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Abstract. In this paper, we propose a fuzzy green vehicle routing problem with simultaneous pickup
and delivery and time windows (F-GVRP-SPDTW), in which the amounts of fuel consumption and
emission are estimated by a comprehensive modal emission model. A mixed integer nonlinear program-
ming model is proposed to minimize the cost of fuel consumption and emissions of vehicles. Moreover,
the fuzzy approach with credibility measure is applied under conditions in which both pickup and de-
livery demands are uncertain. To solve the problem, we have proposed an adaptive large neighborhood
search heuristic by applying new removal and insertion operators. Finally, computational experiments
are conducted on a set of benchmark instances from the literature to evaluate the efficiency of the pro-
posed solution technique. The results indicate that the proposed solution method is capable of finding
high quality solutions in most of the instances.
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1. Introduction

Considerable attention has been paid to global warming due to the harmful effects of the greenhouse gases.
Organizations and businesses pay more attention to the impact of their activities on the environment while
governments consider regulations for reducing fuel emissions and other environmental pollutions. One of the
important sectors is the transportation sector that plays a major role in the emissions of greenhouse gases. It
has been reported that the transport sector alone accounts for about 14% of the total emissions and 80 percent
of the emissions within this sector is contributed by road transport. Given that these emissions are hazardous
to the environment and human health, it is important to find ways to significantly reduce them.

In real business situations, most of the distribution companies are trying to find ways to minimize their oper-
ational costs. In addition to the economic considerations, it is of high importance to consider green objectives in
distribution operations regarding environmental issues. Vehicle Routing Problem (VRP) is one of the substan-
tial subjects in transportation issues. Recently, green objectives are incorporated in VRP models to investigate
transportation problems from an environmental point of view. The classical models of routing problems gener-
ally focus on minimizing operational costs, distance, fleet size or travel time. Green Vehicle Routing Problem
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(GVRP) can be regareded an extension of vehicle routing problem which aims to minimize total emissions and
fuel consumption in addition to traditional costs.

In real world situations, it is often hard to exactly measure the parameters of the VRP problems in a
deterministic way. For instance, parameters such as customer demands, time windows and traveling times
are uncertain. Among various uncertain parameters, the uncertainty of customer demand is very common in
practice. It is observed that the demand at a customer node usually can be expressed as “around 400 units”,
“between 90 and 110 units”, “approximately 200 units” and so on. In these situations, the fuzzy approach can
be applied to model problems under uncertainty.

The main contributions of the current paper are (1) applying the fuzzy approach for Green Vehicle Routing
Problem with Simultaneous Pickup and Delivery and Time Windows (GVRP-SPDTW), and (2) proposing
a heuristic algorithm for the investigated problem. In the proposed model, it is assumed that travel times
depend on the speed of vehicles due to the time windows. The proposed problem intends to minimize the fuel
consumption and emissions. To this end, the approach of Comprehensive Modal Emission Model (CMEM),
which is as an exact estimation model, is applied to estimate the fuel consumption. Finally, the Adaptive Large
Neighborhood Search (ALNS) method by considering new removal and insertion heuristics is exerted to solve
the problem.

The paper is organized as follows. Section 2 investigates the literature on GVRP. In Section 3, mathematical
model for the problem is presented. Section 4 describes the proposed solution algorithm. Computational results
are provided in Section 5 and finally, Section 6 describes conclusion along with directions for future research.

2. Literature review

The traditional objective of VRP is reducing the total distance that can result in the reduction of fuel
consumption. However, to reduce the fuel consumption and emissions, accurate investigations should be con-
ducted [23]. The amount of CO2 emission from a vehicle depends on some factors such as the speed, acceleration,
load, road slope. A broad range of models have been presented to estimate the amount of fuel consumption
and CO2 emission. In the case of transportation planning, minimizing pollution has been rarely investigated [2].
Palmer in 2007 [29] proposed an integrated model of routing and emissions for freight vehicles. They consid-
ered the influence of speed in reducing the emissions of CO2 according to the various factors like congestion
and time window constraints. Kara et al. in 2007 [14] introduced a new extension of the VRP, which is called
Energy-Minimizing VRP that aims to minimize a weighted load function instead of distance. Maden et al. in
2010 [24] discussed a VRP with time windows constraints and also considered a nonlinear relationship between
the travel time of the vehicle and speed.

Ubeda et al. in 2011 [36] conducted a case study to minimize both the distances and pollutant emissions
as the objective functions. The results showed that backhauling is very effective in controlling the emissions.
Therefore, companies can reduce their negative environmental impact by initiating backhauling. The authors
considered minimizing GHG emissions for VRP with backhauls. Suzuki in 2011 [30] proposed a model and
showed that more saving can be achieved by delivering heavy items at the beginning of the route and delivering
the light items at the end. Faulin et al. in 2011 [10] presented a Capacitated Vehicle Routing Problem (CVRP)
by considering environmental criteria. Three types of costs are considered including (1) the traditional economic
costs, (2) the environmental costs which are caused by pollution emissions, and (3) other environmental costs
derived from the noise, congestion and depreciation of infrastructure. Bektas and Laporte in 2011 [2], introduced
an extension of Vehicle Routing Problem with Time Windows (VRPTW), which is called Pollution Routing
Problem (PRP). In this problem, the objective function is to determine the speed variable on each arc of the
route to minimize fuel consumption, emissions and driver costs. They used the model of CMEM for the fuel
consumption estimation which is suitable for heavy vehicles and considered factors like the speed, load and road
angle. The authors reported a 10% reduction in emissions for a model of PRP. In 2011, the authors presented
the review on the green road freight transportation and compared the different models of fuel consumption [8].
Demir et al. in 2012 [9] proposed a heuristic solution method for the medium and large scales of PRP. Xio et al. in
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2012 [37] presented a routing model by the assumption of fuel consumption rate in CVRP and called it FCVRP.
In this paper, the regression model based on the real data of transportation in Japan was used for measuring
emissions. Kopfer et al. [18] in 2014 considered VRP with different types of vehicles and also assumed a linear
relation between the fuel consumption and speed. Franceschetti et al. [11], in 2013 developed a time-dependent
PRP including the cost functions of fuel, emission and driver costs by considering the traffic congestion at the
peak periods and vehicle speeds. Demir et al., in 2014 presented a bi-objective PRP to minimize the consuming
fuel and driving time. Molina et al. 2014 proposed a multi-objective vehicle routing problem by considering the
cost and emission functions [26].

