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Abstract. A graph G of even order is �-extendable if it is of order at least 2�+2, contains a matching
of size �, and if every such matching is contained in a perfect matching of G. In this paper, we study
the extendability of lexicographic products of graphs. We characterize graphs G and H such that their
lexicographic product is not 1-extendable. We also provide several conditions on the graphs G and H
under which their lexicographic product is 2-extendable.
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1. Introductory remarks

A matching in a graph G is a set of pairwise non-adjacent edges and a matching M is a perfect matching of G
if V (M) = V (G). The size of a matching is given by the number of edges it contains. If every matching of size �
can be extended to a perfect matching in G, then G is called �-extendable, where |V (G)| ≥ 2�+2. In particular,
0-extendable means there exists a perfect matching in G. Note that, although extendability is originally defined
for connected graphs in [8], we will work in a more general setting of not necessarily connected graphs.

The concept of �-extendability is widely analyzed in the literature. In 1980, Plummer [8] studied the properties
of �-extendable graphs and showed that every 2-extendable graph is either bipartite or a brick. Necessary and
sufficient conditions for a graph to be 1-extendable were given by Little, Grant and Holton [6]. There are also
many other results related to n-extendability of graphs. However, there are few works on matching extension in
different types of graph products. Győri and Plummer [4] showed that the Cartesian product of a k-extendable
graph and an �-extendable graph is (k + �+1)-extendable. Győri and Imrich [3] showed that the strong product
of a k-extendable graph and an �-extendable graph is [(k + 1)(� + 1)/2]-extendable. Liu and Yu [7] studied
matching extendability from a prescribed vertex set in lexicographic products. Bai, Wu, Yang and Yu [1] studied
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Figure 1. The lexicographic product of graphs is not commutative.

the lexicographic product of extendable graphs. In particular, they showed that the lexicographic product of a
k-extendable graph and an �-extendable graph is (k + 1)(�+ 1)-extendable. More results on graph products can
be found in [5].

In this paper, we provide, to the best of our knowledge, the first results on the specific conditions making
the lexicographic product of graphs 1 or 2-extendable. Furthermore, we also provide the characterization of
1-extendability in lexicographic products of graphs, which, to the best of our knowledge, does not exist in the
literature.

The rest of this paper is organized as follows. We first give some definitions and preliminary results in
Section 2. Section 3 is devoted to the characterization of 1-extendability in lexicographic products of graphs.
In Section 4 we provide some conditions on the graphs G and H such that their lexicographic product is
2-extendable. Finally, in Section 5, we study the extendability of two special edges in the lexicographic product
of an arbitrary graph with the empty graph when their lexicographic product is not 2-extendable in general.

2. Preliminaries

Throughout this paper, graphs are assumed to be finite and simple. For a graph G, we denote its vertex set
by V = V (G) and its edge set by E = E(G). An independent set I ⊆ V (G) is a set of pairwise non-adjacent
vertices. A graph with E = ∅ (i.e. the graph is an independent set) will be called empty graph. For a set S ⊆ V
we let G−S be the subgraph of G induced by the set V \S. For a subset S ⊆ V , we denote by GS the subgraph
of G induced by the set of vertices S. Connected components of G will simply be called components of G. A
component C of G is called even (odd, respectively), if the order of C (i.e. the number of vertices in C) is even
(odd, respectively). We denote by o(G) the number of odd components of G. A (induced) path on k vertices is
denoted by Pk.

The lexicographic product G[H ] of two graphs G and H has vertex set V (G)×V (H) and two vertices (u1, u2)
and (v1, v2) are adjacent whenever u1v1 ∈ E(G), or u1 = v1 and u2v2 ∈ E(H). Note that the lexicographic
product of two graphs may not be commutative. For example, P2[P3] is not isomorphic to P3[P2], as illustrated
in Figure 1.

We can now state the following result of Tutte:

Theorem 2.1 (Tutte [9]). A graph G has a perfect matching if and only if for every subset S ⊆ V (G) we have
o(G − S) ≤ |S|.

We will also need the following results.

Lemma 2.2 (Little et al. [6], see also [10], Thm. 5.1.2).
Let G be a 0-extendable graph, i.e., a graph that has a perfect matching. Then G is not 1-extendable if and

only if there exists a subset S ⊆ V (G) such that S is not an independent set and o(G − S) = |S|.
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Theorem 2.3 (Bai et al. [1]). Let G be m-extendable and H be n-extendable. Then their lexicographic product
G[H ] is (m + 1)(n + 1)-extendable.

Theorem 2.4 (Chan et al. [2]). Let Γ = G(S) be a Cayley graph over the Abelian group G of even order. Then
Γ is 2-extendable if and only if it is not isomorphic to any of the following graphs.

(i) Z2n(1, 2n− 1), n ≥ 3;
(ii) Z2n(1, 2, 2n− 1, 2n− 2), n ≥ 3;
(iii) Z4n(1, 4n− 1, 2n), n ≥ 2;
(iv) Z4n+2(2, 4n, 2n + 1), n ≥ 1; and
(v) Z4n+2(1, 4n + 1, 2n, 2n + 2), n ≥ 1.

3. 1-extendability of the lexicographic products

Let G be a connected graph and let H be an arbitrary graph. In this section we assume that G is 0-extendable,
and therefore the orders of both G and G[H ] are even. It is an easy exercise to show that in this case G[H ] is
also 0-extendable.

The main theorem of this section (Thm. 3.1) characterizes graphs G and H such that G[H ] is not 1-extendable.
Its proof immediately follows from Theorem 3.2, Theorems 3.7 and 3.8.

Theorem 3.1. Let G be a 0-extendable graph and let H be an arbitrary graph. Then G[H ] is not 1-extendable
if and only if both of the following (i) and (ii) hold.

(i) H is an empty graph.
(ii) There exists S ⊆ V (G) such that G − S has |S| singleton components, and either S is not an independent

set, or S is an independent set of G and G − S has at least one even component.

This section is organized as follows. In Section 3.1, we show that G[H ] is 1-extendable if H is non-empty or
G is 1-extendable (see Thm. 3.2). This implies that, while characterizing lexicographic products which are
not 1-extendable, we can assume that H is empty and G is not 1-extendable. Consequently, we focus on
lexicographic products with empty graphs in Section 3.2 where we show that it is enough to restrict our study
to the lexicographic products with empty graphs on 2 vertices (see Thm. 3.7). Finally, using this restriction, we
characterize lexicographic products with empty graphs which are not 1-extendable in Section 3.3 (see Thm. 3.8).

