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PERFORMANCE EVALUATION OF GENERAL NETWORK PRODUCTION
PROCESSES WITH UNDESIRABLE OUTPUTS: A DEA APPROACH

Amir Kalhor
1
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Abstract. Performance evaluation of production systems with network structure has been widely
studied in recent data envelopment analysis (DEA) literature. Production systems in which outputs of
some stages are consumed as the inputs of some other stages in producing final outputs. In real world
applications, production processes are often complex and may produce not only desirable but also
undesirable intermediate or final outputs. In this paper modelling a general network DEA is considered
in the presence of undesirable outputs. A weak disposable production set consistent with undesirable
outputs is introduced and some network DEA models are also proposed for performance evaluation
of the production units. The proposed method is illustrated by some numerical example, including an
empirical application.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric approach to evaluate the performance of decision
making units (DMUs), which was first introduced by Charnes et al. [1]. In assessing DMUs by usual DEA
models, better performance means producing the most possible outputs for the least consumption of inputs.
However, in special situations, when there are undesirable outputs in the production system, an increase in
the production of this type of outputs is not desirable. In such cases, one of the best solutions is to use weak
disposability assumption for outputs in constructing the underlying productivity possibility set (PPS). Weak
disposability means that in order to decrease the amount of undesirable outputs, the desirable outputs have
to decrease proportionally, too. The question of how to abate outputs leads to two different viewpoints, and
consequently two different PPSs.

While Färe and Grosskopf [2] used one abatement factor for all DMUs, Kuosmanen [3] applied a distinct
abatement factor for every single DMU. Kuosmanen and Podinovski [4] illustrated that using an identical
abatement factor may result in non-convex PPS. They also proved that their recommended PPS is the correct
minimum extrapolation technology that satisfies the strong disposability of desirable outputs and inputs; weak
disposability of all outputs and convexity axioms.

In traditional DEA models, a DMU is considered as “black box” and the effects of internal structure of the
unit on its performance are totally ignored. In these models, availability of inputs and outputs value is sufficient
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to evaluate their efficiency. In recent years, however, scholars have focused on the performance valuation of the
production units by taking into account internal structure and relations of sub-processes. Publishing hundreds of
papers on this topic has led to the emergence of a new field in DEA called Network Data Envelopment Analysis
(NDEA). It could be said that the first study in this area by Charnes et al. [5] dates back to 1986. They proposed
that the process of Army recruitment consists of two phases including informing through advertisement and
creating contract. They showed that separating these phases could contribute to the recognition of the real
effect of inputs factors. Then, Färe and Whittaker [6] used a non-parametric technique in 1995 which included
intermediate products to measure efficiency scores. Färe and Grosskopf [7, 8] developed a network model for
different layouts. A relatively complete list of papers on NDEA along with the applied models is available in
Kao [9].

Based on structure of internal operational components of DMUs, NDEA models can be categorized into
series, parallel and mixed or general. In series structure, each process can consume inputs and intermediate
products produced by the previous process to produce other outputs and intermediate products. Two-stage
DEA, to which a lot of papers have been devoted, is a special case of series structure. A complete list and
classification of papers on two-stage structure in DEA literature are presented in Halkos et al. [10]. In parallel
structure, no intermediate product is exchanged between processes and each process operates independently.
General network DEA is a combination of series and parallel modes. In other words, each process can consume
inputs and intermediate products produced by other processes and produce other outputs and intermediate
products.

The existence of undesirable outputs in NDEA has been dealt with in several studies. Kordrostami and
Amirteimoori [11] considered a two-stage system in which the intermediate product could be undesirable. They
put forward a multiplier model to evaluate performance of DMUs in this mode. Fukuyama and Weber [12]
used a two-stage network model to examine DMU’s performance with undesirable outputs. They used slack-
based inefficiency (SBI) and directional distance function (DDF) models to compute an efficiency score in
general structure of NDEA. Akther et al. [13] also used SBI and DDF models in two-stage network DEA and
evaluated the case in which the undesirable output from the first process was used as the undesirable input
to the second process. Lozano et al. [14] surveyed general network DEA with undesirable outputs. Taking
into consideration weak disposability axiom for outputs and using an identical abatement factor for all units,
they introduced a production technology to this structure and also introduced a DDF model for performance
evaluation. Maghbouli et al. [15] examined two-stage network while the undesirable output from the first process
was used as the undesirable input to the second process. They used weak disposability axiom for outputs and
distinct abatement factors to build that technology. Bian et al. [16] used a two-stage model that included
undesirable factors. They used slack-based measure (SBM) to calculate efficiency scores and divided it into
production efficiency and abatement efficiency. Liu et al. [17] examined two-stage model in which either the
input, intermediate product or output could be undesirable, by using strong disposability axiom. Wu et al. [18]
used an additive model for two-stage structure considering undesirable intermediate product and then introduced
efficiency decomposition. Lozano [19] also introduced an SBI measure in general structure with undesirable
outputs, using weak disposability axiom for outputs and distinct abatement factors. He used this measure to
introduce some targets for inputs, outputs and intermediate products.

In general structure of NDEA with undesirable outputs, using distinct abatement factor to define the PPS,
similar to what Kuosmanen [3] done in “black box” state, is not taken into consideration in detail up to now.
To develop and complete this issue, therefore, we first introduce a technology by considering distinct abatement
factor to each process of DMUs. Then, we illustrate the advantage of this new modeling of undesirable outputs
in NDEA in comparison with previously introduced sets. The present study is organized as follows. The next
section includes an introduction of technologies relating to NDEA with undesirable outputs. The new technology
set will be introduced in Section 2. Illustrative examples will be provided in Section 3. Section 4 is devoted to
provide an applied example with real data of Spanish airports taken from Lozano et al. [14]. Section 5 concludes
the discussion.
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Figure 1. A general network DEA system.

2. Network technology set in presence of undesirable outputs

In this section we introduce production possibility set for general network structure. We consider a general
structure which includes n homogeneous DMUs all of which have q processes and also have similar internal
structure and internal relations, such as depicted in Figure 1.