Koç et al. [15], in 2014 proposed a fleet size and mix pollution-routing problem. They applied a meta-
heuristic on some realistic benchmark instances. Kramer et al., 2014 [16] proposed a matheuristic approach for
the Pollution-Routing Problem. In the mentioned study, the results were compared with previous algorithms
in the literature. Koç et al., in 2016 [17] investigated the impact of the depot location, fleet Composition and
routing decisions on the vehicle emissions in the city logistics.

In GVRP similar to other variants of VRP, there may be not enough information about parameters. Therefore,
in many cases, the parameters would be uncertain. One of the important approaches for dealing with the
uncertain environment is fuzzy modelling. However, there are few studies on the fuzzy approach in the GVRP
literature. Tillman in 1969 proposed an algorithm based on Clarke and Wright for the Stochastic Vehicle Routing
Problem (SVRP) by considering multi depots. Stewart and Golden in 1983 presented a chance constrained
programming model and also two expected value models. Gendreau et al., 1996 [12] provided a comprehensive
review of the scientific literature on stochastic vehicle routing problems. Yang et al., 2000 [38], considered
a SVRP in which customers’ demands are assumed to be uncertain. Laporte et al. [20], 2002 considered the
stochastic demands for CVRP. Hvattum et al. 2006 [13] presented a Dynamic and Stochastic VRP with a Sample
Scenario Hedging heuristic as a solution method. Taş et al., 2013 [35] proposed a vehicle routing problem with
stochastic travel times including soft time windows and service costs. They used Tabu Search method to solve
the model. Sarasola et al., 2016 [35] considered the vehicle routing problem (VRP) with stochastic demand and
dynamic requests. They proposed variable neighborhood search algorithm (VNS) to solve the problem.

There are a lot of studies on various types of SVRP such as Dror and Trudeau [6], Bodin et al. [1], Liu
et al. [22]. Dror et al. [5], described a variety of SVRP models by considering different operating and service
policies.

The current study extends the model of Green VRP by considering simultaneous pickup and delivery and
time windows. A mathematical model is proposed under uncertain demand. To this end, fuzzy numbers for
customers’ demands are assumed and the credibility measure theory is applied to deal with the uncertainty. For
solving the problem, a heuristic solution method is suggested.

3. Problem definition

In this paper, the routing and scheduling problem for a homogenous fleet of vehicles is discussed. The
vehicles with limited capacity deliver the deterministic amounts of goods from the central depot to customers
and simultaneously pick up the goods that customers want to return to the depot. In the investigated problem,
there is a constraint related to the time windows. It is related to the earliest and latest times of servicing the
customers. It is assumed that late arrival is not allowed, and in the case of early arrival, the vehicle should wait
until the service time starts. The main objective of the problem is to minimize the costs of fuel consumption
and emissions. In the following, firstly we explain one of the most important fuel consumption models which is
called CMEM, and afterward the mathematical model is presented.

3.1. Comprehensive modal emission model

In order to measure the fuel consumption and CO2 emission, an accurate estimation method is applied. The
CMEM is one of the estimation models of fuel consumption, which was developed by Barth et al. 2005 [3]. The
mentioned model consists of three modules: engine power, engine speed and, fuel consumption rate. The Emission
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Rate (ER) (grams per second) for greenhouse gases (such as CO, HC or NOx) is related to the fuel consumption
rate (FR) (g/s). The calculation of FR is complex as it depends on a number of factors. The calculation of FR
is explained in relation (3.1):

FR(t) = (k.N.V + (Pt/ε + Pa)/η)γ (3.1)

where k is the engine friction factor, N is the engine speed (radian per second (rps)), V is the engine displacement
(liter), Pt is the total tractive power demand in watts (or kg m2/s 3), ε is vehicle drive train efficiency, Pa is
the engine power demand associated with additional vehicle accessories (Watt) such as an air conditioner,η is
a measure of efficiency for diesel engines and γ is a constant. Moreover Pt (kilowatt) is calculated as follow:

Pt = (Mav + Mgvsinθ + 0.5CdρAv3 + MgvCrcosθ)/1000 (3.2)

where M is the mass of the vehicle (kilogram),v is speed (meter/second),a is the acceleration (meter/second
2),g is the gravitational constant (9.81 meter/second 2), θ is the road angle (radian), A is the surface area in
front of the vehicle (meter2), ρ is the air density (kilogram/meter 3), and Cr and Cd are the coefficients of
rolling resistance and drag, respectively. The engine speed N (rps) can be calculated as:

N =
ndngv

R
(3.3)

Where nd is the differential ratio, ng is the gear ratio and R is radius of the wheel.

3.2. Deterministic model

The proposed problem can be defined as a complete directed graph G = (N, A), in which
N = {0, 1, . . . , n} is the set of nodes, the node 0 represents the depot, and N0 = N/{0} is the set of customers.

In addition, A = {(i, j)|i, j ∈ N0, i �= j} is the set of arcs between the customers. Each customer has both the
pickup and delivery demands denoted by pdi and ddi, respectively. Moreover, a time window [ai, bi] is considered
for each customer. The early arrivals of the vehicles are allowed but the vehicle should wait until a certain time
ai to start servicing the customer. Si denotes the service time at customer i.

