
RAIRO-Oper. Res. 52 (2018) 315–334 RAIRO Operations Research
https://doi.org/10.1051/ro/2017040 www.rairo-ro.org

SINGLE-MACHINE BATCH SCHEDULING PROBLEM WITH JOB REJECTION

AND RESOURCE DEPENDENT PROCESSING TIMES

Weifan Huang1, Chin-Chia Wu2 and Shangchia Liu3,∗

Abstract. This paper addresses single-machine batch scheduling with job rejection and convex re-
source allocation. A job is either rejected, in which case a rejection penalty will be incurred, or accepted
and processed on the machine. The accepted jobs are combined to form batches containing contigu-
ously scheduled jobs. For each batch, a batch-dependent machine setup time, which is a function of the
number of batches processed previously, is required before the first job in the batch is processed. Both
the setup times and job processing times are controllable by allocating a continuously divisible nonre-
newable resource to the jobs. The objective is to determine an accepted job sequence, a rejected job
set, a partition of the accepted job sequence into batches, and resource allocation that jointly minimize
a cost function based on the total delivery dates of the accepted jobs, and the job holding, resource
consumption, and rejection penalties. An dynamic programming solution algorithm with running time
O(n6) is developed for the problem. It is also shown that the case of the problem with a common setup
time can be solved in O(n5) time.

Mathematics Subject Classification. 90B35, 90C26.

Received October 18, 2016. Accepted May 17, 2017.

1. Introduction

1.1. Problem definition

The problem of single-machine batch scheduling with job rejection and convex resource allocation can be
stated as follows: There is a set of n independent jobs N = {J1, J2, . . . , Jn} to be processed on a single machine.
The machine can handle at most one job at a time and job preemption is not allowed. Each job Jj becomes
available for processing at time zero, requires a nonnegative processing time pj and has a nonnegative rejection
penalty ej . For each job one must decide whether to accept and schedule it on the machine or reject it. If job
Jj is rejected, there will incur a rejection penalty ej . Denote the sets of accepted jobs and rejected jobs by A
and A, respectively. The accepted jobs in A are combined to form batches containing contiguously scheduled
jobs. The jobs assigned to the same batch are processed contiguously and are delivered to customers together
when the processing of the last job in the batch is finished. Thus, the delivery date of each accepted job is
equal to its assigned batch delivery date. When a job is finished before its delivery date, it must wait in the

Keywords. Scheduling, batching, resource allocation, rejected penalty.

1 School of Mathematics and Computer Science, Yichun University, Yichun, Jiangxi 336000, P.R. China.
2 Department of Statistics, Feng Chia University, Taichung, Taiwan.
3 Department of Business Administration, Fu Jen Catholic University,Hsinpei City, Taiwan.
∗ Corresponding author:docchia@gmail.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2017040
https://www.rairo-ro.org
mailto:docchia@gmail.com
http://www.edpsciences.org

316 W. HUANG ET AL.

system until delivery. Thus, an inventory holding cost is incurred for each early job and this cost is assumed
to be proportional to the earliness value of the job with respect to its batch delivery date. For each batch,
a batch-dependent machine setup time, which is a function of the number of batches processed previously, is
required before the first job in the batch is processed, i.e., the setup of the ith batch depends solely on its index
i, denoted by si. Since there is no need to schedule the set of rejected jobs, a schedule can be represented by a
job sequence (permutation) π = (S,A) in which the first na = |A| jobs correspond to set A in the order of S
with the corresponding partition of this sequence into batches and the last n− na = |A| jobs correspond to set
A in any arbitrary sequence.

The setup time si may be compressed if an amount ui of a continuous and nonrenewable resource is used to
perform the setup i:

si(ui) =

(
ωi
ui

)k
, (1.1)

where ωi is a positive parameter, which represents the workload of the setup operation for the ith batch, ui is
the amount of the resource allocated to perform setup i, and k is a positive constant. Similarly, the processing
time pj may also be compressed if an amount vj of a continuous and nonrenewable resource is used to perform
job Jj :

pj(vj) =

(
wj
vj

)k
, (1.2)

where wj is a positive parameter, which represents the workload of the processing operation for job Jj , vj is the
amount of the resource allocated to process job Jj , and k is a positive constant. It assumes that the technologies
deployed to reduce the setup and processing times are closely related in the sense that the functions controlling
their behaviours share the same exponent k.