Following the Lozano et al. [14], let: I(p) be the set of inputs consumed by process p, O(p) be the set of
desirable outputs produced by process p, U(p) be the set of undesirable outputs produced by process p, Rin(p)
and Rout(p) be the sets of intermediate products consumed by and produced by process p, respectively. PI(i) be
the set of processes that consume the input i, PO(r) be the set of processes that produce the desirable output r,
PU (b) be the set of processes that produce the undesirable output b, P in(d) and P out(d) be the sets of processes
that consume and produce the intermediate product d, respectively. Let xp

ij denote the amount of input i
consumed by process p of DMUj and xij =

∑
P∈PI (i)

xp
ij denote the amount of input i consumed by DMUj . Let

yp
ij denote the amount of desirable output r produced by process p of DMUj and yrj =

∑
P∈PO(r)

yp
rj for the

amount of desirable output r produced by DMUj. Let up
bj denote the amount of undesirable output b produced

by process p of DMUj and ubj =
∑

P∈PU (b)
uP

bj denote the amount of undesirable output b produced by DMUj .

For p ∈ Rin(p) and for p ∈ Rout(p) let zp
dj for the amount of intermediate product d consumed by and produced

by process p of DMUj , respectively. Also assume for each DMU that the all intermediate products produced
by one DMU are completely consumed as the input of the same DMU; i.e.

∑
p∈p

out (d)
zp

dj =
∑

p∈p
in (d)

zp
dj ∀d ∀j.

In the presence of undesirable outputs, weak disposability axiom for desirable and undesirable outputs could
be taken into consideration. Shepherd [20] defines this principle mathematically as follows:

Definition 2.1. Outputs are weakly disposable if (x,y,u) ∈T and 0 ≤ θ ≤ 1 implies (x, θy, θu) ∈T.

In order to determine production possibility set for general network DEA, at first a distinct technology
must be defined for each process p. Then, with the composition of these q sub-technologies a comprehensive
technology called the network technology can be defined for the general structure. Using the mentioned process,
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Lozano et al. [14] defined the technology for general network DEA with undesirable outputs as follows:

TL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈PI(i)

n∑
j=1

λp
jx

p
ij ≤ xi ∀i∑

p∈PO(r)

θp
n∑

j=1

λp
jy

p
rj ≥ yr ∀r∑

p∈PU (b)

θp
n∑

j=1

λp
ju

p
bj = ub ∀b∑

p∈P out(d)

θp
n∑

j=1

λp
jz

p
dj −

∑
p∈P in(d)

θp
n∑

j=1

λp
jz

p
dj ≥ 0 ∀d

n∑
j=1

λp
j = 1 ∀p

λp
j ≥ 0 ∀p ∀j

0 ≤ θp ≤ 1 ∀p ∈ ⋃
b

PU (b)

θp = 1 ∀p /∈ ⋃
b

PU (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.1)

It should be noted that when assuming the technology to be constant return to scale (CRS), variables θp

obtain their highest values, which is θp = 1. In other words, in the case of CRS, there is no need to insert
θp in defining the technology set (see Färe and Grosskopf [2]). In this paper, we define technologies just for
VRS modes. Note that in order to change RTS assumption to non-decreasing return to scale (NDRS) and
non-increasing return to scale (NIRS), it is just enough to modify the constraint on intensity weights to greater
than or equal to (≥) and smaller than or equal to (≤).

In set TL uniform abatement factor θp is used for all pth process of all DMUs, just like what Färe and
Grosskopf [2] used in “black bok” mode. Using uniform abatement factor for all DMUs may create the non-
convex PPS, as Kuosmanen and Podinovski [4] illustrated in details. In the structure of NDEA, this leads to the
possibility that sub-technologies to be non-convex and also creates some problems in recognizing inefficiency;
which will be discussed later. So, we use distinct abatement factors θp

j for pth process of DMUs in technology
set TL just as Kuosmanen [3] used. Then, the technology set takes the following form:

TKK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈PI (i)

n∑
j=1

λp
jx

p
ij ≤ xi ∀i∑

p∈PO(r)

n∑
j=1

θp
j λp

jy
p
rj ≥ yr ∀r∑

p∈PU (b)

n∑
j=1

θp
j λp

ju
p
bj = ub ∀b∑

p∈P out(d)

n∑
j=1

θp
j λp

jz
p
dj −

∑
p∈P in(d)

n∑
j=1

λp
jz

p
dj ≥ 0 ∀d

p∑
j=1

λp
j = 1 ∀p

λp
j ≥ 0 ∀j ∀p

0 ≤ θp
j ≤ 1 ∀j ∀p

θp
j = 1 ∀j ∀p /∈ ⋃

b

PU (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.2)

It is clear that by imposing θp
1 = θp

2 = . . . = θp
n (p = 1, . . . , q) TL and TKK are equal and also shows TL is a

special form of TKK . So, we have TL ⊆ TKK .
In general, models that were applied to technology TL were non-linear programing (NLP), which can change to

linear form only in special cases. However, an advantage of using distinct abatement factor is that it can be pre-
sented as a linear technology set, as Kuosmanen [3] discussed. So, by setting λp

j = αp
j +βp

j (p = 1, . . . , q) which βp
j



GENERAL NETWORK DEA WITH UNDESIRABLE OUTPUTS 21

represents the part of output of process p of DMUj that is abated by scaling down, whereas αp
j represents the

part of output of process p of DMUj that remain active. i.e., βp
j = (1 − θp

j )λp
j and αp

j = θp
j λp

j , we introduce the
following linear representation of the technology set for general network DEA in the presence of undesirable
outputs as follows:

TKK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈PI (i)

n∑
j=1

(αp
j + βp

j )xp
ij ≤ xi ∀i∑

p∈PO(r)

n∑
j=1

αp
jy

p
rj ≥ yr ∀r∑

p∈PU (b)

n∑
j=1

αp
ju

p
bj = ub ∀b∑

p∈P out(d)

n∑
j=1

αp
jz

p
dj −

∑
p∈P in(d)

n∑
j=1

(αp
j + βp

j )zp
dj ≥ 0 ∀d

n∑
j=1

(αp
j + βp

j ) = 1 ∀p

αp
j ≥ 0, βp

j ≥ 0 ∀j ∀p

βp
j = 0 ∀j ∀p /∈ ⋃

b

PU (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.3)

Technology set TKK has more accurate result in comparison with TL; which is illustrated by an example in
Section 4. Furthermore, in the next section, we show that in the presence of undesirable outputs, Technology
set TKK cannot cover all network structures and needs some modifications; such as, in evaluating production
systems with more than two series process with identical intermediate products which is produced or consumed
by same processes and undesirable outputs are coexist.