The CMEM, which is a function of the speed, acceleration, vehicle specification and road slope is used in the
objective function. For a given arc (i, j) with the length of dij , it is assumed that vij be the speed of the vehicle
on the arc. The fuel consumption F (in Liter) for the given arc can be calculated as:

Fij = FR(t)dij/vij = γαij(fij + w)dij + γβv2
ijdij + γkNV dij/vij (3.4)

where αij = a+g sin θij +gCr cos θij and β = 0.5CdρA. The first term of relation (3.4) is related to the weighted
load carried by vehicles which is derived by multiplying the load and distance. Therefore, the customers with
small (large) delivery demands and large (small) pick-up demands will be visited, later (earlier). Moreover, the
two last terms are related to speed variable. It is worth mentioning that both the low and high speed can result
in higher fuel consumption.

Parameters

C Capacity of vehicle.
dij Distance between node i and j.
Uij Picked up demand up to node i by vehicle and carried in arc (i, j).
Wij Delivered demand up to node i by vehicle and carried in arc (i, j).
Cf Cost of each gram of fuel.
Ce Cost of emission.
M Mass of vehicle.
A Frontal surface area of the vehicle.
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vl Minimum amount of speed.
vm Maximum amount of speed.

Decision variables

Xij =
{

1
0

A binary variable that takes 1 if vehicle travelled from node i to j, otherwise 0

fij amount of load travelled from i to j.
yi beginning time of the service of node j.
vij speed of vehicle from node i to j.

minZ =
∑
j∈N

∑
i∈N

(Cf + Ce)γαij(w + fij)dijXij

+
∑
j∈N

∑
i∈N

(Cf + Ce)γβ(v2
ij)dijXij +

∑
j∈N

∑
i∈N

(Cf + Ce)kNV dijXij/(vij) +
∑

j∈N0

pSj (3.5)

S.t :
∑
i∈N

Xij = 1 ∀j ∈ N0 (3.6)

∑
j∈N0

X0j = m (3.7)

∑
i∈N0

Xij−
∑
i∈N0

Xji = 0 ∀j ∈ N, i �= j (3.8)

∑
i∈N

Uji −
∑
i∈N

Uij = pdj ∀j ∈ N0 (3.9)

∑
i∈N

Wij −
∑
i∈N

Wji = ddj ∀j ∈ N0 (3.10)

Uij + Wij ≤ CXij ∀i, j ∈ N, i �= j (3.11)

fij = Uij + Wij ∀i, j ∈ N (3.12)

yi +
dij

vij
+ Si − yj ≤M(1−Xij) ∀i ∈ N (3.13)

ai ≤ yi ≤ bi ∀i ∈ N0 (3.14)

∑
j

U0j = 0, (3.15)

∑
i

Wi0 = 0, (3.16)

Uij ≤ (C − pdj)Xij ∀i ∈ N, j ∈ N0 (3.17)

Wij ≤ (C − ddi)Xij ∀i ∈ N0, j ∈ N (3.18)
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Uij ≥ pdiXij ∀i ∈ N0, j ∈ N (3.19)

Wij ≥ ddjXij ∀i ∈ N, j ∈ N0 (3.20)

vl ≤ vij ≤ vm ∀i, j ∈ N (3.21)

Xij ∈ {0, 1} ∀i, j ∈ N (3.22)

fij ≥ 0 ∀i, j ∈ N (3.23)

yi ≥ 0 ∀i ∈ N (3.24)

The objective function (3.5) is derived from the relation (3.4). The first three terms are related to the total fuel
consumption and emissions. The last part is associated with the driver payments. Constraint (3.6) guarantees
that each customer must be served by only one vehicle. The number of vehicles leaving the depot is shown by the
constraint (3.7). Moreover, the constraint (3.8) represents the flow conservation, while the constraints (3.9) and
(3.10) are about simultaneous pickup and delivery of the demand. Constraint (3.11) represents that the carried
load between nodes i and j (fij)cannot be exceed the capacity of the vehicle. Constraint (3.12) guarantees that
total amount of carried load from i to j is equal to sum of pickup and delivery amount carried in arc (i, j).
The time windows for the customers are also imposed by the constraints (3.13) and (3.14). Constraints (3.15)
and (3.16) ensure that the vehicle leaves depot without any pickup demand load and returns to depot after
delivering all the demand. Constraints (3.17) to (3.20) are also related to the pick-up and delivery constraints.
Finally, the range of speed is denoted by constraint (3.21).

In Table 2 the values of the parameters and coefficients are listed.

Table 2. Parameters used in the model.

Notation Typical Values
w (kilogram) 6350

k (kilogram/rev/second) 0.2
N (rev/second) 33

V (liters) 5
ηtf 0.4
η 0.9

ρ(kilogram/meter3) 1.2041
g(meter/second 2) 9.81

A(meter2) 3.912
Cd 0.7
Cr 0.01

Cf ($) 1
Ce($) 0.4

vl (meter/second) 5
vm(meter/second) 25
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d1 d2 d3 d4

1

Figure 1. A trapezoidal fuzzy variable.

3.3. Fuzzy credibility measure

The Fuzzy set concept and membership functions were presented by Zadeh [40]. This approach is applied in
many real world problems. The term of fuzzy variable was presented by Kaufman [19] for measuring a fuzzy
event and then possibility measure theory for fuzzy variable was proposed by Zadeh [41]. Afterward, credibility
theory was developed by Liu [19]. This section deals with some basic concepts of fuzzy variables. First, the
concepts of possibility will be introduced, necessity and credibility of a fuzzy event, then our deterministic
model is developed based on this concept.