3.1. 1-extendability – case when H is non-empty or G is 1-extendable

We refer to a graph as a non-empty graph if it contains at least one edge, i.e., the graph itself is not an
independent set.

Theorem 3.2. Let G be a 0-extendable graph, then G[H ] is 1-extendable if H is a non-empty graph or if G is
also 1-extendable.

Proof. Assume first that H is non-empty and pick an edge e of G[H ].

Case 1. e = (x, a)(x, b) for some x ∈ V (G) and some adjacent vertices a, b ∈ V (H). Let M be an arbitrary
perfect matching of G and let y ∈ V (G) be such that xy ∈ M . Now a perfect matching of G[H ]
containing e is:

{(x, a)(x, b), (y, a)(y, b)} ∪
⋃

c∈V (H)\{a,b}
{(x, c)(y, c)} ∪

⋃

zw∈M\{xy}
c∈V (H)

{(z, c)(w, c)}.
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Case 2. e = (x, a)(y, b) for some adjacent vertices x, y ∈ V (G) and some vertices a, b ∈ V (H). If xy is contained
in some perfect matching M of G, then a perfect matching of G[H ] containing e is:

{(x, a)(y, b), (x, b)(y, a)} ∪
⋃

c∈V (H)\{a,b}
{(x, c)(y, c)} ∪

⋃

zw∈M\{xy}
c∈V (H)

{(z, c)(w, c)}.

Assume now that xy is not contained in any perfect matching of G. Pick an arbitrary perfect matching M of G
and let z, v ∈ V (G) be such that xz, yv ∈ M . Pick also an edge cd ∈ E(H).

Let M1 be an arbitrary perfect matching of the subgraph of G[H ] induced by the set of vertices

({z} × (V (H) \ {c, d})) ∪ ({x} × (V (H) \ {a, b})).

Note that such a perfect matching exists since we have all possible edges between the sets {z}× (V (H) \ {c, d})
and {x}× (V (H) \ {a, b}). Similarly, let M2 be an arbitrary perfect matching of the subgraph of G[H ] induced
by the set of vertices

({v} × (V (H) \ {c, d})) ∪ ({y} × (V (H) \ {a, b})).
Now a perfect matching of G[H ] containing edge e is:

{(x, a)(y, b), (x, b)(y, a), (z, c)(z, d), (v, c)(v, d)}∪

M1 ∪ M2 ∪
⋃

wu∈M\{xz,yv}
h∈V (H)

{(w, h)(u, h)}.

This finishes the proof of Case 2, thus the case where H is non-empty. It remains to show that G[H ] is 1-
extendable if G is 1-extendable (but H is empty). Let e = (x, a)(y, b) be the edge we want to extend into a
perfect matching of G[H ]. Furthermore, let M be a perfect matching of G containing the edge xy.

If a = b, then the following matching is a perfect matching of G[H ] containing e:
⋃

wu∈M
h∈V (H)

{(w, h)(u, h)}.

Otherwise (if a �= b), the following matching is a perfect matching of G[H ] containing e:

{e, (x, b)(y, a)} ∪
⋃

wu∈M\{xy}
h∈{a,b}

{(w, h)(u, h)} ∪
⋃

wu∈M
h∈V (H)\{a,b}

{(w, h)(u, h)}. �

3.2. Lexicographic products with empty graphs

We will assume from now on that H is the empty graph on n vertices, where n ≥ 2. We will denote this
graph by En. We identify the vertex set of En by {0, 1, 2, . . . , n−1}. For an arbitrary graph G and for v ∈ V (G)
we abbreviate vi = (v, i) ∈ V (G[H ]) ∀i ∈ {0, 1, 2, . . . , n − 1}. Assume that G is 0-extendable and n ≥ 3. In this
subsection, we show that G[E2] is 1-extendable if and only if G[En] is 1-extendable. We will need the following
definition.

Definition 3.3. Let G be an arbitrary graph and let S ⊆ V (G[E2]).

(i) S is called rectangular if the following holds for all v ∈ V (G) and i ∈ {0, 1}: vi ∈ S if and only if vi+1 ∈ S.
Here, the addition in subscripts is modulo 2.

(ii) S is called almost rectangular if there exists vi ∈ S such that S \ {vi} is rectangular.
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Lemma 3.4. Let G be an arbitrary graph and S ⊆ V (G[E2]). Then the following statements hold.

(i) If S is rectangular, then the only odd components of G[E2] − S are singletons.
(ii) If S is almost rectangular, then there is at most one non-singleton odd component of G[E2] − S.

Proof.

(i) Let C be a component of G[E2] − S which is not a singleton. Pick xi ∈ C (x ∈ V (G), i ∈ V (E2)). We will
show that also xi+1 ∈ C. Observe that since S is rectangular, we have that xi+1 �∈ S. Since C is not a
singleton, there is a vertex yj ∈ C \ {xi}, which is adjacent to xi. But then x is adjacent to y in G, and so
yj is adjacent to xi+1 in G[E2]. This shows that xi+1 ∈ C and we are done.

(ii) Let vi ∈ V (G[E2]) be such that S \ {vi} is rectangular, and let C be a component of G[E2]−S which is not
a singleton. If vi+1 �∈ C, then, similarly as in (i) above, we find that xi ∈ C if and only if xi+1 ∈ C, and so
C is of even order. Therefore, the only possible odd component, which is not a singleton, is the component
containing vi+1. �

Lemma 3.5. Let G be an arbitrary graph and S ⊆ V (G[E2]). Then there exists a rectangular S1 ⊆ V (G[E2]),
such that o(G[E2] − S) − |S| ≤ o(G[E2] − S1) − |S1|.

Proof. Assume that S is not rectangular and pick vi ∈ S, such that vi+1 �∈ S. Let C be the component of
G[E2] − S, containing vi+1, and let C1, . . . , Ct be all other components of G[E2] − S.

Case 1. C is even. In this case let S′ = S ∪{vi+1}. Note that the components of G[E2]−S′ are C1, . . . , Ct and
the components contained in C \ {vi+1}. Therefore, we increase the cardinality of S by 1, but we also
increase the number of odd components at least by 1 (namely, C \ {vi+1} contains at least one new
odd component). It follows that |S| − o(G[E2] − S) ≥ |S′| − o(G[E2] − S′).