3. A new technology set for general network DEA with undesirable output

In this section, we will provide a technology set for general network system with undesirable outputs, inspired
by the model put forward in Kazemi Matin and Azizi [21].

Let us assume that zpc
dj denote the amount of dth intermediate product produced by process p of DMUj and

all or part of it is consumed by process c (c = 1, . . . , q). Assume that yp
rj denote the amount of rth desirable

output produced by process p of DMUj and part of which (yop
rj ) exits the system as final output and the rest

(yIpc
rj ) remains in DMUj and all or part of it is consumed as input in process c (c = 1, . . . , q). This means

yp
rj = yop

rj + yIpc
rj . Also yop

rj must be positive at least for one of DMUs. Because putting it equal to zero, indicates
that all produced outputs will enter the system again and so, yp

rj must be considered as intermediate product.
Also, assume that up

bj denote the amount of bth undesirable output produced by process p of DMUj and part
of which (uop

bj ) exits the system as a final undesirable output and the rest (uIpc
bj ) remains in DMUj and all or

part of it is consumed as input in process c (c = 1, . . . , q). This means up
bj = uop

bj + uIpc
bj . Also, similar to final

desirable outputs, uop
bj must be positive at least for one of DMUs, too. Kazemi Matin and Azizi [21] proposed a

radial input-oriented model to evaluate DMU0 in general network system as follows:

θ0 = Min h

s.t.
q∑

p=1

n∑
j=1

λp
jx

p
ij ≤ h

q∑
p=1

xp
i0; i = 1, . . . , m

q∑
p=1

n∑
j=1

λp
jy

p
rj −

q∑
p=1

n∑
j=1

q∑
c=1

λc
jy

Ipc
rj ≥

q∑
p=1

yop
r0 ; r = 1, . . . , s

q∑
c=1

n∑
j=1

λp
jz

pc
dj ≥

q∑
c=1

n∑
j=1

λc
jz

pc
dj ; d = 1, . . . , D, p = 1, . . . , q

λp
j ≥ 0; j = 1, . . . , n, p = 1, . . . , q.

(3.1)
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The technology applied in the above model can be used in all network DEA structures. Thus, with undesirable
outputs, using distinct abatement factors introduced by Kuosmanen [3] and ultimately, making the technology
linear, similar to what we did in technology set TKK , we introduce the correct technology for general network
DEA with undesirable outputs as follows:

T̂KK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q∑
p=1

n∑
j=1

(αp
j + βp

j )xp
ij ≤

q∑
p=1

xp
i (= xi) ∀i

q∑
p=1

n∑
j=1

αp
jy

p
rj −

q∑
p=1

n∑
j=1

q∑
c=1

αc
jy

Ipc
rj ≥

q∑
p=1

yop
r (= yo

r) ∀r

q∑
p=1

n∑
j=1

αp
ju

p
bj −

q∑
p=1

n∑
j=1

q∑
c=1

αc
ju

Ipc
bj =

q∑
p=1

uop
b (= uo

b) ∀b

q∑
c=1

n∑
j=1

αp
jz

pc
dj −

q∑
c=1

n∑
j=1

(αc
j + βc

j )z
pc
dj ≥ 0 ∀d ∀p

q∑
p=1

(αp
j + βp

j ) = 1 ∀p

αp
j ≥ 0, βp

j ≥ 0 ∀j ∀p

βp
j = 0 ∀j ∀p /∈ ⋃

b

PU (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.2)

We see that technology set T̂KK covers more general modes of the NDEA. The notable difference between
technology TKK and technology T̂KK is in the fourth constraint that relates to global balance. Balance constraint
in TKK reads that the amount of each intermediate product produced in the system is sufficient to satisfy the
amount of that intermediate product that is consumed whereas balance constraint in T̂KK means that the sum
of produced intermediate products of each process is at least as high as the sum of consumed corresponding
intermediate products by other sub-processes. This difference can cause to obtain the completely dissimilar
efficiency scores by using TKK or T̂KK in some special cases; which is illustrated by Example 4.2 in the next
section.

3.1. Dual formulations of the general network DEA technologies

By applying the duality theory of linear programming, we obtain the dual linear programs for the input-
oriented radial measure building upon technology set T̂KK . Then, we seek for economic interpretation for the
case distinct abatement factors used in modeling weak disposability assumption. We consider a primal input-
oriented radial model building upon technology T̂KK as follows:

θ0 = Min h

s.t. (hxo,yo,uo) ∈ T̂KK

(3.3)
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or equivalently:

θ0 = Min (primal)

s.t.
q∑

p=1

n∑
j=1

(
αp

j + βp
j

)
xp

ij ≤ h
q∑

p=1
xp

i0; (vi)
q∑

p=1

n∑
j=1

αp
jy

p
rj −

q∑
p=1

n∑
j=1

q∑
c=1

αc
jy

Ipc
rj ≥

q∑
p=1

yop
r0 ; r = 1, . . . , s (gr)

q∑
p=1

n∑
j=1

αp
ju

p
bj −

q∑
p=1

n∑
j=1

q∑
c=1

αc
ju

Ipc
bj =

q∑
p=1

uop
b0 ; b = 1, . . . , B (tb)

q∑
c=1

n∑
j=1

αp
jz

pc
dj ≥

q∑
c=1

n∑
j=1

(
αc

j + βc
j

)
zpc

dj ; d = 1, . . . , D p = 1, . . . , q (wp
d)

n∑
j=1

(
αp

j + βp
j

)
= 1 ; p = 1, . . . , q (ϕp)

αp
j , β

p
j ≥ 0 ; p = 1, . . . , q j = 1, . . . , n

βp
j = 0 ; ∀p /∈ ⋃

b

PU (b) j = 1, . . . , n.