Definition 3.1 (Nahmias [27]). Let Θ be a nonempty set,∅ be an empty set, and ρ(Θ) is the power set of Θ.
For each set A ∈ ρ(Θ), the possibility is denoted by a nonnegative numberPos(A), there are three principles
for it as follows:

(1) Pos{∅} = 0;
(2) Pos{H} = 1;
(3) For any optional collection Ak in ρ(Θ)Pos∪kAk = supkPos(Ak)

The possibility space is defined by (Θ, ρ(Θ), Pos), and the possibility measure is referred by the function Pos.

Definition 3.2. The necessity measure for A ∈ ρ(Θ), is defined as Nec{A} = 1− PosA.

Definition 3.3. Credibility measure for A ∈ ρ(Θ), is given by,

Cr{A} =
1
2
[Pos{A}+ Nec{A}] (3.25)

In this paper both types of demands at each node are assumed as fuzzy variables and they are represented
by a trapezoidal fuzzy number as illustrated in Figure 1.

Assume ξ is a fuzzy variable of customer demand with membership function of μ(x) and r is a real number.
For ξ in type of trapezoidal fuzzy number ξ = (ξ1, ξ2, ξ3, ξ4), the credibility measure is calculated as follows:

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, r ∈ (−∞, ξ1]

r − ξ1

2(ξ2 − ξ1)
, r ∈ (ξ1, ξ2]

1
2
, r ∈ (ξ2, ξ3]

r − 2ξ3 + ξ4

2(ξ4 − ξ3)
, r ∈ (ξ3, ξ4]

1, r ∈ (ξ4,∞]

(3.26)
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Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, r ∈ (−∞, ξ1]

2ξ2 − ξ1 − r

2(ξ2 − ξ1)
, r ∈ (ξ1, ξ2]

1
2
, r ∈ (ξ2, ξ3]

ξ4 − r

2(ξ4 − ξ3)
, r ∈ (ξ3, ξ4]

0, r ∈ (ξ4,∞]

(3.27)

For service level α > 0.5 credibility gives:

Cr{ξ ≤ r} ≥ α→ r ≥ (2 − 2α)ξ3 + (2α− 1)ξ4 (3.28)

Cr{ξ ≥ r} ≥ α→ r ≤ (2α− 1)ξ1 + (2− 2α)ξ2 (3.29)

By applying the above equations in the deterministic model; the constraints (3.9), (3.10), (3.17)−(3.20) should
change as follows.

CXij − Uij ≥ (2− 2α)pd3j + (2α− 1)pd4j ∀i ∈ v, j ∈ vc (3.30)

CXij −Wij ≥ (2− 2α)pd3j + (2α− 1)pd4j ∀i ∈ v, j ∈ vc (3.31)

Uij ≥ (2− 2α)pd3j + (2α− 1)pd4j ∀i ∈ vc, j ∈ v (3.32)

Wij ≥ (2− 2α)pd3j + (2α− 1)pd4j ∀i ∈ vc, j ∈ v (3.33)

∑
i∈v

Uji −
∑
i∈v

Uij ≤pd3j

∑
i∈v

Uji −
∑
i∈v

Uij ≥pd2j ∀j ∈ vc (3.34)

∑
i∈v

Wji −
∑
i∈v

Wij ≤pd3j

∑
i∈v

Wji −
∑
i∈v

Wij ≥pd2j ∀j ∈ vc (3.35)

4. Heuristic approach based on the adaptive large neighborhood search

algorithm

The Adaptive Large Neighborhood Search (ALNS) algorithm which is an effective heuristic method was
presented by Pisinger and Ropke [28] to solve different classes of the routing problems. This method is an
extension of Large Neighborhood Search (LNS). In the LNS, an initial solution is improved by destroying and
repairing the solution, but in the ALNS, several removal and insertion operators are applied to improve a
solution. To obtain a new solution, a number of customers are removed from the current solution and reinserted
into the routes. To determine the frequency of using operators, a weight is assigned according to the performance
of each destroy or repair. The weights will be adjusted dynamically after definite iterations [25].

4.1. Structure of heuristic algorithm

In the proposed algorithm, firstly, an initial solution (Xinitial) is constructed by initialization algorithm
described in Section 4.2, and initial temperature is adjusted (T = T0). In each iteration, the algorithm aims to
find a new solution by using a series of removal and insertion operators. The current solution, which is obtained
at the beginning of an iteration, is denoted by (Xcurrent). The new solution (Xnew) is a temporary solution that
will be evaluated for making a decision on rejecting or accepting it. The cost of solution X is denoted by Ob(X).
If Ob(Xnew) < Ob(Xcurrent), the new solution is accepted, otherwise, it could be accepted by the probability
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Figure 2. Flowchart of ALNS algorithm embedded by SA.

obtained from the equation e−(Ob(Xnew)−Ob(Xcurrent))/T . If the new solution is accepted, it will be set as the
current solution. At the end of each iteration, it is compared with the best solution found during the search
mechanism (Xbest). The ALNS method should be embedded within any local search heuristic such as Simulated
Annealing (SA). At the end of each iteration, the temperature is gradually decreased by a definite rate to limit
the neighborhood space. The algorithm is run until the maximum iteration Figure 2. illustrates the flowchart
of the proposed algorithm [25].
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4.2. Initialization

There are two main algorithms for constructing routs in the VRP: (3.1) sequential and, (3.2) parallel methods.
The sequential procedures construct only one route at a time, while the parallel procedures create simultaneously
more than one route [32]. In this paper, a parallel insertion-based construction heuristic method is proposed
for finding the initial solution. It is noteworthy that finding a good initial solution is very important, as it can
impressively decrease the number of iterations to reach the optimal solution.

Regarding the objective function (3.4), for reducing the fuel consumption, minimizing the weighted load
carrying by vehicles is of major importance. Consequently, it is considered in the criterion of insertion algorithm.