Case 2. C is odd. In this case we let S′ = S \ {vi}. If C is a singleton, then note that the components of
G[E2]−S′ are C, {vi}, C1, . . . , Ct. We decrease the cardinality of S by 1, and increase the number of odd
components by 1. Therefore, |S|−o(G[E2]−S)−2 = |S′|−o(G[E2]−S′). If C is not a singleton, then note
that the components of G[E2]−S′ are C ∪{vi}, C1, . . . , Ct. We decrease the cardinality of S by 1, but
also decrease the number of odd components by 1. Therefore, |S|−o(G[E2]−S) = |S′|−o(G[E2]−S′).

Observe that after the above steps either vi, vi+1 ∈ S′ or vi, vi+1 �∈ S′. If S′ is rectangular then we set S1 = S′

and we are done. If S′ is not rectangular, then we repeat the above steps. After finitely many steps, we will end
up with a rectangular set S1 such that o(G[E2] − S) − |S| ≤ o(G[E2] − S1) − |S1|. �

Lemma 3.6. Let G be an arbitrary graph and S ⊆ V (G[E2]) such that S is not an independent set. Then there
exists either a rectangular or an almost rectangular set S1 ⊆ V (G[E2]), such that S1 is not an independent set
and o(G[E2] − S) − |S| ≤ o(G[E2] − S1) − |S1|.

Proof. Pick an edge xjy� in GS . If xj+1, y�+1 ∈ S, then the same procedure as in the proof of Lemma 3.5 will
yield a rectangular set S1 such that {xj , y�} ∈ S1 and o(G[E2] − S) − |S| ≤ o(G[E2] − S1) − |S1|. If xj+1 �∈ S
and y�+1 ∈ S, then we again apply the procedure in the proof of Lemma 3.5, but with vi �= xj . This will yield
an almost rectangular set S1 such that {xj , y�} ∈ S1, xj+1 �∈ S1, and o(G[E2]−S)− |S| ≤ o(G[E2]−S1)− |S1|.
If xj+1 ∈ S and y�+1 �∈ S, then we similarly get an almost rectangular set S1 such that {xj , y�} ∈ S1, y�+1 �∈ S1

and o(G[E2] − S) − |S| ≤ o(G[E2] − S1) − |S1|.
Finally, assume that xj+1 �∈ S and y�+1 �∈ S. We apply the procedure in the proof of Lemma 3.5 with vi �= xj

and vi �= y�. This will yield a set S′ such that

• xj+1, y�+1 �∈ S′,
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• S′ \ {xj , y�} is rectangular,
• o(G[E2] − S) − |S| ≤ o(G[E2] − S′) − |S′|.

Let C be a component of G[E2]−S′ containing xj+1, and let C1, . . . , Cn be all other components of G[E2]−S′.
As xj+1 and y�+1 are adjacent, we have that y�+1 ∈ C. Since S′ \ {xj , y�} is rectangular, this implies that C is
even. Let S1 = S′∪{xj+1} and note that S1 is almost rectangular and is not an independent set. Note also that
the components of G[E2] − S1 are C1, . . . , Cn and components contained in C \ {xj+1}. Therefore, we increase
the cardinality of S′ by 1, but we also increase the number of odd components by 1 (namely, C \{xj+1} contains
at least one new odd component). It follows that o(G[E2] − S′) − |S′| ≤ o(G[E2] − S1) − |S1|. �

Theorem 3.7. Let G be a 0-extendable graph and let n ≥ 3 be an integer. Then G[E2] is 1-extendable if and
only if G[En] is 1-extendable.

Proof. Assume that G[E2] is 1-extendable and pick an edge e = xiyj of G[En]. If i = j then let � = i+1. If i �= j
then let � = j. Note that the subgraph G′ of G[En] induced by the vertices {zi, z� | z ∈ V (G)} is isomorphic to
G[E2]. As G[E2] is 1-extendable, there is a perfect matching MG′

of the subgraph G′, which contains edge e.
Pick an arbitrary perfect matching M of G. Now a perfect matching of G[En] containing e is:

MG′ ∪ {zkwk | zw ∈ M, k ∈ {0, 1, . . . , n − 1} \ {i, �}}.

Assume now that G[E2] is not 1-extendable. By Lemma 2.2 there exists a subset S ⊆ V (G[E2]) such that
S is not an independent set and |S| = o(G[E2] − S). By Lemma 3.6, there exists either a rectangular or an
almost rectangular set S1 ⊆ V (G[E2]) such that S1 is not an independent set and 0 = o(G[E2] − S) − |S| ≤
o(G[E2] − S1) − |S1|. As G[E2] is 0-extendable, we have, by Theorem 2.1, that o(G[E2] − S1) = |S1|.

Case 1. S1 is rectangular. Recall that by Lemma 3.4(i), all odd components of G[E2] − S1 are singletons.
Let v1, v2, . . . , vm ∈ V (G) be such that S1 = {vj

i | j ∈ {1, . . . , m}, i ∈ {0, 1}}. Furthermore, let
u1, u2, . . . , um ∈ V (G) be such that uj

i (where j ∈ {1, . . . , m} and i ∈ {0, 1}) are the singleton compo-
nents of G[E2] − S1. Now define set R ⊆ V (G[En]):

R = {vj
i | j ∈ {1, . . . , m}, i ∈ {0, 1, . . . , n − 1}}.

Note that R is not an independent set and that uj
i (where j ∈ {1, . . . , m} and i ∈ {0, 1, . . . , n − 1})

are the singleton components of G[En]. By Lemma 2.2, G[En] is not 1-extendable.
Case 2. S1 is almost rectangular. Recall that by Lemma 3.4(ii), there is at most one odd component of G[E2]−

S1 that is not a singleton. In fact, we will show that there must be one odd component that is not
a singleton. Let v0, v1, v2, . . . , vm ∈ V (G) be such that S1 = {v0

�} ∪ {vj
i | j ∈ {1, . . . , m}, i ∈ {0, 1}}.