This model in the technology set T̂KK , detects the proportional reduction of inputs while keeping the desirable
and undesirable outputs unchanged. The dual formulation of the above linear programming model takes the
following form:

θ0 = Max
q∑

p=1

s∑
r=1

gry
op
r0 −

q∑
p=1

B∑
b=1

tbu
op
b0 −

q∑
p=1

ϕp (dual)

s.t.
q∑

p=1

m∑
i=1

vix
p
i0 = 1 (θ0)

m∑
i=1

vix
p
ij −

s∑
r=1

gry
p
rj +

q∑
c=1

s∑
r=1

gry
Icp
rj +

B∑
b=1

tbu
p
bj −

q∑
c=1

B∑
b=1

tbu
Icp
bj

−
q∑

c=1

D∑
d=1

wp
dzpc

dj +
q∑

c=1

D∑
d=1

wc
dz

cp
dj + ϕp ≥ 0 j = 1, . . . , n p = 1, . . . , q (αp

j )

m∑
i=1

vix
p
ij +

q∑
c=1

D∑
d=1

wc
dzcp

dj + ϕp ≥ 0 ∀p ∈ ⋃
b

PU (b) j = 1, . . . , n, (βp
j )

vi ≥ 0 i = 1, . . . , m

gr ≥ 0 r = 1, . . . , s

wp
d ≥ 0 d = 1, . . . , B p = 1, . . . , q

tb free b = 1, . . . , B

ϕp free p = 1, . . . , p.

(3.4)

To make clear, we have point out the dual variables corresponding to the constraints of the primal problem
in parentheses, in front of each constraint. In the dual formulation, variables vi, gr, tb and wp

d denote the shadow
prices of inputs, desirable and undesirable outputs, and intermediate products, respectively. The variable ϕp

associates with the convexity constraint of the primal problem.
From the equality

∑q
p=1

∑m
i=1 vix

p
i0 = 1, we can add 1 −∑q

p=1

∑m
i=1 vix

p
i0 to objective function of dual

problem. So, new objective function will be:

Max 1 −
[

q∑
p=1

ϕp −
(

q∑
p=1

s∑
r=1

gry
op
r0 −

q∑
p=1

B∑
b=1

tbu
op
b0 −

q∑
p=1

m∑
i=1

vix
p
i0

)]
.

The mathematical phrase inside the brackets means the normalized profit inefficiency.
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Table 1. Data for 3 DMUs in Example 4.1.

x z u y
A 4 2 2 4
B 1 1 4 2
C 4 2 1 2

Furthermore, in order to have a good interpretation of dual models constraints, we can change the dual
program formulation to follow fractional model:

θ0 = Max

q∑
p=1

s∑
r=1

gryop
r0−

q∑
p=1

B∑
b=1

tbuop
b0−

q∑
p=1

ϕp

q∑
p=1

m∑
i=1

vix
p
i0

s.t.

s∑
r=1

gryp
rj −

B∑
b=1

tbup
bj+

q∑
c=1

D∑
d=1

wp
dzpc

dj −ϕp

m∑
i=1

vix
p
ij+

q∑
c=1

s∑
r=1

gryIcp
rj +

q∑
c=1

B∑
b=1

tbuIcp
bj +

q∑
c=1

D∑
d=1

wc
dzcp

dj

≤ 1 j = 1, . . . , n p = 1, . . . , q

m∑
i=1

vix
p
ij +

q∑
c=1

D∑
d=1

wc
dz

cp
dj + ϕp ≥ 0 ∀p ∈ ⋃

b

PU (b) j = 1, . . . , n

vi ≥ 0 i = 1, . . . , m

gr ≥ 0 r = 1, . . . , s

wp
d ≥ 0 d = 1, . . . , B p = 1, . . . , q

tb free b = 1, . . . , B

ϕp free p = 1, . . . , p.

(3.5)

This model finds the maximum of ratio total weighted outputs to total weighted inputs of DMU0. The weights
vi, gr, tb and wp

d are corresponding to inputs, desirable and undesirable outputs, and intermediate products of
DMU0, such that for each DMU and each process,these weight hold on the constraints. First constraints express
that for any arbitrary process, aggregation of all outputs, including desirable outputs and produced intermediate
products detracting the undesirable outputs, should not to be greater than aggregation of all inputs, including
inputs, consumed intermediate product and part of desirable and undesirable outputs which are produced in
other processes and consumed as inputs in desired process. Second constraints, which are obtained from weak
disposability intensity variables βp

j , only hold for processes that produce undesirable outputs.

4. Illustrative examples

In this section we use two examples to illustrate the differences in evaluating the efficiency of DMUs in the
models defined on technologies TL, TKK and T̂KK .

Example 4.1. This example shows the advantage of applying T̂KK in comparison with applying TL. It will be
seen that an incorrect solution may be obtain by using TL.

Assume that there are three hypothetical DMUs labeled A, B and C, each of which uses one input to produce
one desirable output and one undesirable output. Also, each DMU has two stages, as depicted in Figure 2. In the
first stage input x is consumed and intermediate product z is produced. In second stage, intermediate product z
is consumed as input and a desirable output y along with an undesirable output u are produced. Data relating
to inputs, intermediate products and outputs of these DMUs are presented in Table 1.
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Figure 2. Structure of DMUs in example 1.

In order to evaluate the performance of the units, we consider a radial input-oriented measure, considering
the internal structure of DMUs on technology set TL as follows:

Min h

s.t. (hxo, yo, uo) ∈ TL

(4.1)

or equivalently:

Min h

s.t. 4λ1
1 + λ1

2 + 4λ1
3 ≤ hx0

4λ2
1 + 2λ2

2 + 2λ2
3 ≥ θy0

2λ2
1 + 4λ2

2 + λ2
3 = θu0

2
(
λ1

1 − λ2
1

)
+
(
λ1

2 − λ2
2

)
+ 2

(
λ1

3 − λ2
3

) ≥ 0

λ1
1 + λ1

2 + λ1
3 = 1

λ2
1 + λ2

2 + λ2
3 = 1

θ ≥ 1

λp
j ≥ 0 p = 1, 2 j = 1, 2, 3.