To describe the algorithm, suppose nodes (i1, i2, i3, . . . , im) are in a route. For inserting node u in the position
between (ip) and (ip+1), cost of insertion C(u) is calculated as follows:

(i1, i2, i3, . . . , im)← u C(u) = min
p−1∑
n=1

finin+1dinin+1 + fipudipu +
m∑

n=p+1

finin+1dinin+1∀p = 1, . . . , m (4.1)

The cost of insertion is calculated for all the available feasible positions for node u in the solution. After
calculating the costs for all the unrouted nodes, then the minimum cost will be selected as follows:

u = minC(u)∀u that is unrouted yet (4.2)

To obtain a feasible solution, capacity constraints should be satisfied. The equations which were reported by
Dethloff [7] are considered for capacity constraint and two functions are defined as Residual Delivery (RD)
and Residual Pickup (RP ). RD(i), for customer i represents the amount of load that can be transported
additionally from the depot to an inserted customer after customer i. Like RD(i) , RP (i) is defined as residual
pick-up capacity, representing the largest possible amount to pick-up from a customer inserted after node i.

RD(0) = C −
∑
s∈T

pds (4.3)

RD(q) = min{RD(PRI(q)), C − lq}(q ∈ T ) (4.4)

RP (0) = C −
∑
s∈T

dds (4.5)

RP (q) = min{RP (SUI(q)), C − lq}(q ∈ T ) (4.6)

One of the important constraints is time windows, as it affects the speed. Therefore, in the following, the best
possible arrival time of the vehicles will occur considering the maximum speed. In this case, yi is defined as
arrival time of a vehicle at node i and wi is also the waiting time if vehicle arrives before lower bound of time
windows. To insert node u between (ip) and (ip+1) in route (i1, i2, i3, . . . , im), the relations (4.7) and (4.8) should
be considered,

wip =
{

aip − yipifaip > yip

0ifaip > yip

(4.7)

yip = yip−1 + wip−1 + sip−1 + dip−1,ip/vm

dipu

bu − (yip + wip + sip)
< vmyin < bin for n = p + 1, . . . , m (4.8)

Pseudo code for construction algorithm is presented as Algorithm 1,
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Algorithm 1. Pseudo code for the proposed initial solution algorithm.
Iteration=1;
While (iteration until all the nodes routed)
Best cost=big number;
For (all unrouted nodes)
Cost=big number;

For (all routes)
For (all positions)

If (the vehicle capacity and time windows
are satisfied)

COI=Calculate the cost of insertion;
If (COI < Cost)
Cost=COI;
End

End End
End
If Cost< Best cost
Best cost=Cost;
End
End

Return Best cost;
Insert selected node in the best position in best route;
Iteration+1;
End
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Figure 3. Depiction of a Removal Opetation.

4.3. Removal operators

After obtaining the initial solution, operators are defined to improve the current solution by searching the
neighborhood space. There are two types of operators: (1) removal and, (2) insertion.

In this section, four removal operators are defined. A removal operator starts with an empty removal list,
and selects s nodes by a specific strategy during φ iterations. In each iteration of removal operator, one node is
selected and removed from the solution and consequently a reduced solution will be obtained. The nodes which
are selected by the operator are placed in the removal list. The strategy of removal operator for selecting nodes
is important in a search mechanism and it depends on the nature of the problem. The number of removed nodes
is determined based on the percentage of customers.
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Figure 4. Worst Distance Removal Operator.

Figure 3 illustrates the mechanism of a removal operator. In Algorithm 2, the pseudo code of the removal
operator is presented.

Algorithm 2. Pseudo code for a removal operator algorithm.
Input: feasible solution X, φ maximal number of iterations;
Output: a partial solution Xp;
Initialize removal list (L← ∅)
FOR φ do

Apply remove operator to find set of S of nodes
L← L ∪ S
Remove subset of S from X

END

1) Random Removal (RR)
In each iteration of the Random Removal operator, firstly, one route is randomly selected and then one node

is randomly chosen and removed on the selected route. Afterward, the selected node is placed on the removal
list. This algorithm runs for φ iterations based on the random selection strategy for better diversification in the
search mechanism.
2) Worst Distance Removal (WDR)

The Worst Distance Removal operator selects a customer with the highest cost in each iteration. Note that
cost of each customer is calculated as the sum of distances from the previous and following customers on the
route. In each iteration, this cost is calculated for all the nodes in all routes and the maximum amount of those
is selected, i.e., it removes node j = argmax{|dij + djk|}. Figure 4 shows the mechanism of this operator.
3) Worst Time Removal (WTR)

The Worst Time Removal operator calculates the deviation of arrival time of vehicle at nodej, from start
time of serviceaj, and then removes the node with the maximum deviation. The operator prevents from long
waiting times or delayed services. For example the operator selectsj = argmax{|yj − aj |}.
4) Minimum Route Removal (MRR)

The Minimum Route Removal operator aims to find the routes with a minimum number of customers and
selects a number of nodes randomly. Indeed, the aim of this removal operator is reducing the total number of
routes. The operator mechanism is illustrated graphically in Figure 5.
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4.4. Insertion operators

After destroying the current solution, the nodes of the removal list, which were obtained from removal
operator, should reinsert in the reduced solution. In order to improve the current solution and find a new one,
specific insertion strategies should be used. In the following, two insertion operators are described. The depiction
of an insertion operator is shown in Figure 6. Pseudo code for an insertion operator algorithm is provided in
Algorithm 3.

1) Greedy Insertion
The Greedy Insertion operator repeatedly inserts each removed node in the best possible position of a solution.

The insertion cost is calculated as follow:

C(i) = dji + dik − djki ∈ S i∗ = argmin{C(i)} (4.9)

2) Random Insertion
The Random Insertion operator firstly finds feasible positions for each removed node and then randomly

selects one of the positions for inserting the node. Figure 7 shows the mechanism of this operator.
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Algorithm 3. Pseudo code for an insertion operator algorithm.
Input: a partially solution Xp; ∅ maximal number of
iterations; removal list L
Output: a new solution X;
Initialize removal list (L← ∅)

FOR i ∈ L do
Apply insert operator to find set of S of nodes
L← L− S
insert i in Xp

END

Table 3. Definition of scores.

