sn with n vertices is C (Sn) = (n− 1) (n+ 2)/4;
(c) the path Pn with vertices is C (Pn) = 2n− 4 + 22−n.

Theorem 2.2 [1]. The closeness of the cycle Cn with n vertices is

C (Cn) =
{

2n
(
1− 1/2(n−1)/2

)
, if n is odd;

n
(
2− 3/2n/2

)
, if n is even.

Theorem 2.3 [4].

The VRC of

(a) the complete graph Kn with vertices is R (Kn) = ((n− 1) (n− 2))/2;
(b) the star graph Sn with n vertices is R (Sn) = 0.

Theorem 2.4 [4]. If H is a proper subgraph of graph G, then R (H) < R (G).

3. Bounds on the closeness of a graph

Theorem 3.1. For any connected G of order n,

C (G) ≤ n(n− 1)/2. (3.1)

Proof. Consider any vertex v of G. Then, C (v) ≤ (n− 1)
(
2−1
)
. Since this inequality holds for every other

vertex of G, combining the inequalities for ∀v ∈ V (G) yields

C (v1) + C (v2) + . . .+ C (vn) =
∑
i

C (vi) = C (G)

C (G) ≤ n
(
(n− 1)

(
2−1
))

and this leads to the desired bound (3.1). �

Remark 3.2. The result in Theorem 3.1 is best possible. This can be shown by the complete graph Kn of
order n having C (Kn) = n(n− 1)/2. This shows that an equality is obtained in inequality (3.1) if G ∼= Kn with
|V (G)| = n and consequently, the bound (3.1) is sharp.

Theorem 3.3. For any connected G of order n,

C (G) ≥ n

diam(G)−1∑
i=1

1/2i

+ (n− diam (G))/2diam(G)

 . (3.2)

Proof. Consider any vertex v of G. Then,

C (v) ≥ (1)
(
2−1
)

+ (1)
(
2−2
)

+ . . .+ (1)
(

21−diam(G)
)

+ (n− diam (G))
(

2−diam(G)
)
.
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Since this inequality holds for every other vertex of G, combining the inequalities for ∀v ∈ V (G) yields

C (v1) + C (v2) + . . .+ C (vn) =
∑
i

C (vi) = C (G)

C (G) ≥ n
((

2−1 + 2−2 + . . .+ 21−diam(G)
)

+ (n− diam (G))
(

2−diam(G)
))

= n

diam(G)−1∑
i=1

1/2i

+ (n− diam (G))
(

2−diam(G)
) ,

and this yields the desired bound (3.2). �

Remark 3.4. The result in Theorem 3.3 is best possible. This can be shown by the complete graph Kn of
order n. Since diam (Kn) = 1,

C (Kn) = n (n− 1)/2 = n

diam(Kn)−1∑
i=1

2−i

+ (n− 1)
(
2−1
) = n ((n− 1)/2) .

This shows that an equality is obtained in (3.2) if G ∼= Kn with |V (G)| = n, and thus (3.2) is also sharp.

4. Closeness in graphs with small diameter

Diameter is an important graph theoretic concept. The diameter of a graph corresponds to the maximum
number of links over which a message between two nodes must travel. In order to improve or increase the
efficiency of message transmission, the diameter of networks are wished to be low.

Theorem 4.1. For any graph G, if diam (G) ≤ 2, then

C (G) = (|V (G)| (|V (G)| − 1) + 2 |E (G)|)/4.

Proof. Consider any vertex v in G. Then, v is adjacent to deg (v) vertices in G. Since diam (G) ≤ 2, v is
at distance 2 to other remaining vertices of G if there exist some. Hence, we have C (v) = deg (v)

(
2−1
)

+
(|V (G)| − deg (v)− 1)

(
2−2
)

= (|V (G)|+ deg (v)− 1)/4.
Since the value of C (v) holds for every other vertex of G, combining the closeness values for ∀v ∈ V (G)

yields
C (v1) + C (v2) + . . .+ C

(
v|V (G)|

)
=
∑
i

C (vi) = C (G)

C (G) = (1/4)
(
|V (G)|2 + deg (v1) + deg (v2) + . . .+ deg

(
v|V (G)|

)
− |V (G)|

)
.

Furthermore, the sum of the vertex degrees is twice the number of edges in the graph. Therefore,

C (G) = (1/4)
(
|V (G)|2 + 2 |E (G)| − |V (G)|

)
= (|V (G)| (|V (G)| − 1) + 2 |E (G)|)/4.