The problem in this paper is to determine an accepted job sequence S = (J[1], . . . , J[na]), a rejected job set

A, a partition of the accepted job sequence S into batches B = (B1, B2, . . . , Bm), and resource allocations
u = (u1, u2, . . . , um) and v = (v[1], v[2], . . . , v[na]) such that the following objective function is minimized

Z(S,A,B,u,v) =

na∑
j=1

(αD[j] + βH[j] + δ[j]v[j]) +

m∑
i=1

γiui +
∑
j∈A

ej , (1.3)

where α ≥ β and [j] represents the job that is the jth job in S; for each accepted job Jj , Cj is the completion
time, Dj is the delivery date (Dj ≥ Cj), which is the completion time of the last job in its assigned batch,
and Hj = Dj − Cj is the holding time, which is the time that passes from the instant that the job finishes its
processing to the instant that it is delivered; α and β are the unit costs of the delivery time and job holding
time, respectively; γi and δj are the costs of allocating one unit of the resource to process setup i and job Jj ,
respectively. The condition α ≥ β is reasonable because the delivery times affect customers more than holding
finished jobs in stock. It is easy to see that Dj = Cj or Dj = Cl > Cj , where job Jl is some job processed
after Jj . Using the traditional notation for describing scheduling problems, denote the problem under study by

1|covx, rej,B|
na∑
j=1

(αD[j] + βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej .

For a practical example, consider a situation in manufacturing that involves two parties: a manufacturer and
a customer. A set of jobs (customer orders) must be processed in the manufacturer, referred to as a single
“machine”. The finished jobs are to be delivered to the customer in batches. Each batch is to be assigned a
dispatch date on which all the jobs in the batch are to be delivered to the customer together. The jobs belonging
to the same batch are executed serially and the dispatch date of a batch is equal to the completion time of the last
job in the batch. A setup time, which may be batch-dependent, is needed to perform some cleaning operations

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 317

before starting a new batch. When a job is finished before its assigned batch dispatch date, it must wait in
the system until delivery. Thus, an inventory holding cost is incurred for each early job. To improve customer
service level usually expressed as a function of the times when the jobs are delivered, additional resources, such
as money, energy, or manpower can allocated to control job processing times and setup times. In addition,
because of production constraints at the manufacturer, the manufacturer may not be able to process all jobs.
The manufacturer may prefer to process some jobs while reject some jobs, where each rejected job may either
be outsourced or not get served at all at additional cost (rejection penalty) due to either the outsourcing cost
or the loss in income. The problem is to find an optimal schedule of production, distribution and rejection with
a composite objective that measures the customer service level and the total production cost. This situation
can be modeled as our problem.

1.2. Relevant previous work

Batching problems, which combine the sequencing and partitioning problems, have attracted much research
interest in recent years. The batching issues in scheduling have been discussed in Allahverdi et al. [1], Potts
and Kovalyov [9], Potts and Van Wassenhove [10], Yin et al. [17,20]. The batching model studied in this paper
is called the batch availability model in Potts and Kovalyov [9], by which all the jobs in a batch are processed
contiguously and delivered to customers together when the processing of the last job in the batch is finished.
This model arises in situations where jobs flow between processing facilities in containers such as pallets, boxes,
or carts. A setup time is usually needed to remove a previous container, to install a new one, and to perform some
cleaning operations. Potts and Kovalyov [9] discuss several generalizations of this basic case where the setup
may be machine-dependent (in a multi-machine setting) and/or sequence-dependent. Indeed, in many real-life
applications, the setup may change. In particular, the setup may be batch-dependent. Such applications include,
e.g., the very common case where the first setup time is larger than the following ones because it comprises
several initialization procedures required for the entire production process. Some setups may be larger due
to periodic maintenance procedures. In some cases, the setup times are arranged in nonincreasing order to
reflect a learning effect. In other cases, the setup times are arranged in nondecreasing order to model machine
deterioration. In order to reflect the above applications, Mosheiov and Oron [7] assume that the setup time is
batch-dependent and consider the problem to minimize the total flowtime. They focus on the case of identical
job processing times and provide an O(n) solution procedure for the problem. In this paper it also assumed
that the setup times are batch-dependent. However, the setup times can be compressed, and the job processing
times are arbitrary nonnegative real and compressible by varying the allocation of some resources to the jobs.