Score Description
σ1 If the solution obtained by the operator be the best solution
σ2 If the solution obtained by the operator be better than the current solution
σ3 if the solution obtained by the operator be worse than the current solution but it is accepted

D 1 2 3 4 D D 1 2 3 5 4 D 
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1
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4
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D

5 

Figure 7. Randon insection operation.

4.5. Roulette wheel mechanism

The selection of both the removal and insertion operators in each iteration is based on their recorded perfor-
mances. To measure the performance of the operators, three different scores are defined as shown in Table 3. At
first, all the probabilities for each removal and insertion operator are the same, after running definite iterations
(N) of ALNS algorithm, probabilities are updated as follow,

pt+1
d = pt

d(1− rp) + rpπi/ωi (4.10)

where rp is a parameter that is defined for the roulette wheel, πi is the score of the operator i, ωi is the number
of using the operator i during N iterations. The scores of operators should be set to zero after each iteration of
roulette wheel.

5. Computational results

The proposed algorithm is coded in MATLAB on a server with Intel core i7, 2.4 GHz processor and 3 GB
memory.

We use a data set from the literature which was proposed by Demir et al. [9], According to the mentioned
article, there are nine data sets, each of which consists of 20 instances including 10 to 200 nodes. The best
known solutions for two sets of UK10 and UK100 are reported by Demir et al. [9]. We compare the results
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Table 4. Parameters of the proposed algorithm.

Parameter Values
Max iteration of ALNS 10 000

rp, Roulette wheel mechanism parameter 0.1
T0, Initial temperature 100

δ, Cooling rate 0.9
S Number of removal nodes 10% of n

Table 5. Assumed parameters for parameter setting.

Parameter Values
Max iteration of roulette wheel 400 600

σ1 0 5
σ2 0 4
σ3 0 2
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Figure 8. Cost comparison for differrent values of parameters.

of the proposed algorithm in this paper with those obtained in the mentioned study. As new assumptions are
considered in the current study, new data sets are generated in order to meet the constraints of the proposed
model. In the following, new experiments are performed to evaluate the proposed algorithm by these data sets.

In the following subsections, parameter setting for the proposed algorithm is performed, and then, experi-
mental results are reported and analyzed. Finally, numerical experiments for the fuzzy model are performed
and the results are provided.

5.1. Parameter setting

The parameters related to the ALNS and SA algorithms are shown in Table 4. In this section, numeri-
cal experiments are performed to tune four parameters, including number of iteration for roulette wheel and
three scores (σ1σ2, σ3). To determine the best combination of these parameters, different values of them are
experimented and the best one is reported.

In Table 5 assumed values for the parameters are listed. As shown in Figure 7, minimum cost occurs under
parameter values (600, 5, 4, and 2).



FUZZY GREEN VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICKUP – DELIVERY AND TIME WINDOWS1167

1000

1100

1200

1300

1400

1 3 5 7 9 11 13 15 17 19

proposed algorithm Demir et al

Figure 9. Comparison of results of total cost for data set UK100.

5.2. Comparison with results of Demir et al. [Deterministic model]

The experiments are performed for the instances UK10 and UK100 and results are compared with the reported
results in (Demir et al. [9]). Two criterions, i.e., the total distance and total cost (equal to the fuel and emission
costs in addition to driver wage) are calculated. As mentioned previously, fuel consumption depends on a lot
of factors which among them distance, load and speed are the most important ones. Although minimizing the
total distance results in minimizing the fuel consumption, it is possible to generate tours with higher distance
and lower fuel consumption due to the role of other factors.

The results of numerical experiments are reported in Tables 7 and 8. As the results show, for instances
with 10 customers, our proposed algorithm finds the same results as the results of Demir et al. [9]. While for
instances including 100 customers, the results show improvements compared to the results of literature. There
are improvements in the most of the instances and consequently, it can be concluded that the proposed model
performs better than the algorithm by Demir et al. [9]. The improvement of solution is shown by DEV (D)%
for distance and DEV (C)% for cost that are calculated as follows:

DEV (C)% = (Demirresult− ourresult/Demirresult)100

Figure 9 shows the improvement trend of the total costs for instances with 100 customers. The convergence of
the algorithm is investigated to validate the performance of the algorithm in finding the best solution which is
demonstrated in Figure 10.

5.3. Comparison between removal operators [Deterministic model]

In this section, new numerical experiments are performed to compare the performance of the removal operators
in the proposed algorithm. First of all, new test problems are generated similar to the data sets which exist in
the literature with the same amounts of distances, time windows, service time and delivery demand. Moreover,
pick up demand is added to the data set to fit our model (see Tab. 8). Four data sets including 10 instances
are generated. Experiments are conducted for ALNS-RR (algorithm with just random removal), ALNS-WTR
(algorithm with just worst time removal), ALNS-WDR (algorithm with just worst distance removal), and ALNS-
MRR (algorithm with just minimum route removal). The experiments are carried out for 10 000 iterations with
the same values of the parameters. The results are reported in Table 9. As the results show, each removal
operator cannot individually result in the best solution as it cannot search the whole neighborhood space
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Table 6. Results of instances with 100 customers, comparison of proposed heuristic with
CPLEX and Demir et al. 2012.