Without loss of generality we can assume that � = 0. Assume for a moment that {v1, . . . , vm} is not an
independent set of the graph G and let S2 = S1\{v0

0}. Note that S2 is rectangular and not independent.
Furthermore, o(G[E2] − S2) = o(G[E2] − S1) − 1, as the odd component of G[E2] − S1 containing v0

1

will be an even component in G[E2]− S2. Therefore, 0 ≤ o(G[E2]− S1)− |S1| = o(G[E2]− S2)− |S2|,
and we could proceed as in Case 1 above, with set S2 instead of set S1. This shows that we can
assume that {v1, . . . , vm} is an independent set of graph G. However, as S1 is not an independent set,
there is an edge between v0 and vi in graph G (for some i such that 1 ≤ i ≤ m). Without loss of
generality we can assume that i = 1. Let C be the component of G[E2] − S1 containing v0

1 . We know
from the proof of Lemma 3.4(ii) that C is the only possible odd component that is not a singleton.
Let u1, u2, . . . , um ∈ V (G) be such that uj

i (where j ∈ {1, . . . , m} and i ∈ {0, 1}) are the singleton
components of G[E2]−S1 that are different from C. If C is singleton, then let S2 = S1 \ {v0

0}. Observe
that uj

i (where j ∈ {1, . . . , m} and i ∈ {0, 1}) and v0
0 , v

0
1 are singleton components of G[E2] − S2. By

Theorem 2.1, G[E2] is not 0-extendable, a contradiction. Therefore, C is not a singleton.
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Let w1, w2, . . . , w� ∈ V (G) be such that C = {v0
1} ∪ {wj

i | j ∈ {1, . . . , �}, i ∈ {0, 1}}. We will now show that � is
odd. Assume that � is even. Observe that since v0

1 ∈ C, v0
1 is adjacent only to the vertices in C ∪ S1. Therefore,

v0
0 is also only adjacent to the vertices in C ∪ S1. This shows that {u0}, . . . , {um}, {v0, w1, . . . , w�} are odd

components of G − {v1, v2, . . . , vm}. This result and Theorem 2.1 together imply that G is not 0-extendable, a
contradiction. This shows that � is odd.

Now define set R ⊆ V (G[En]):

R = {v0
0} ∪ {vj

i | j ∈ {1, . . . , m}, i ∈ {0, 1, . . . , n − 1}}.

Note that R is not an independent set and uj
i (j ∈ {1, . . . , m}, i ∈ {0, 1, . . . , n − 1}) are the singleton

components of G[En] − R. Moreover, component containing v0
1 is

C1 = {wj
i | j ∈ {1, 2, . . . , �}, i ∈ {0, 1, . . . , n − 1}} ∪ {v0

i | i ∈ {1, . . . , n − 1}}.

As � is odd, C1 is also an odd component of G[En] − R. By Lemma 2.2, G[En] is not 1-extendable. �

3.3. 1-extendability - case when H is empty

In this section, we will characterize 0-extendable graphs G such that lexicographic product G[En] is not
1-extendable, where En is the empty graph on n vertices. By Theorem 3.7 we can assume that n = 2, and by
Theorem 3.2 we can assume that G is not 1-extendable.

Theorem 3.8. Let G be a 0-extendable graph. Then G[E2] is not 1-extendable if and only if there exists S ⊆
V (G), such that G − S has |S| singleton components, and either S is not an independent set, or S is an
independent set of G and G − S has at least one even component.

Proof. Assume first that there exists S ⊆ V (G) such that G−S has |S| singleton components. Let m = |S| and
let u1, u2, . . . , um be these singleton components. Define R = {si | s ∈ S, i ∈ {0, 1}} ⊆ V (G[E2]). Observe that
uj

i , j ∈ {1, . . . , m}, i ∈ {0, 1} are singleton components of G[E2] − R. If S is not an independent set, then R is
also not an independent set; therefore, G[E2] is not 1-extendable by Lemma 2.2. If S is an independent set of G,
then let C be an even component of G−S. Pick x ∈ C which has a neighbor in S. Let R1 = R∪{x0} ⊂ V (G[E2]).
Note that uj

i , j ∈ {1, . . . , m}, i ∈ {0, 1} are singleton components of G[E2]−R1, and that {w0, w1 | w ∈ C}\{x0}
is an odd component of G[E2] − R1. Again, by Lemma 2.2, G[E2] is not 1-extendable.

Assume next that G[E2] is not 1-extendable. By Lemma 2.2 there exists a subset R ⊆ V (G[E2]) such that
R is not an independent set and |R| = o(G[E2] − R). By Lemma 3.6, there exists either a rectangular or an
almost rectangular set R1 ⊆ V (G[E2]) such that R1 is not an independent set and 0 = o(G[E2] − R) − |R| ≤
o(G[E2] − R1) − |R1|. As G[E2] is 0-extendable, we have, by Theorem 2.1, that o(G[E2] − R1) = |R1|.

Case 1. R1 is rectangular. Recall that, by Lemma 3.4 (i), all odd components of G[E2] − R1 are singletons.
Let v1, v2, . . . , vm ∈ V (G) be such that R1 = {vj

i | j ∈ {1, . . . , m}, i ∈ {0, 1}}. Furthermore, let
u1, u2, . . . , um ∈ V (G) be such that uj

i (j ∈ {1, . . . , m}, i ∈ {0, 1}}) are the singleton components
of G[E2] − R1. Now let S = {v1, v2, . . . , vm} ⊆ V (G). Note that S is not an independent set and
u1, u2, . . . , um are singleton components of G − S. Since G is 0-extendable, G − S has no other odd
components.

Case 2. R1 is almost rectangular. Let v0, v1, v2, . . . , vm ∈ V (G) be such that R1 = {v0
�} ∪ {vj

i | j ∈
{1, . . . , m}, i ∈ {0, 1}}. Without loss of generality, we can assume that � = 0. Note also that, by
using the same arguments as in the proof of Theorem 3.7 (see Case 2), we can assume that there is
an edge between v0 and vi in G, (for some i such that 1 ≤ i ≤ m), and that {v1, v2, . . . , vm} is an
independent set of G. Otherwise we define R2 = R1 \ {v0

0} and proceed as in Case 1 above. Without
loss of generality we can also assume that i = 1.
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Figure 2. All possible cases for two non-adjacent edges in G[H ] with respect to the subgraphs
their endpoints belong to.