The theorem is thus proved. �

By Theorem 4.1 , the following corollary is immediate.

Corollary 4.2. If a vertex v has eccentricity two in G, then C (v) = (|V (G)|+ deg (v)− 1)/4.
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5. Closeness in graphs with specific types of vertices

Theorem 5.1. Let G be a graph and {u, v} ∈ V (G). If u is an endvertex of the support vertex v in G, then
Cv (u) = 0.

Proof. Removing the support vertex v from G means removing the pendant edge e = uv. Hence, u is an
isolate in the remaining graph G′ = G \ {v}. Therefore, d (u, j) = ∞ for ∀j ∈ V (G′) and j 6= u. Then,
Cv (u) =

∑
j 6=u

2−d(u,j) = 0, and the desired result follows. �

Theorem 5.2 [5]. If a vertex k does not belong to any unique geodesic (shortest path) of graph G, then
C (G \ k) = C (G)− 2C (k).

Related to Theorem 5.2, the following corollary holds.

Corollary 5.3. Let G be a graph. Then, for an endvertex u of G, Cu (G) = C (G)− 2C (u).

Proof. If an endvertex u of G is removed, then in the remaining graph G′ = G \ {u}, the distance between each
pair of the remaining vertices remains the same as it is in G. Therefore, for ∀i,

Cu (G) =
∑
j 6=i

2−du(i,j) =
∑
j 6=i

2−d(i,j) −
∑
j 6=u

2−d(u,j) −
∑
j 6=u

2−d(j,u) = C (G)− 2C (u) .

This completes the proof. �

6. Graph operations, closeness and residual closeness

6.1. Graph complement

For any graph G = (V,E), the complement Ḡ =
(
V, Ē

)
is defined to be the graph on the same set of vertices

V (G) with uv ∈ Ē
(
Ḡ
)

if and only if uv /∈ E (G), for all pairs u 6= v ∈ V (G) [13].

Corollary 6.1. For any graph G, if diam (G) > 3, then

C
(
Ḡ
)

= (|V (G)| (|V (G)| − 1)− |E (G)|)/2.

It is not hard to show that if a graph has large diameter, then its complement has small diameter:

Lemma 6.2 [9]. If diam (G) > 3, then diam
(
Ḡ
)
≤ 2.

In order to prove Corollary 6.1, we use Lemma 6.2 above.

Proof. By the definition of graph complement, we have
∣∣V (Ḡ)∣∣ = |V (G)| = n and

∣∣E (Ḡ)∣∣ = |E (Kn)|−|E (G)|,
where Kn is the complete graph of order n. Since |E (Kn)| = n (n− 1)/2,

∣∣E (Ḡ)∣∣ = |V (G)| (|V (G)| − 1)/2 −
|E (G)|. If diam

(
Ḡ
)
≤ 2, then by substituting |V (G)| and |E (G)| in Theorem 4.1 with

∣∣V (Ḡ)∣∣ and
∣∣E (Ḡ)∣∣,

we receive the desired result of C
(
Ḡ
)
. �

6.2. Graph union

Let G1 and G2 be two disjoint graphs. The union of G1 and G2 with disjoint vertex sets V (G1) and V (G2)
and edge sets E (G1) and E (G2) is the graph G = G1 ∪G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge
set E (G) = E (G1) ∪ E (G2) [13].

The following theorems give formulas for closeness and residual closeness of the union of disjoint graphs.
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Theorem 6.3. Let G1, G2, . . . , Gn be disjoint graphs. If G =
⋃n
i=1Gi, then C (G) =

n∑
i=1

C (Gi).

Proof. The graph G = G1 ∪ G2 ∪ . . . ∪ Gn is a disconnected graph with n components. The components of G
are the graphs G1, G2, . . . , Gn. Therefore d (v, w) = ∞ if v ∈ Gi and w ∈ Gj , where i 6= j and v 6= w. Hence,
the result is obvious. �

Theorem 6.4. Let G1and G2 be two disjoint graphs. Then

R (G1 ∪G2) = min {R (G1) + C (G2) , R (G2) + C (G1)} .