Instances
CPLEX & Demir et al. 2012 Proposed heuristic

TC TD (km) TC NV
UK10-01 170.66 409 170.64 2
UK10-02 204.87 529.8 204.88 2
UK10-03 200.33 507.3 200.42 2
UK10-04 189.94 480.1 189.99 2
UK10-05 175.61 447 175.59 2
UK10-06 214.56 548 214.48 2
UK10-07 190.14 494.7 190.14 2
UK10-08 222.16 567.8 222.17 2
UK10-09 174.53 457 174.54 2
UK10-10 189.83 486.7 190.04 2
UK10-11 262.07 697.2 262.08 2
UK10-12 183.18 460.3 183.19 2
UK10-13 195.97 510.5 195.97 2
UK10-14 163.17 397.8 163.28 2
UK10-15 127.15 291.4 127.24 2
UK10-16 186.63 451.1 186.73 2
UK10-17 159.07 387.5 159.03 2
UK10-18 162.09 401.5 152.09 2
UK10-19 169.46 414.5 169.59 2
UK10-20 168.8 412.8 168.8 2

Table 7. Results of instances with 100 customers, comparison of proposed heuristic with
CPLEX and Demir et al. 2012.

Instances
CPLEX Demir et al. 2012 Proposed heuristic

DEV(D)% DEV(C)%
TC TD (Km) TC NV TD (Km) TC NV

UK100−01 1389.05 2914.4 1240.79 14 2881 1237.2 14 1.1 0. 2
UK100−02 1302.16 2690.7 1168.17 13 2706.5 1155.8 13 −0. 5 0.01
UK100−03 1231.44 2531.8 1092.73 13 2510.1 1083.4 13 0. 8 0. 8
UK100−04 1174.75 2438.5 1106.48 14 2413.7 1105.67 14 1.2 0.07
UK100−05 1121.71 2328.5 1043.41 14 2355 1050.12 14 −1 −0. 6
UK100−06 1320.4 2782.4 1213.61 14 2790.3 1215.4 14 −2 −0. 1
UK100−07 1177.8 2463.9 1060.08 12 2438.2 1026.3 12 1 0.03
UK100−08 1230.92 2597.4 1106.78 13 2683.1 1104.4 12 −3 0. 2
UK100−09 1092.2 2219.2 1015.46 13 2431 1007.9 12 −9.55 0. 7
UK100−10 1163.95 2510.1 1076.56 12 2508.6 1069.2 12 0.07 0. 6
UK100−11 1343.18 2792.1 1210.25 15 2685.3 1193.4 14 3.83 0.01
UK100−12 1227.01 2427.3 1053.02 12 2417.01 1044.28 12 0. 4 0. 8
UK100−13 1333.1 2693.1 1154.83 13 2683 1130.6 13 0. 3 0.02
UK100−14 1410.18 2975.3 1264.5 14 2967.4 1260.3 14 0. 2 0. 3
UK100−15 1453.81 3072.1 1315.5 15 3060.7 1309.43 15 0. 3 0. 4
UK100−16 1105.58 2219.7 1005.03 12 2207.13 997.08 12 0. 5 0. 7
UK100−17 1389.99 2960.4 1284.81 15 2947.2 1280.92 15 0. 4 0. 3
UK100−18 1219.45 2525.2 1106 13 2510 1102.45 13 0. 6 0. 3
UK100−19 1115.82 2332.6 1044.71 13 2330.7 1045.1 13 0. 08 −0. 3
UK100−20 1396.97 2957.8 1263.06 14 2940.13 1259.28 14 0. 5 0. 2
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Table 8. Specification of generated test problems.

Data Set No. of Customers NV Vehicle Capacity Range of Speed (m/s)
SM10 10 2 3650 5 to 25
SM20 20 5 3650 5 to 25
SM50 50 15 3650 5 to 25
SM100 100 20 3650 5 to 25

Table 9. Results of comparing the performance of four removal operators with data set for
10, 20, 50 and 100 customers.

Instances ALNS-RR ALNS-WTR ALNS-WDR ALNS-MRR ALNS
(proposed algorithm)

10 customer
SM10-1 120.45 115.45 107.8 109.2 100.43
SM10-2 128.97 130.4 129.19 129.4 128.37
SM10-3 132.44 134.06 132.97 134.67 132.44
SM10-4 119.4 117.9 119.4 120.45 117.7
SM10-5 109.6 109.28 110.32 108.9 108.73

20 customer
SM20-1 220.5 217.95 219.03 220.37 216.99
SM20-2 254.21 257.8 255.4 255 254.21
SM20-3 345.6 337.5 348 342.06 325.9
SM20-4 398.1 401.5 401.5 390.17 378.9
SM20-5 375.4 390.5 381.7 394 375.4

50 customer
SM50-1 462.34 462.41 457.86 450.3 419.34
SM50-2 456.7 457.3 473.85 445.09 443.12
SM50-3 514.78 506.66 501.6 500.43 491.61
SM50-4 466.8 490.3 481.23 476.2 460.4
SM50-5 480.9 403.16 480.1 456.3 440.6

100 customer
SM100-1 900.3 890.4 912.5 907.2 868.67
SM100-2 958.6 976.4 968.9 970.3 949.26
SM100-3 1025.6 1124.5 1026.7 1026 1025.3
SM100-4 1165.3 1126.67 1188.9 1201 1145.8
SM100-5 1256.3 1184 1249.4 1184 1184

and consequently obtains a local optimum solution. While the combination of these operators by making the
diversification in the search mechanism results in a better solution.

5.4. Experimental results [Fuzzy model]

In this section, the trapezoidal fuzzy variable is considered for both pickup and delivery demands. For each
set of tests, the proposed algorithm is implemented according to the presented fuzzy model in Section 3−3.