Let C be a component of G[E2] − S1 containing v0
1 . As in the proof of Theorem 3.7 (Case 2), we show

that C is an odd component of G[E2] − R1 that is not a singleton. Let u1, u2, . . . , um ∈ V (G) be such that
uj

i (j ∈ {1, . . . , m}, i ∈ {0, 1}}) are the singleton components of G[E2] − R1.
Let w1, w2, . . . , w� ∈ V (G) be such that C = {v0

1} ∪ {wj
i | j ∈ {1, . . . , �}, i ∈ {0, 1}}. As in the proof of

Theorem 3.7 (Case 2), we show that � is odd. Now let S = {v1, v2, . . . , vm}. Recall that S is an independent
set of G. Observe also that u1, u2, . . . , um are singleton components of G−S and that (w1, w2, . . . , w�, v0) is an
even component of G − S. �

4. 2-extendability of lexicographic products

In the following, we denote by Gx[H ] the subgraph of G[H ] induced by the set of vertices in {x} × V (H)
for some x ∈ V (G). Likewise, we refer by Gxy[H ] to the subgraph of G[H ] induced by the set of vertices in
({x} × V (H)) ∪ ({y} × V (H)) for some x, y ∈ V (G). Moreover, we denote by Mk a perfect matching of Gk[H ]
for some k ∈ V (G).

Observation 4.1. Let x, y, z, w be four distinct vertices of G and a, b, c, d be four (not necessarily distinct)
vertices of H such that the two edges e1, e2 ∈ E(G[H ]) whose endpoints are among these vertices are non-
adjacent. Then e1 and e2 can belong to one of the following cases (illustrated in Fig. 2):

Case 1. e1 = (x, a)(x, b) and e2 = (y, c)(y, d).
Case 2. e1 = (x, a)(x, b) and e2 = (x, c)(x, d).
Case 3. e1 = (x, a)(x, b) and e2 = (x, c)(y, d).
Case 4. e1 = (x, a)(x, b) and e2 = (y, c)(z, d).
Case 5. e1 = (x, a)(y, b) and e2 = (y, c)(z, d).
Case 6. e1 = (x, a)(y, b) and e2 = (x, c)(y, d).
Case 7. e1 = (x, a)(y, b) and e2 = (z, c)(w, d).

Theorem 4.2. If G is a connected graph and H is a 1-extendable graph, then G[H ] is 2-extendable.
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Proof. Theorem 2.3 implies that if G is 0-extendable and H is 1-extendable, then G[H ] is 2-extendable. Hence,
we will consider here the case where G is not 0-extendable. The following 7 cases refer to Figure 2. In each case,
we will exhibit a perfect matching MP of G[H ] containing the edges e1 and e2.

Case 1. Since H is 1-extendable, e1 can be extended to a perfect matching Mx in Gx[H ]. Likewise, e2 can be
extended to a perfect matching My in Gy [H ]. Then MP is:

Mx ∪ My ∪
⋃

k∈V (G)\{x,y}
Mk.

Case 2. Since G is connected, x has a neighbor x′ ∈ V (G), i.e., xx′ ∈ E(G). Notice that Gxx′
[H ] is isomorphic

to P2[H ], which is 2-extendable since H is 1-extendable and P2 is 0-extendable. Let M1 be a perfect
matching of Gxx′

[H ] containing e1 and e2. Hence, MP is:

M1 ∪
⋃

k∈V (G)\{x,x′}
Mk.

Case 3 and Case 6. In both cases, Gxy[H ] is isomorphic to P2[H ], which is 2-extendable. Let M1 be a perfect
matching of Gxy[H ] containing e1 and e2. Hence, MP is:

M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

Case 4. Since H is 1-extendable, e1 can be extended to a perfect matching in H . Let M1 be a perfect matching
of Gx[H ] containing e1. Besides, notice that Gyz[H ] is isomorphic to P2[H ], which is 2-extendable (and
hence 1-extendable). Let M2 be a perfect matching of Gyz [H ] containing e2. Then MP is:

M1 ∪ M2 ∪
⋃

k∈V (G)\{x,y,z}
Mk.

Case 5. Pick a vertex a′ ∈ V (H) such that aa′ ∈ E(H). Such a neighbor of a always exists since H is (also) 0-
extendable (H cannot have isolated vertices). Likewise, pick a vertex d′ ∈ V (H) such that dd′ ∈ E(H).
Since H is 1-extendable, aa′ can be extended to a perfect matching M1 in H . Pick an edge ef ∈ M1

such that e, f /∈ {a, a′}. Such an edge always exists since H is 1-extendable and therefore has at least
4 vertices. Let M2′

be a perfect matching of Gz[H ] containing the edge dd′ and let M2 = M2′ \ {dd′}.
Since H is 1-extendable, there exist u, v ∈ {V (H) \ {b, c}}. Let G′

xy[H ] be the subgraph of G[H ]
induced by the following set of vertices:

({x} × (V (H) \ {a, a′, e, f})) ∪ ({y} × (V (H) \ {b, c, u, v})).
Let M3 be a perfect matching of G′

xy[H ]. Then MP is:

{e1, e2, (x, a′)(y, u), (z, d′)(y, v), (x, e)(x, f)}∪

M2 ∪ M3 ∪
⋃

k∈V (G)\{x,y,z}
Mk.

Case 7. Notice that both Gxy[H ] and Gzw[H ] are isomorphic to P2[H ], which is 2-extendable. Let M1 be a
perfect matching of Gxy[H ] containing e1 and M2 be a perfect matching of Gzw [H ] containing e2.
Then MP is:

M1 ∪ M2 ∪
⋃

k∈V (G)\{x,y,z,w}
Mk.

This concludes the proof. �
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G[H]

G

H

Figure 3. H is 1-extendable but G is not connected and the two bold edges can not be
extended to a perfect matching of G[H ].

The example in Figure 3 shows that if the assumption that G is connected is omitted, then Theorem 4.2 does
not hold anymore.

We will now consider the case where G is 1-extendable. The following proposition will be useful in our proof.
To prove it, we will need the notion of a Cayley graph. Let G denote a finite group with identity 1 and let
S denote an inverse-closed subset of G \ {1}. The Cayley graph Cay(G; S) of the group G with respect to the
connection set S is the graph with vertex set G, in which g ∈ G is adjacent with h ∈ G if and only if h = gs
for some s ∈ S. Observe that Cay(G; S) is regular with valency k = |S| and is connected if and only if S
generates G.