And, in this example, for technologies TKK and T̂KK the models created are same as follows:

Min h

s.t. (hxo, yo, uo) ∈ T̂KK

(4.2)
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Table 2. Input-oriented radial measures using models (9) and (10).

Model (9) Model (10)

h∗ θ∗ λ1∗ = (λ1
1, λ

1
2, λ

1
3) λ2∗ = (λ2

1, λ
2
2, λ

2
3) h∗ μ1∗ = (α1

1, α
1
2, α

1
3) μ2∗ = (α2

1, α
2
2, α

2
3) ν2∗ = (β2

1 , β2
2 , β2

3)
A 1 1 (1,0,0) (1,0,0) 1 (1,0,0) (1,0,0) (0,0,0)
B 1 1 (0,1,0) (0,1,0) 1 (0,1,0) (0,1,0) (0,0,0)
C 1 1 (1,0,0) (0,0,1) 0.625 (0.5,0.5,0) (0.5,0,0) (0,0.5,0)

or equivalently:
Min h

s.t. 4α1
1 + α1

2 + 4α1
3 ≤ hx0

4α2
1 + 2α2

2 + 2α2
3 ≥ y0

2α2
1 + 4α2

2 + α2
3 = u0

2
(
α1

1 − α2
1 − β2

1

)
+
(
α1

2 − α2
2 − β2

2

)
+ 2

(
α1

3 − α2
3 − β2

3

) ≥ 0

α1
1 + α1

2 + α1
3 = 1

α2
1 + β2

1 + α2
2 + β2

2 + α2
3 + β2

3 = 1

α2
j ≥ 0 , βp

j ≥ 0 p = 1, 2 j = 1, 2, 3.

In Table 2, results of solving models (9) and (10) are presented. As it can be seen, DMUC is recognized as
efficient in model (9), while model (10) shows it is inefficient.

Model (10) determines the target for DMUC as follows:

C∗ = (x∗
c , z

∗
c , u∗

c , y
∗
c ) =

⎛⎝∑
j

α1∗
j xj ,

∑
j

α1∗
j zj ,

∑
j

α2∗
j uj,

∑
j

α2∗
j yj

⎞⎠ = (2.5, 1.5, 1, 2).

Now, we demonstrate axiomatically that C∗ is a feasible production plan. Regarding weak disposability axiom
for outputs, desirable and undesirable outputs from second stage of DMUB can be proportionally abated toward
zero. As a result, point B′ = (1, 1, 0, 0) belongs to PPS. Also using convexity axiom and having λ = 0.5, convex
composition of DMUA and virtual unit B′, which equals λA + (1− λ)B′ = (2.5, 1.5, 1, 2) = C∗ belongs to PPS.

Now, using model (9) for virtual unit C∗, we have β∗
C∗ = 1.6. This means that the feasible virtual unit C∗

does not belong to technology TL.
Like what Kuosmanen and podinovski [4] did, in the given example it is possible to show that in case of

using uniform abatement factors for all DMUs, the sub-technology made for stage 2 will be non-convex. So, in
general, technology TL might exclude some feasible DMUs that are feasible axiomatically.

Example 4.2. In this example we intend to illustrate the difference between technology TKK and technology
T̂KK . It will be seen that an incorrect solution may be obtain by applying TKK . We consider four hypothetical
DMUs, each unit include four stages, as depicted in Figure 3. Data relating to inputs, intermediate products
and desirable and undesirable outputs are presented in Table 3.

To evaluate DMU0, radial input-oriented models under CRS assumption, building upon technologies TKK

and T̂KK are presented as model (11) and model (12), respectively,

Min h

s.t. (hxo,yo,uo) ∈ TKK

(4.3)
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Figure 3. etwork structure of DMUs in Example 4.2.

Table 3. Inputs, intermediate products and output data for DMUs in Example 4.2.

x1 x2 z12
1 z23

1 z34
1 z12

2 z23
2 z34

2 y u
A 1 4 0 5 3 5 4 2 4 3
B 2 3 2 0 2 4 5 0 3 2
C 3 2 3 2 0 3 0 1 2 1
D 4 1 4 4 2 0 3 3 1 0

and equivalently:

Min h

s.t. α1
1 + 2α1

2 + 3α1
3 + 4α1

4 ≤ hx1 0

4α1
1 + 3α1

2 + 2α1
3 + α1

4 ≤ hx2 0

4α4
1 + 3α4

2 + 2α4
3 + α4

4 ≥ y0

3α4
1 + 2α4

2 + α4
3 = u0[

2
(
α1

2 − α2
2

)
+ 3

(
α1

3 − α2
3

)
+ 4

(
α1

4 − α2
4

)]
+
[
5
(
α2

1 − α3
1

)
+ 2

(
α2

3 − α3
3

)
+ 4

(
α2

4 − α3
4

)]
+
[
3
(
α3

1 − α4
1 − β4

1

)
+ 2

(
α3

2 − α4
2 − β4

2

)
+ 2

(
α3

4 − α4
4 − β4

4

)] ≥ 0[
5
(
α1

1 − α2
1

)
+ 4

(
α1

2 − α2
2

)
+ 3

(
α1

3 − α2
3

)]
+
[
4
(
α2

1 − α3
1

)
+ 5

(
α2

2 − α3
2

)
+ 3

(
α2

4 − α3
4

)]
+
[
2
(
α3

1 − α4
1 − β4

1

)
+
(
α3

3 − α4
3 − β4

3

)
+ 3

(
α3

4 − α4
4 − β4

4

)] ≥ 0
α1

j , α
2
j , α

3
j , α

4
j , β

4
j ≥ 0 j = 1, . . . , 4

Min h

s.t. (hxo,yo,uo) ∈ T̂KK

(4.4)