The results are presented for different service levels α = 0.5, 0.6, 0.7, 0.8, 0.9, 1, and instances with 10, 20,
50 and 100 customers. The numerical results for the costs of fuel and driver and total cost are considered and
reported in Table 10. According to the results, in the fuzzy model, by increasing the uncertainty of demand
(higher αde), fuel and driver costs increase. Overall, the amount of total cost increases. In addition, fuzzy
approach causes the increase of the number of vehicles to satisfy the customer’s demands, comparing with the
deterministic condition. This results in the significant increase of total cost. While for instances of 10 customers,
it has no significant effect on the number of vehicles. Figure 11 illustrates the effect of different service levels



1170 S. MAJIDI ET AL.

100

110

120

130

0 10 20 30 40 50 60 70 80 90 100 110

to
ta

l c
os

t

itera�on

Figure 10. Convergence procedure in proposed algorithm for instance with 10 customer.
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Figure 11. Schematic configuration of an instance with fuzzy demands.

on the total costs and the number of routes. So, for the αde = 0.50.9, schematic configurations of an instance
with 20 customers are shown. The trends of results for two instances with 10 and 100 customers are also shown
in Figures 12 and 13.

In another experiment, cost trends are investigated when both the pickup and delivery demands are assumed
to be fuzzy numbers. In this experiment, the effects of fuzzy approach on different types of demands: delivery
and pickup are explored. Therefore, different combinations of service levels for delivery demand (αde) and for
pick up demand (αpi) are considered and the results are presented in Table 11. According to the results, at each
αpi, by increasing the αde, the fuel cost and consequently the total cost will increase. Moreover, the minimum
total cost is occurred when αpi = 0.6 and αde = 0.5. In Figures 13−18, costs change tendencies for different αde

are demonstrated.
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Figure 12. Costs trend analysis with different α de for instance SM10.
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Figure 13. Costs trend analysis with different α de for instance SM10.
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Figure 14. Costs change tendencies with different αde for αpi = 0.5.
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Figure 15. Costs change tendencies with different αde for αpi = 0.6.
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Figure 16. Costs change tendencies with different αde for αpi = 0.7.
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Figure 17. Costs change tendencies with different αde for αpi = 0.8.
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Table 10. Results of cost changes with different α for delivery demands.

Instances NV αde Fuel Cost Driver cost Total Cost

SM10-1(10 customers) 2

0.5 100.43 61.06 161.49
0.6 106.67 62.36 169.03
0.7 114.11 64.81 178.92
0.8 118.48 61.67 181.15
0.9 118.98 62.67 181.66
1 102.52 61.06 163.58

SM20-1(20 customers)

4 0.5 264.08 150.49 396.57
4 0.6 245.58 152.64 398.22
5 0.7 246.83 152.75 399.58
5 0.8 248.86 154.04 402.9
5 0.9 246.89 160.04 410.93
5 1 263.28 161.96 425.24

SM50-1(50 customers)

9 0.5 419.34 254.99 674.33
10 0.6 490.52 282.27 776.79
9 0.7 433.84 260.36 694.2
9 0.8 446.29 267.09 713.38
9 0.9 434.44 257.66 692.11
9 1 470.85 261.4 732.25

SM100-1(100 customers)

16 0.5 868.67 512.69 1381
17 0.6 910.7 523.47 1434
17 0.7 923.61 510.41 1434
17 0.8 887.32 509.89 1397
18 0.9 972.26 538.41 1510
18 1 1042 559.97 1602
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Figure 18. Costs change tendencies with different αde for αpi = 0.9.
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Table 11. Results of fuzzy model for input SM10.

αpi αde Fuel Cost Driver Cost Total Cost

0.5

0.5 100.43 61.06 161.49

0.6 106.67 62.36 169.03

0.7 114.11 64.81 178.92

0.8 118.48 61.67 181.15

0.9 118.98 62.67 181.66

1 102.52 61.06 163.58

0.6

0.5 101.16 60.27 161.44*

0.6 106.84 67.34 174.18

0.7 107.78 62.72 170.50

0.8 119.4 68.46 187.86

0.9 125.8 65.63 191.44

1 116.71 61.5 178.22

0.7

0.5 106.8 67.34 174.14

0.6 107.26 67.34 174.6

0.7 108.2 62.72 170.92

0.8 116.57 66.32 182.9

0.9 125.36 68.76 194.12

1 129.9 67.21 197.12

0.8

0.5 107.23 67.34 174.57

0.6 117.23 67.88 185.12

0.7 102.53 61.06 163.59

0.8 125.27 68.76 194.03

0.9 117.49 66.42 183.94

1 126.3 68.76 195.06

0.9

0.5 102.11 61.06 163.17

0.6 108.28 57.85 166.13

0.7 102.95 61.06 164.01

0.8 125.69 68.76 194.45

0.9 117.91 66.45 184.36

1 127.08 70.17 197.26

1

0.5 102.53 61.06 163.59

0.6 108.53 67.34 175.87

0.7 109.44 62.72 172.16

0.8 121.04 68.46 189.51

0.9 104.2 61.06 165.26

1 122.72 68.57 191.3

0

50

100

150

200

250

0,5 0,6 0,7 0,8 0,9 1

fuel cost driver cost total cost

Figure 19. Costs change tendencies with different αde for αpi = 1.
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6. Conclusion

In this paper, the green vehicle routing and scheduling problem was proposed by considering the constraints
of simultaneous pickup and delivery and time windows. A green objective function is considered in the model
to minimize the fuel consumption and emissions. To solve the model, a heuristic method based on the ALNS
including new construction algorithm for an initial solution and some new removal and insertion operators was
proposed. The efficiency of the solution algorithm is evaluated by conducting some experiments to compare
the algorithm results with the best known results of literature. Experimental results confirm the efficiency and
better performance of the proposed algorithm. Moreover, a new data set was generated for investigating the
presented model and also a set of analyses was performed to compare the performance of different removal
operators to prove that combination of these operators in the algorithm result in better solutions. Afterward, a
fuzzy model was presented by using credibility measure theory. In this model, demand of nodes were considered
as fuzzy variables. The Fuzzy model was examined with different amounts of service levels (α) for the delivery
and pickup demands. The results, which are reported in the tables and charts, represent that rising the service
levels of fuzzy demands cause the rise of total costs and the number of vehicles. In addition, the best combinations
of service levels for delivery and pickup demands is derived from the results.
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