Proof. Denote the order of G1 by n and denote the order of G2 by m. Thus, |V (G1 ∪G2)| = n + m. Label
the vertices of V (G1 ∪G2) as v1, v2, . . . , vn, vn+1, . . . , vn+m, such that V (G1) = {v1, v2, . . . , vn} and V (G2) =
{vn+1, . . . , vn+m}. Then the proof proceeds in the following two cases:

Case 1. If any vertex vk (1 ≤ k ≤ n) of G1 is removed from G1∪G2, then the closeness of the remaining graph
is

Cvk =
n+m∑
i 6=k

n+m∑
j 6=i,j 6=k

2−dvk (vi,vj)

=
n∑
i 6=k

n∑
j 6=i,j 6=k

2−dvk (vi,vj) +
n+m∑
i=n+1

n+m∑
j=n+1,j 6=i

2−dvk (vi,vj)

= Cvk (G1) + C (G2)

Case 2. It is obvious that G1 ∪ G2
∼= G2 ∪ G1. Thus, if any vertex vt (n+ 1 ≤ t ≤ n+m) of G2 is removed

from G1 ∪G2, then Cvk = Cvt (G2) + C (G1).

By Case 1, Case 2 and the definition of residual closeness, the following result can be derived easily.
For ∀k, t,

R (G1 ∪G2) = min {Cvk (G1) + C (G2) , Cvt (G2) + C (G1)}

= min
{

min
k
{Cvk (G1)}+ C (G2) ,min

t
{Cvt (G2)}+ C (G1)

}
= min {R (G1) + C (G2) , R (G2) + C (G1)}

This completes the proof. �

6.3. Graph join

Let G1 and G2 be two disjoint graphs. The join of G1 and G2 with disjoint vertex sets V (G1) and V (G2)
and edge sets E (G1) and E (G2) is the graph G = G1 +G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge
set E (G) = E (G1) ∪ E (G2) ∪ {(u, v) : u ∈ V (G1) , v ∈ V (G2)} [13].

Finally, we give formulas for closeness and residual closeness of the join of two disjoint graphs.
Note that throughout Corollary 6.5 and Corollary 6.6, |V (G1)| = v1, |V (G2)| = v2, |E (G1)| = e1,

|E (G2)| = e2.

Corollary 6.5. Let G1 and G2 be two disjoint graphs, then

C (G1 +G2) = (e1 + e2 + v1v2)/2+ (v1 + v2) (v1 + v2 − 1)/4.

Proof. The demonstration of the validity of Corollary 6.5 is elementary. First, note that any two vertices of
G1 +G2 are either adjacent or at distance two. The distance-two pairs are those corresponding to nonadjacent
vertices in either G1 or G2. Therefore, obviously diam (G1 +G2) ≤ 2. Since |V (G1 +G2)| = v1 + v2 and
|E (G1 +G2)| = e1 + e2 + v1v2, by substituting |V (G1 +G2)| and |E (G1 +G2)| with Theorem 4.1, we arrive
at result. �
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Corollary 6.6. Let G1 and G2 be two disjoint graphs with v1 > 1 and v2 > 1, then

R (G1 +G2) =
{
C (G1 +G2)− (v2 +∆ (G2)− 1)/2 − v1, if ∆ (G1)−∆ (G2) ≤ v1 − v2;
C (G1 +G2)− (v1 +∆ (G1)− 1)/2 − v2, otherwise.

Proof. We distinguish two cases:

Case 1. Removing a vertex v of G1 from G1 +G2:
Let the remaining subgraph be G′ = (G1 +G2) \ {v}. It is easily seen that G′ is
a graph which is obtained by the join of two disjoint graphs: (G1 \ {v}) + G2. Since
v1 > 1, we have diam (G′) ≤ 2. Being |V (G′)| = (v1 − 1) + v2 and |E (G′)| =

(
e1 − degG1

(v)
)

+
e2 + v2 (v1 − 1), by substituting |V (G′)| and |E (G′)| with Theorem 4.1, we arrive the result that for
∀v ∈ V (G1),

Cv =
(

(v1 + v2)2 + 2
(
v1v2 − v1 − 2v2 + e1 + e2 + 1− degG1

(v)
)
− v1 − v2

)
/4.

Case 2. Removing a vertex u of G2 from G1 +G2:
It is obvious that G1+G2

∼= G2+G1. Then, the remaining subgraph is G′ = G1+(G2 \ {u}). Since, v2 >
1, we have diam (G′) ≤ 2. Being |V (G′)| = v1+(v2 − 1) and |E (G′)| = e1+e2−degG2

(u)+v1 (v2 − 1),
by substituting |V (G′)| and |E (G′)| with Theorem 4.1, we arrive the result that for ∀u ∈ V (G2),

Cu =
(

(v1 + v2)2 + 2
(
v1v2 − 2v1 − v2 + e1 + e2 + 1− degG2

(u)
)
− v1 − v2

)
/4.