Proposition 4.3. Let G be a cycle of even length and let H be an arbitrary graph of order at least 2. Pick
independent edges e1 = (x, a)(y, b) and e2 = (z, c)(w, d) of G[H ] such that x �= y and z �= w. Then there exists
a perfect matching of G[H ] containing e1 and e2.

Proof. Let EH be the empty graph on the vertices of the graph H . Observe that G[EH ] is a Cayley graph of the
Abelian group Z� ×Zn, where � is the length of the cycle G and n = |V (H)|. Therefore, G[EH ] is 2-extendable
by Theorem 2.4, and hence there is a perfect matching M of G[EH ] containing edges e1 and e2. Observe that
M is also a perfect matching of G[H ], which proves the result. �

Theorem 4.4. If G is a 1-extendable connected graph and H is an arbitrary graph of order at least 2, then
G[H ] is 2-extendable.

Proof. The work in [1] implies that if H is 0-extendable and G is 1-extendable, then G[H ] is 2-extendable.
Hence, we will consider here the case where H is not 0-extendable. Consult Figure 2 for the 7 cases in the proof
and let us denote by MP a perfect matching of G[H ] containing e1 and e2.

Case 1. Since G is 1-extendable and connected, the minimum degree of G is at least 2. Let x′ �= y be a neighbor
of x and let MG be a perfect matching of G that contains xx′. Furthermore, let y′ be a neighbor of
y such that yy′ ∈ MG and M1 be a perfect matching of the subgraph of Gxx′

[H ] induced by the
following set of vertices:

({x} × (V (H) \ {a, b})) ∪ ({x′} × (V (H) \ {a, b})).

Let M2 be a perfect matching of the subgraph of Gyy′
[H ] induced by the following set of vertices:

({y} × (V (H) \ {c, d})) ∪ ({y′} × (V (H) \ {c, d})).
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Let MG′
= MG \ {(x, x′)(y, y′)}. Then MP is:

{e1, e2, (x′, a)(x′, b), (y′, c)(y′, d)} ∪ M1 ∪ M2 ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Case 2. Pick a vertex x′ such that xx′ ∈ E(G). Let M1 be a perfect matching of the subgraph of Gxx′
[H ]

induced by the following set of vertices:

({x} × (V (H) \ {a, b, c, d})) ∪ ({x′} × (V (H) \ {a, b, c, d})).

Since G is 1-extendable, xx′ can be extended to a perfect matching MG in G. Then MP is:

{e1, e2, (x′, a)(x′, b), (x′, c)(x′, d)} ∪ M1 ∪
⋃

zw∈MG\{xx′}
h∈V (H)

{(z, h)(w, h)}.

Case 3. We have two subcases here:
Subcase 3.1: d /∈ {a, b}. Let M1 be a perfect matching of the subgraph of Gxy[H ] induced by the
following set of vertices:

({x} × (V (H) \ {a, b, c})) ∪ ({y} × (V (H) \ {a, b, d})).

Let MG be a perfect matching of G containing xy and MG′
= MG \ {xy}. Then MP is:

{e1, e2, (y, a)(y, b)} ∪ M1 ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Subcase 3.2: d ∈ {a, b}. Assume without loss of generality that d = a. Let MG be a perfect matching
of G containing xy ∈ E(G). Pick a neighbor y′ of y such that yy′ ∈ MG. Such a neighbor always exists
since G is a 1-extendable connected graph and hence has minimum degree 2. Let M1 be a perfect
matching of the subgraph of Gxy[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, b, c})) ∪ ({y} × (V (H) \ {b, c, d})).

Moreover, let u �= y be a neighbor of y′ such that y′u ∈ MG and let M2 be a perfect matching of the
subgraph of Gy′u[H ] induced by the following set of vertices:

({y′} × (V (H) \ {a, b, c})) ∪ ({u} × (V (H) \ {a, b, c})).

Let MG′
= MG \ {xy, y′u}. Then MP is:

{e1, e2, (y, c)(y′, a), (y, b)(y′, b), (y′, c)(u, c), (u, a)(u, b)}∪

M1 ∪ M2 ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Case 4. Let MG be a perfect matching of G containing yz ∈ E(G). Pick the vertex x′ �∈ {y, z} such that
xx′ ∈ MG. Let M1 be a perfect matching of the subgraph of Gxx′

[H ] induced by the following set of
vertices:

({x} × (V (H) \ {a, b})) ∪ ({x′} × (V (H) \ {a, b})).
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Let M2 be a perfect matching of the subgraph of Gyz[H ] induced by the following set of vertices:

({y} × (V (H) \ {c})) ∪ ({z} × (V (H) \ {d})).
Let MG′

= MG \ {xx′, yz}. Then MP is:

{e1, e2, (x′, a)(x′, b)} ∪ M1 ∪ M2 ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Case 5. Let MG1 be a perfect matching of G containing xy and let MG2 be a perfect matching of G containing
yz. Since the symmetric difference of two perfect matchings consists of isolated vertices and even
cycles, the edges xy and yz are contained in an even cycle Z of G, in which every second edge is
contained in MG2. By Proposition 4.3, there is a perfect matching MZ containing e1 and e2 in the
subgraph of G[H ] induced by the set of vertices in V (Z)×V (H). Let MG′

= MG \E(Z). Then MP is:

MZ ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Case 6. Let M1 be a perfect matching of the subgraph of Gxy[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, c})) ∪ ({y} × (V (H) \ {b, d})).
Let MG be a perfect matching of G containing xy ∈ E(G) and let MG′

= MG \ {xy}. Then MP is:

{e1, e2} ∪ M1 ∪
⋃

zw∈MG′

h∈V (H)

{(z, h)(w, h)}.

Case 7. Let MG be a perfect matching of G containing xy. We have the following subcases:
Subcase 7.1: If zw ∈ MG, then let M1 be a perfect matching of the subgraph of Gxy[H ] induced by
the following set of vertices:

({x} × (V (H) \ {a})) ∪ ({y} × (V (H) \ {b})).
Furthermore, let M2 be a perfect matching of the subgraph of Gxy[H ] induced by the following set of
vertices:

({z} × (V (H) \ {c})) ∪ ({w} × (V (H) \ {d})).
Moreover, let MG′

= MG \ {(x, y)(z, w)}. Then MP is:

{e1, e2} ∪ M1 ∪ M2 ∪
⋃

tt′∈MG′

h∈V (H)

{(t, h)(t′, h)}.