and equivalently:
Min h

s.t. α1
1 + 2α1

2 + 3α1
3 + 4α1

4 ≤ hx1 0

4α1
1 + 3α1

2 + 2α1
3 + α1

4 ≤ hx2 0

4α4
1 + 3α4

2 + 2α4
3 + α4

4 ≥ y0

3α4
1 + 2α4

2 + α4
3 = u0

2
(
α1

2 − α2
2

)
+ 3

(
α1

3 − α2
3

)
+ 4

(
α1

4 − α2
4

) ≥ 0
5
(
α2

1 − α3
1

)
+ 2

(
α2

3 − α3
3

)
+ 4

(
α2

4 − α3
4

) ≥ 0
3
(
α3

1 − α4
1 − β4

1

)
+ 2

(
α3

2 − α4
2 − β4

2

)
+ 2

(
α3

4 − α4
4 − β4

4

) ≥ 0
5
(
α1

1 − α2
1

)
+ 4

(
α1

2 − α2
2

)
+ 3

(
α1

3 − α2
3

) ≥ 0
4
(
α2

1 − α3
1

)
+ 5

(
α2

2 − α3
2

)
+ 3

(
α2

4 − α3
4

) ≥ 0
2
(
α3

1 − α4
1 − β4

1

)
+
(
α3

3 − α4
3 − β4

3

)
+ 3

(
α3

4 − α4
4 − β4

4

) ≥ 0
α1

j , α
2
j , α

3
j , α

4
j , β

4
j ≥ 0 j = 1, . . . , 4.
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Table 4. Efficiency scores of DMUs in Example 4.2.

Model(11) Model(12)
A 0 0.47
B 0 0.26
C 0 0.22
D 0 1

Figure 4. Network structure of airports.

In Table 4, the computed efficiency scores relating to these DMUs in evaluation with models (11) and (12) are
presented.

As it can be seen, model (11) has come up with zero values for all four units in determining their efficiency
score. This means that in the case of this special example in which all units include series processes with identical
intermediate products, this model fails to estimate the efficiency score for DMUs.

5. An empirical application

Here, we apply the above introduced models on data relating to Spanish airports in 2008, taken from Lozano
et al. [14]. In this evaluation, like Lozano et al. [14], we use directional distance function in evaluating performance
of the production units building upon technologies TL and T̂KK .

In this example, as it can be seen in Figure 4, production system of each airport along with its internal
operations has been considered as a two-stage production system. Each airport has five inputs of which three
inputs x1, x2, and x3 are consumed in first stage and two inputs x4 and x5 are consumed in second stage. Two
undesirable outputs u1 and u2 are produced in first stage and two desirable outputs y1 and y2 are produced
in second stage. Also, an intermediate product z is produced as desirable output in first stage which will be
consumed completely as input in second stage. More explanations and data on 39 airports can be seen in Lozano
et al. [14].

Directional distance function (DDF) which was introduced by Chambers et al. [22,23], is a non-radial measure
that shrinks inputs and expands outputs simultaneously to weak efficiency frontier. This model measure the
distance between the evaluated DMU and efficiency frontier in direction g = (gx, gy). DDF is one of the most
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effective approaches to distinguish efficient units from inefficient ones and to illustrate efficient targets for
inefficient units. It is usual to use directed distance function when there are undesirable outputs [24–27].

In this example, like Lozano et al. [14], we consider direction vector g = (gx, gy, gu) = (0, yr, ub) for DDF to be
able to linearize the introduced model building upon technology TL. Another reason for doing this is that inputs
are uncontrollable or non-discretionary. So, for inputs, we have to choose gx = 0. Therefore, to evaluate DMU0,
directional distance function building upon technologies TL and will be introduced as models (13) and (14),
respectively.

βL = Max β

s.t. (x, (1 + β)y, (1 − β)u) ∈ TL

(5.1)

or equivalently:

βL = Max β

s.t.
∑39

j=1 λs1
j xij ≤ θs1xi0 i = 1, 2, 3∑39

j=1 λs2
j xij ≤ xi0 i = 4, 5∑39

j=1 λs2
j yrj ≥ (1 + β) yr0 r = 1, 2∑39

j=1 λs1
j ubj = (1 − β)ub0 b = 1, 2∑39

j=1 (λs1
j − λs2

j )zj ≥ 0∑39
j=1 λs1

j = θs1∑39
j=1 λs2

j = 1

λs1
j ≥ 0 , λs2

j ≥ 0 j = 1, . . . , 39

0 ≤ θs1 ≤ 1

βKK = Max β

s.t. (x, (1 + β)y, (1 − β)u) ∈ T̂KK

(5.2)

or equivalently:

βKK = Max β

s.t.
∑39

j=1

(
αs1

j + βs1
j

)
xij ≤ xi0 i = 1, 2, 3∑39

j=1 αs2
j xij ≤ xi0 i = 4, 5∑39

j=1 αs2
j yrj ≥ (1 + β) yr0 r = 1, 2∑39

j=1 αs1
j ubj = (1 − β)ub0 b = 1, 2∑39

j=1

(
αs1

j − αs2
j

)
zj ≥ 0∑39

j=1

(
αs1

j + βs1
j

)
= 1∑39

j=1 αs2
j = 1

αs1
j ≥ 0 , βs1

j ≥ 0 , αs2
j ≥ 0 j = 1, . . . , 39.

Note that the relationship between original DDF and model (13) is explained in detail in Lozano et al. [14].
Let us assume that optimal solution of model (13) is (β∗, θs1∗

, λs1∗
j , λs2∗

j ) and optimal solution of model (14)
is (β∗, αs1∗

j , βs1∗
j , αs2∗

j ). In this case, targets of inputs, desirable outputs, undesirable outputs and intermediate
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products that are introduced by models (13) and (14) will be computed as (15) and (16), respectively,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
i = 1

θs1

39∑
j=1

λs1∗
j xij i = 1, 2, 3

x∗
i =

39∑
j=1

λs2∗
j xij i = 4, 5

y∗
r =

39∑
j=1

λs2∗
j yrj r = 1, 2

u∗
b =

39∑
j=1

λs1∗
j ubj = (1 − β∗)ub0 b = 1, 2

z∗ =
39∑

j=1

λs1∗
j zj

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
i =

39∑
j=1

(
αs1∗

j + βs1∗
j

)
xij i = 1, 2, 3

x∗
i =

39∑
j=1

αs2∗
j xij i = 4, 5

y∗
r =

39∑
j=1

αs2∗
j yrj r = 1, 2

u∗
b =

39∑
j=1

αs1∗
j ubj = (1 − β∗)ub0 b = 1, 2

z∗ =
39∑

j=1

αs1∗
j zj .