By the definition of the vertex residual closeness (VRC) of a graph, we have R (G1 +G2) = min {Cv, Cu}, where
v ∈ V (G1) and u ∈ V (G2).

Let us show how to deduce min {Cv, Cu}:

min {Cv, Cu} = min
{

min
v
{Cv} ,min

u
{Cu}

}
(∀v, u)

min
v
{Cv} =

(
(v1 + v2)2 + 2

(
v1v2 − v1 − 2v2 + e1 + e2 + 1−max

v
degG1

(v)
)
− v1 − v2

)
/4.

min
u
{Cu} =

(
(v1 + v2)2 + 2

(
v1v2 − 2v1 − v2 + e1 + e2 + 1−max

u
degG2

(u)
)
− v1 − v2

)
/4.

We deduce that if ∆ (G1)−∆ (G2) ≤ |V (G1)| − |V (G2)|, then min
v
{Cv} ≥ min

u
{Cu}. Hence, we receive

R (G1 +G2) =

{
min
u
{Cu} , if ∆ (G1)−∆ (G2) ≤ |V (G1)| − |V (G2)| ;

min
v
{Cv} , otherwise.

The theorem is thus proved. �

Corollary 6.7. For any graph G,

R (G+K1) = min {C (G) , C (G+K1)− (|V (G)|+∆ (G) + 1)/2 } .

Proof. We distinguish two cases:

Case 1. Removing the vertex v of K1 from G+K1: the remaining subgraph is G. Therefore, obviously Cv =
C (G).

Case 2. Removing a vertex u of G from G + K1: the survival subgraph is G′ = (G \ {u}) + K1. Since diam
(G′) ≤ 2, being |V (G′)| = (|V (G)| − 1) + 1 and |E (G′)| = |E (G)| − degG (u) + |V (G)| − 1, by
substituting |V (G′)| and |E (G′)| with Theorem 4.1, we arrive the result below for ∀u ∈ V (G).

Cu = (|V (G)| (|V (G)|+ 1) + 2 |E (G)| − 2degG (u)− 2)/4.
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By the definition of the vertex residual closeness (VRC) of a graph, we have R (G+K1) = min {Cv, Cu}, where
v ∈ V (K1) and u ∈ V (G2).

Let us show how to deduce min {Cv, Cu}:

min {Cv, Cu} = min
{
C (G) ,min

u
Cu

}
(∀u)

min
u
Cu =

(
|V (G)| (|V (G)|+ 1) + 2 |E (G)| − 2max

u
{degG (u)} − 2

)
/4.

By writing the value of min
u
Cu in terms of the closeness of G and K1, finally we conclude that

R (G+K1) = min {C (G) , C (G+K1)− (|V (G)|+∆ (G) + 1)/2 } .

This completes the proof. �

7. Conclusion

Operations research handles designing complex and interdependent systems. Complex network is widely
used to model the structure of many complex systems in nature and society [19, 20]. Network models are
used to analyze social and practical problems [14], such as information, communication and computer net-
works, facility location problems [17], supply chain management [26], transportation networks [25], power grid
networks [15,18,27,28], water distribution networks [29], network optimization [6,30,31], game theory all in op-
erations research [33,34]. Military, government, commercial, and civilian operations depend on the security and
availability of computer systems and networks [3]. Networks are known to be prone to node failures. A central is-
sue in the analysis of networks is the assessment of their stability and reliability. The main aim is to understand,
predict, and possibly even control the behavior of a networked system under attacks or disfunctions of any type.
A central concept that is used to assess stability and robustness of the performance of a network under failures
is that of vulnerability [21]. Different approaches to characterize network vulnerability been proposed. Vulner-
ability measures for graphs are essential to guide the designer in choosing an appropriate topology. Residual
closeness is a new graph vulnerability measure, a graph-based approach to network vulnerability analysis, and
more sensitive than some other existing vulnerability measures [4]. In this paper, sharp upper and lower bounds
for closeness, closeness values for complex networks with small diameter , and for specific types of vertices in
networks are investigated. Those obtained bounds and values are of practical importance for measuring the
residual closeness of a handling complex network. Also, the vulnerability of complex networks gained by graph
operations are evaluated via residual closeness, and the calculated closeness values of related networks are used
for evaluation. Calculation of closeness and residual closeness for simple graph types is important because if
one can break a more complex network into smaller networks, then under some conditions the solutions for the
optimization problem on the smaller networks can be combined to a solution for the optimization problem on
the larger network and by calculating the residual closeness for some real networks very good practical results
can be achieved.
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