Subcase 7.2: If zw �∈ MG, then let v be a neighbor of z such that vz ∈ MG. Since the symmetric
difference of two perfect matchings consists of isolated vertices and even cycles, the edges vz and zw
are on an even cycle Z of G, in which every second edge is contained in MG.
If {x, y} ∈ V (Z), then let M1 be a perfect matching of the subgraph of G[H ] induced by the set of
vertices in V (Z) × V (H) and which contains e1 and e2 (recall that this subgraph is 2-extendable due
to Prop. 4.3). Let MG′

= MG \ E(Z). Then MP is:

M1 ∪
⋃

tt′∈MG′

h∈V (H)

{(t, h)(t′, h)}.
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G[H]

G

H

Figure 4. G is not connected but 1-extendable, and the two bold edges can not be extended
to a perfect matching of G[H ].

If {x, y} �∈ V (Z), then let M2 be a perfect matching of V (Z) × V (H) containing e2. Moreover, let
MG′

= MG \ (E(Z) ∪ {e1}). Then MP is:

{e1} ∪ M2 ∪
⋃

tt′∈MG′

h∈V (H)

{(t, h)(t′, h)}. �

The example in Figure 4 shows that the connectivity requirement on G is necessary in Theorem 4.4; in other
words, if G is a disconnected 1-extendable graph, then G[H ] might not be 2-extendable.

We will now consider the case where both G and H are 0-extendable. First, observe that when H = P2, which
is 0-extendable, and G = P4, which is also 0-extendable, then G[H ] is not 2-extendable: let E(H) = {ab} and
E(G) = {xy, yz, zw}. Then e1 = (x, b)(y, a) and e2 = (y, b)(z, a) cannot be extended to a perfect matching in
G[H ]. In the following, we prove that the case where |V (H)| = 2 is the only case where G[H ] is not 2-extendable
when both G and H are 0-extendable.

Theorem 4.5. Let G and H be 0-extendable graphs and let |V (H)| ≥ 4. Then G[H ] is 2-extendable.

Proof. We treat separately each one of the 7 cases depicted in Figure 2 and described at the beginning of
Section 4. In particular we provide a perfect matching MP of G[H ] containing e1 and e2 for each case.

Case 1. Let M1 be an arbitrary perfect matching of the subgraph of G[H ] induced by the following set of
vertices:

({x} × (V (H) \ {a, b})) ∪ ({y} × (V (H) \ {c, d})).
Then MP is:

{e1, e2} ∪ M1 ∪
⋃

k∈{V (G)\{x,y}}
Mk.

Case 2. Let M1 be an arbitrary perfect matching of the subgraph of G[H ] induced by the following set of
vertices:

({x} × (V (H) \ {a, b, c, d})) ∪ ({y} × (V (H) \ {a, b, c, d})).
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Then MP is:

{e1, e2} ∪ M1 ∪ {(y, a)(y, b), (y, c)(y, d)} ∪
⋃

k∈V (G)\{x,y}
Mk.

Case 3. We have the following two subcases:
Subcase 3.1: d �= a and d �= b. Note that we may have c = d in this case. Let M1 be an arbitrary
perfect matching of the subgraph of G[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, b, c})) ∪ ({y} × (V (H) \ {a, b, d})).
Then MP is:

{e1, e2, (y, a)(y, b)} ∪ M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

Subcase 3.2: d = a or d = b. Assume without loss of generality that d = a. Consider the case where
there exists c′ ∈ V (H) such that cc′ ∈ E(H) and c′ /∈ {a, b}. Let M1 be an arbitrary perfect matching
of the subgraph of G[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, b, c, c′})) ∪ ({y} × (V (H) \ {a, b, c, c′})).
Then MP is:

{e1, e2, (x, c′)(y, b), (y, c)(y, c′)} ∪ M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

If the neighborhood of c is a subset of {a, b}, then consider a perfect matching M of H . If ca ∈ M , then
there exists b′ ∈ V (H) such that bb′ ∈ M . Let M1 be an arbitrary perfect matching of the subgraph
of G[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, b, b′, c})) ∪ ({y} × (V (H) \ {a, b, b′, c})).
Then MP is:

{e1, e2, (x, b′)(y, c), (y, b)(y, b′)} ∪ M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

If cb ∈ M , then let M1 be an arbitrary perfect matching of the subgraph of G[H ] induced by the
following set of vertices:

({x} × (V (H) \ {a, b, c})) ∪ ({y} × (V (H) \ {a, b, c}))
Then MP is:

{e1, e2, (y, b)(y, c)} ∪ M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

Case 4. If x has a neighbor w such that w /∈ {y, z}, then e1 can be extended to a perfect matching M1 in
Gxw[H ] since Gxw[H ] is 1-extendable. Likewise, e2 can be extended to a perfect matching M2 in
Gyz[H ] since Gyz[H ] is 1-extendable. Then MP is:

M1 ∪ M2 ∪
⋃

k∈V (G)\{x,y,z,w}
Mk.

If the neighborhood of x is a subset of {y, z}, then consider a perfect matching M of G and assume
without loss of generality that xy ∈ M . Therefore, there exists w ∈ V (G) such that zw ∈ M . Consider
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a vertex d′ ∈ V (H) such that dd′ ∈ E(H). Since Gzw[H ] is 1-extendable, (z, d)(z, d′) can be extended
to a perfect matching M3 in Gzw[H ]. Let c′ ∈ V (H) \ {c} and M4 be a perfect matching of the
subgraph of Gxy[H ] induced by the following set of vertices:

({x} × (V (H) \ {a, b})) ∪ ({y} × (V (H) \ {c, c′})).

Then MP is:

{e1, e2, (y, c′)(z, d′)} ∪ M3 ∪ M4 ∪
⋃

k∈V (G)\{x,y,z,w}
Mk.

Case 5. Consider a perfect matching M of H and let a′, d′ ∈ V (H) be such that aa′ ∈ M, dd′ ∈ M .
Pick an edge ef ∈ M such that e, f /∈ {a, a′}. Let M1′

be a perfect matching of Gz[H ] and d′ be a
vertex such that (z, d)(z, d′) ∈ M1′

. Moreover, let M1 = M1′ \ {(z, d)(z, d′)}.
Note that there exist u, v ∈ V (H) \ {b, c} since |V (H)| ≥ 4. Let G′

xy[H ] be the subgraph of G[H ]
induced by the following set of vertices:

({x} × (V (H) \ {a, a′, e, f})) ∪ ({y} × (V (H) \ {b, c, u, v})).