(5.4)

For performance evaluation of Spanish airports, optimal solution values taken from models (13) and (14) and
targets of outputs and intermediate products calculated by (15) and (16) are presented in Table 5.

As it can be seen, except for Albacete airport and Salamanca airport, obtained results of models (13) and (14)
are identical in all other cases. Albacete airport is recognized as efficient DMU by model (13) whereas model (14)
introduced it as inefficient DMU. Likewise, model (14) introduced Salamanca airport more inefficient than
model (13).

If we take each airport as a DMU, for DMU2 (Albacete airport) the target which proposed by model (14) will
be as follows:

DMU∗
2 = (x∗

1, x
∗
2, x

∗
3, x

∗
4, x∗

5, z
∗, u∗

1, u
∗
2, y

∗
1 , y∗

2) = (106061.8, 2, 2, 4, 1, 2.3, 13.1, 312, 34.1, 15.8).

We demonstrate that the target of DMU2 is a feasible point in the PPS.
If we consider first stage of airports, we can use weak disposability axiom to abate undesirable outputs and

intermediate product (first stage outputs). So, from the first stage of the sixth airport (S1(DMU6)), we will
have virtual first stage of the sixth airport as S1(DMU6) = (x1, x2, x3, z, u1, u2) = (171000, 1, 2, 0, 0, 0) inside
the PPS of first stages. Now, considering convexity axiom and choosing Λ1 = (λ6 = 0.5133, λ9 = 0.0013, λ10 =
0.4852, λ23 = 0.0001, λj = 0 for other j), we will have:

Ŝ1 = (x1, x2, x3, z, u1, u2)

= λ6S1(DMU6) + λ9S1(DMU9) + λ10S1(DMU10) + λ23S1(DMU23)
= (106061.8, 2, 2, 2.3, 13.1, 312).

So, virtual unit Ŝ1 belongs to PPS relating to first stages. Now, we consider second stage of the airports. From
convexity axiom and with the assumption of Λ2 = (λ2 = 0.9741, λ9 = 0.0050, λ12 = 0.0023, λ20 = 0.0183,



GENERAL NETWORK DEA WITH UNDESIRABLE OUTPUTS 31

Table 5. Optimal solution of models (13) and (14) and targets of outputs and intermediate
products.

Airport Model Eff = 1 − β∗ z∗ u∗
1 u∗

2 y∗
1 y∗

2

1 A Coruna βL 0.352 18.5 429 8382.1 1935.8 533.3
βKK 0.352 18.5 429 8382.1 1935.8 533.3

2 Albacete βL 1 2.1 58 1376 19.3 8.9
βKK 0.227 2.3 13.1 312.1 34.1 15.8

3 Alicante βL 0.986 85.1 7537 140497.8 9709.3 8677.9
βKK 0.986 85.1 7537 140497.8 9709.3 8677.9

4 Almeria βL 0.214 16 238 4310.9 1829.5 1534.2
βKK 0.214 16.5 238 4310.9 1829.5 1534.2

5 Asturias βL 0.374 23.4 490 8940 2487.9 381.5
βKK 0.374 23.4 490 8940 2487.9 381.5

6 Badajoz βL 0.803 3.2 110 1898.7 97 11.6
βKK 0.803 3.2 110 1898.7 97 11.6

7 Barcelona βL 1 321.7 33036 645924.6 30272.1 103996.5
βKK 1 321.7 33036 645924.6 30272.1 103996.5

8 Bilbao βL 0.324 59.5 1490 26231.5 6991.9 5326.2
βKK 0.324 59.5 1490 26231.5 6991.9 5326.2

9 Cordoba βL 1 9.6 14 254.4 22.2 0
βKK 1 9.6 14 254.4 22.2 0

10 El Hierro βL 0.919 4.4 25 589.7 211.2 185.6
βKK 0.919 4.4 25 589.7 211.2 185.6

11 Fuerteventura βL 0.435 59.6 1706 31409.9 7029.3 4534.3
βKK 0.435 59.6 1706 31409.9 7029.3 4534.3

12 Girona-Costa Brava βL 1 49.9 4992 100305.6 5511 184.1
βKK 1 49.9 4992 100305.6 5511 184.1

13 Gran Canaria βL 0.829 104.7 6186 113043.8 11959.6 39461.1
βKK 0.829 104.7 6186 113043.8 11959.6 39461.1

14 Granada-Jaen βL 0.471 20.1 448 8424.6 2173.6 1120.6
βKK 0.471 20.1 448 8424.6 2173.6 1120.6

15 Ibiza βL 0.777 45.2 4813 118783.7 5682.9 4803.7
βKK 0.777 45.2 4813 118783.7 5682.9 4803.7

16 Jerez βL 0.327 19.9 384 6310.9 2181.1 1387.4
βKK 0.327 19.9 384 6310.9 2181.1 1387.4

17 La Gomera βL 0.736 2.5 13 309.7 52.9 9.9
βKK 0.736 2.5 13 309.7 52.9 9.9

18 La Palma βL 0.671 14.9 284 5563.9 1529.6 1696.9
βKK 0.671 14.9 284 5563.9 1529.6 1696.9

19 Lanzarote βL 0.591 64.3 3014 60047.7 7665 7652.9
βKK 0.591 64.3 3014 60047.7 7665 7652.9

20 Leon βL 0.201 7.3 89 1446.3 221.6 28.7
βKK 0.201 7.3 89 1446.3 221.6 28.7

λ32 = 0.0003, λj = 0 for other j), we will have:

Ŝ2 = (x4, x5, z, y1, y2)

=
(∑39

j=1
λjx4j ,

∑39

j=1
λjx5j ,

∑39

j=1
λjzj ,

∑39

j=1
λjy1j ,

∑39

j=1
λjy2j

)
= (4, 1, 2.3, 34.1, 15.8).
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Table 5. Continued.