In many real-life systems, the job processing times are controllable by allocating different amounts of resources,
such as additional money, overtime, energy, fuel, catalysts, subcontracting, or additional manpower, to the
jobs. In such systems, the job scheduling and resource allocation decisions should be carefully coordinated to
achieve the most efficient system performance. The effect of resource allocation on the job processing time
is usually described by a resource consumption function. Studies of scheduling problems with controllable
processing times were initiated by Vickson [15, 16]. Surveys of this area of scheduling research can be found
in Nowicki and Zdrzalka [8] and Shabtay and Steiner [13]. In most studies of scheduling with controllable
processing times, researchers assume that the job processing time is a bounded linear function of the amount
of a resource allocated to process the job. For many resource allocation problems in physical or economic
systems, however, the linear resource consumption function fails to reflect the law of diminishing marginal
returns. This law states that productivity increases at a decreasing rate with the amount of resources employed.
In order to model this, some studies of scheduling with resource allocation assume that the job processing
time is a convex decreasing function of the amount of a resource allocated to process the job. This resource
consumption function has been extensively used in continuous resource allocation theory. In this paper, the
convex resource consumption function (see Eqs. (1.1) and (1.2)) is adopted. Recently, increasing studies focus on
investigating the problems that simultaneously consider batch scheduling under batch availability and resource
dependent processing times. For example, Cheng and Kovalyov [3] consider batch scheduling with deadlines
and resource dependent processing times, where the processing time of a job is a linear decreasing function

318 W. HUANG ET AL.

of the amount of a common discrete resource allocated to it. The objective is to find simultaneously a resource
allocation and a schedule which is feasible with respect to the deadlines so as to minimize the total weighted
resource consumption. They show that the problem is NP -hard even for the special case of common parameters,
and develop two dynamic programming algorithms for the general problem. Cheng et al. [4] investigate batch
scheduling with deadlines and resource dependent processing times, where processing of a batch requires a
machine setup time common for all batches, and both the job processing times and the setup time can be
compressed through allocation of a continuously divisible resource. Polynomial time algorithms are presented
to find an optimal batch sequence and resource values such that either the total weighted resource consumption
is minimized, subject to meeting job deadlines, or the maximum job lateness is minimized, subject to an upper
bound on the total weighted resource consumption. Shabtay and Steiner [14] study the single-machine batch
scheduling problem, where both setup and job processing times are controllable by allocating a continuously
divisible nonrenewable resource. They present polynomial time algorithms to find the job sequence, the partition
of the job sequence into batches and the resource allocation, which minimize the total completion time or the
total production cost (inventory plus resource costs). Yin et al. [19] consider the problem of single-machine batch
delivery scheduling with an assignable common due date and controllable processing times. The job processing
time is either a linear or a convex function of the amount of a continuously divisible and non-renewable resource
allocated to the job. Finished jobs are delivered in batches and there is no capacity limit on each delivery
batch. The objective is to find a job sequence, a partition of the job sequence into batches, a common due
date, and resource allocation that jointly minimise a cost function based on earliness, weighted number of tardy
jobs, job holding, due-date assignment, batch delivery, makespan, and resource consumption. They provide
some properties of the optimal solution, and show that both the problems with the linear and convex resource
consumption functions can be solved in polynomial time.