Let M2 be a perfect matching of G′
xy[H ]. Then MP is:

{e1, e2, (x, a′)(y, u), (z, d′)(y, v), (x, e)(x, f)}∪
M1 ∪ M2 ∪

⋃

k∈V (G)\{x,y,z}
Mk.

Case 6. Let M1 be an arbitrary perfect matching of the subgraph of G[H ] induced by the following set of
vertices:

({x} × (V (H) \ {a, c})) ∪ ({y} × (V (H) \ {b, d})).
Then MP is:

{e1, e2} ∪ M1 ∪
⋃

k∈V (G)\{x,y}
Mk.

Case 7. Notice that both Gxy[H ] and Gzw[H ] are isomorphic to P2[H ], which is 1-extendable. Let M1 be a
perfect matching of Gxy[H ] containing e1 and M2 be a perfect matching of Gzw [H ] containing e2.
Then MP is:

M1 ∪ M2 ∪
⋃

k∈V (G)\{x,y,z,w}
Mk. �

5. Special 2-extensions of lexicographic products

Let G be a 0-extendable but not 1-extendable graph. Let us refer by a problematic edge to an edge e that
cannot be extended to a perfect matching of G. We are interested in the case where G[E2] is not 2-extendable
but the two copies of a problematic edge of G can be extended to a perfect matching of G[E2].

Let us first point out the fact that we can restrict our attention to the case where G[E2] is 1-extendable since
otherwise even one copy of a problematic edge in G cannot be extended to a perfect matching in G[E2]. This
result, stated in the next lemma, follows from the proof of Theorem 3.8:

Lemma 5.1. Let G be a 0-extendable but not 1-extendable graph. If G[E2] is not 1-extendable then every copy
of every problematic edge of G is also problematic in G[E2].
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The following theorem characterizes the case where both copies of a problematic edge in G can be extended
to a perfect matching in G[E2].

Theorem 5.2. Let G be a 0-extendable but not 1-extendable graph with a problematic edge e, and assume G[E2]
is 1-extendable. Then the two copies {e1, e2} of e in G[E2] can not be extended to a perfect matching of G[E2]
if and only if there exists a subset of vertices S ⊂ V (G) such that e ∈ E(GS) and G − S has |S| − 1 singletons
and one odd component that is not a singleton.

Proof. Throughout the proof, let the problematic edge e be uv and its two copies in G[E2] be u1v1 and u2v2.
Assume that there is a subset S ⊂ V such that e ∈ GS and G−S has |S|−1 singletons and one odd component

that is not a singleton. Let S1 and S2 be the two copies of S in G[E2] and let S′ = S1 ∪ S2 \ {u1, v1, u2, v2}.
Now, let G′ = G[E2] \ {u1, v1, u2, v2}. Since G′ − S′ has at least 2|S| − 2 odd components (singletons) and
|S′| = 2|S| − 4, we have that G′ has no perfect matching (by Thm. 2.1). Therefore, {e1, e2} cannot be extended
to a perfect matching in G[E2].

Now assume that {e1, e2} cannot be extended to a perfect matching in G[E2] and let us show that there is
a subset S ⊂ V (G) such that e ∈ E(GS) and G − S has |S| − 1 singletons and one odd component that is
not a singleton. By our assumption, the graph G′ = G[E2] \ {u1, v1, u2, v2} (which is the lexicographic product
of G \ {u, v} with E2) does not admit a perfect matching. Therefore, there is a subset S′ ⊂ V (G′) such that
o(G′−S′) > |S′|. By Lemma 3.5, there exists a rectangular S̄ ⊂ V (G′) such that o(G′−S′)−|S′| ≤ o(G′−S̄)−|S̄|
and therefore |S̄| < o(G′ − S̄). Moreover, we know by Lemma 3.4 that all odd components of G′ − S̄ are
singletons, say x1

1, . . . , x
�
1 and x1

2, . . . , x
�
2, respectively, in each copy of G \ {u, v}. Hence 2� > |S̄|. Now, let S1 =

S̄∩V (G1 \{u1, v1}) where G1 \{u1, v1} is one copy of G\{u, v} in G′, and consider the set S = S1∪{u, v} in G.
Clearly, x1, . . . , x� are also singletons in G−S. As 2� > |S̄| = 2|S1| = 2|S|− 4, we have that � ≥ |S| − 1. On the
other hand, since we assumed that G[E2] is 1-extendable (see Lem. 5.1 and the related discussion), in particular
e2 is extendable to a perfect matching in G[E2]. It follows that S̄∪{u1, v1} is not a Tutte set in G[E2]\{u2, v2},
that is 2� = o((G[E2] \ {u2, v2}) − (S̄ ∪ {u1, v1})) ≤ |S̄ ∪ {u1, v1}| = |S̄| + 2 = 2|S1| + 2 = 2(|S| − 2) + 2, and
thus � ≤ |S|− 1. Therefore, we have exactly � = |S|− 1 singletons in G−S. In addition, there is necessarily one
more odd component (which is not a singleton) in G−S since G is 0-extendable and hence has an even number
of vertices. This concludes the proof. �

Note that if G[E2] is not 1-extendable, then one can find S ⊂ V (G) such that G−S has exactly |S| singletons;
this corresponds to the special case of Theorem 3.1 where S is not an independent set (contains a problematic
edge).

After establishing several results on the 2-extendability of lexicographic products, we can suggest some open
research questions in the same direction. Recall that the work in [1] proves that the lexicographic product of an
m-extendable graph and an n-extendable graph is (m + 1)(n + 1)-extendable. Theorem 4.5 proves that when
both G and H are 0-extendable, G[H ] is not only 1-extendable, but also 2-extendable if |V (H)| ≥ 4. This
naturally raises the following question: can a result stronger than (m + 1)(n + 1)-extendability be obtained by
imposing a restriction on |V (H)|? Likewise, we plan to investigate whether stronger forms of Theorem 4.2 and
Theorem 4.4 can be obtained by keeping the connectivity condition: if G is a connected graph and H is an
m-extendable graph, is G[H ] (m + 1)-extendable? If G is a connected m-extendable graph and H an arbitrary
graph of order at least 2, is G[H ] (m + 1)-extendable?
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