Airport Model Eff = 1 − β∗ z∗ u∗
1 u∗

2 y∗
1 y∗

2

21 Madrid Barajas βL 1 469.7 52526 908360 50846.5 329186.6
βKK 1 469.7 52526 908360 50846.5 329186.6

22 Malaga βL 0.94 117.5 14621 261116.1 13577.1 13491.8
βKK 0.94 117.5 14621 261116.1 13577.1 13491.8

23 Melilla βL 0.719 7.9 157 2141.2 403.2 495
βKK 0.719 7.9 157 2141.2 403.2 495

24 Murcia βL 0.478 25 643 11529.9 2855 1966.1
βKK 0.478 25 643 11529.9 2855 1966.1

25 Palma de Mallorca βL 1 193.4 26038 501486 22832.9 21395.8
βKK 1 193.4 26038 501486 22832.9 21395.8

26 Pamplona βL 0.55 11 366 6430.7 630 76.8
βKK 0.55 11 366 6430.7 630 76.8

27 Reus βL 0.485 20.8 458 8851.9 1935.9 181.5
βKK 0.485 20.8 458 8851.9 1935.9 181.5

28 Salamanca βL 0.09 3.5 38 596.6 114.8 12.7
βKK 0.06 3.5 25.4 394.6 116.6 12.8

29 San Sebastian βL 0.16 8.4 114 1784.1 742.1 117.4
βKK 0.16 8.4 114 1784.1 742.1 117.4

30 Santander βL 0.256 0.256 257 4564.7 1494.1 155.9
βKK 0.256 0.256 257 4564.7 1494.1 155.9

31 Santiago βL 0.293 29.2 588 10059.7 3272.9 4128.7
βKK 0.293 29.2 588 10059.7 3272.9 4128.7

32 Saragossa βL 1 14.6 1095 19547.6 595 21438.9
βKK 1 14.6 1095 19547.6 595 21438.9

33 Seville βL 0.642 51.5 1647 32781.1 5965.9 8288.7
βKK 0.642 51.5 1647 32781.1 5965.9 8288.7

34 Tenerife North βL 0.738 52.2 1315 24076.6 5347.8 26232.6
βKK 0.738 52.2 1315 24076.6 5347.8 26232.6

35 Tenerife South βL 0.766 80.8 4025 84890.9 10182.7 10571.5
βKK 0.766 80.8 4025 84890.9 10182.7 10571.5

36 Valencia βL 0.596 72.4 2979 61218.3 8114.3 18709.7
βKK 0.596 72.4 2979 61218.3 8114.3 18709.7

37 Valladolid βL 0.138 9.2 117 2042.1 893 590.7
βKK 0.138 9.2 117 2042.1 893 590.7

38 Vigo βL 0.269 20.9 412 6876.5 2213.9 2565.7
βKK 0.269 20.9 412 6876.5 2213.9 2565.7

39 Vitoria βL 1 12.2 669 11585.8 67.8 34989.7
βKK 1 12.2 669 11585.8 67.8 34989.7

So, virtual unit Ŝ2 belongs to PPS relating to second stages. As a result, (Ŝ1, Ŝ2) =
(106061.8, 2, 2, 4, 1, 2.3, 13.1, 312, 34.1, 15.8) = DMU∗

2 belongs to the general production possibility set.
Furthermore, we change improvement direction in models (15) and (16) to g = (0, 0, ub). In this case, the

number of different cases in optimal solutions of the models increases to five, which are reported in Table 6.
As it can be seen, in both cases model (13) introduces Albacete airport as efficient, while model (14) introduces

the same unit as being inefficient. Also, in all cases the optimal solutions gained from model (14) are greater
than or equal to the optimal solutions of model (13), because TL ⊆ T̂KK . This means that model (14) is more
successful in recognizing sources of inefficiency than model (13) does. Therefore, it has more discriminatory power
in performance evaluation of production units with general network structure, in the presence of undesirable
outputs.
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Table 6. Different optimal solution cases of models (13) and (14) with g = (0, 0, ub).

Airport Model Eff = 1 − β∗ z∗ u∗
1 u∗

2 y∗
1 y∗

2

2 Albacete βL 1 2.1 58 1376.5 19.2 8.9
βKK 0.201 2.1 11.7 276.7 19.2 8.9

20 Leon βL 0.136 5.7 59.9 975.2 123.2 16.0
βKK 0.134 5.7 59.2 963.7 123.2 16.0

28 Salamanca βL 0.07 1.2 29.9 463.8 60.1 10.5
βKK 0.03 2.7 12.8 198.8 60.1 10.5

29 San Sebastian βL 0.078 4.5 55.6 872.3 403.2 281.0
βKK 0.072 5.2 51.3 805.2 403.2 281.0

37 Valladolid βL 0.047 5.5 39.6 693.7 479.7 444.0
βKK 0.046 5.5 38.8 679.0 479.7 444.0

6. Conclusion

When there are undesirable outputs, using weak disposability axiom for all outputs is a useful way for
performance measurement of the production units. In this method, regarding the type of outputs abatement,
the shape of production possibility sets will be different. Using distinct abatement factors for each decision
making unit can have two main advantages. First, defined models will be planned linear programing problems.
Second, the introd uced performance measurement models have more discriminatory power than those models
that use technologies with uniform abatement factors. However, in some special cases of network DEA (NDEA),
type of selection in balance constraint may obtain unacceptable solution for oriented models. In the present
study, we choose an appropriate balance constraint and introduced a correct production technology set for
general network DEA in presence of undesirable outputs. Finally, some illustrative examples are used to show
advantages of the new introduced network technology set, considering undesirable outputs in production.
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