In addition, scheduling has been extensively studied in the literature often under the assumption that all the
jobs are processed. However, in many cases the scheduler may need to decide whether or not to accept the jobs
and to efficiently schedule the set of accepted jobs on the machines. Job rejection may be considered, e.g., in the
case where the machine capacity is too low, which does not allow the scheduler to process all the jobs. In such a
case, the rejected jobs may be either outsourced or not get served at all, thus incurring a rejection penalty due to
either the outsourcing cost or the loss in income and reputation (see [12]). The idea of scheduling with rejection
is relatively new. It was first introduced by Bartal et al. [2], who study the problem of minimizing the sum of
makespan and rejection penalties on a set of identical parallel machines, focusing on approximations. Due to the
importance of scheduling with rejection strategy, some researchers investigate this kind of scheduling problems
in the framework of batch scheduling under batch availability. Shabtay [11] study a scheduling problem with
rejection on a single serial batching machine, where the objectives are to minimize the total completion time
and the total rejection cost. They consider four different problem variations. The first is to minimize the sum
of the two objectives. The second and the third are to minimize one objective, given an upper bound on the
value of the other objective and the last is to find a Pareto-optimal solution for each Pareto-optimal point. They
provide a polynomial time procedure to solve the first variation, and show that the three other variations are
NP -hard and construct a pseudo-polynomial time algorithm for solving the NP -hard problems. Yin et al. [18]
provide an alternative algorithm to solve the first variant and a FPTAS for the fourth variant investigated in
Shabtay [11], which are more efficient than those developed by Shabtay [11] from a theoretical perspective.

It is natural and interesting to study the scheduling problem in which rejected jobs, batch scheduling, and
resource allocation are considered simultaneously. To the best of our knowledge, there is no research on such a
problem. The aim of this paper is twofold. One is to study this more realistic and complex scheduling model.
The other is to ascertain the computational complexity status and provide solution procedures, if viable, for
the problems under consideration. The rest of the paper is organized as follows: Section 2 considers the problem
with fixed setup and job processing times, and provide an O(n6) dynamic programming solution algorithm for
it. Section 3 studies the problem with convex resource-dependent setup and processing times, and provide an
O(n6) dynamic programming algorithm to solve it. We also show that the case of both problems with common
setup time can be solved in O(n5) time. Section 4 concludes the paper and suggest some future research topics.

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 319

2. Optimal solution for the case with fixed setup and processing times

This section first studies the problem with fixed setup and processing times because it seems that this
problem has not been studied in the literature. Given any feasible resource allocations u and v, the setup and
job processing times, and the resource consumption cost are fixed. So the problem in this case reduces to finding
an accepted job sequence S, a rejected job set A, and a partition of the job sequence S into bathes B that
jointly minimize

Z(S,A,B) =

na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej , (2.1)

denoted by 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej .

It is easy to derive that the optimal schedule will not include idle times since removing any idle time will
reduce the objective value. For a fixed job sequence π = (S,A) with na accepted jobs in the order of S,
assume that the job sequence S = (J[1], . . . , J[na]) is partitioned into m batches B1 = {J[1], . . . , J[l1]}, B2 =
{J[l1+1], . . . , J[l2]}, . . . , and Bm = {J[lm−1+1], . . . , J[lm]}, where li denotes the number of jobs in the first i batches
for i = 0, 1, . . . ,m, with l0 = 0 and lm = na. So

D[j] =

i∑
l=1

sl +

li∑
l=1

p[l] (2.2)

and

H[j] = Dj − Cj = D[j] −

 i∑
l=1

sl +

j∑
l=li−1+1

p[l]

 =

li∑
l=j+1

p[l] (2.3)

for j ∈ {J[li−1+1], . . . , J[li]} and i = 1, . . . ,m. Denote the number of jobs in Bi by |Bi|, i.e., |Bi| = li − li−1 for
i = 1, . . . ,m. For the fixed job sequence and partition, equation (4) can be re-formulated as

Z(S,A,B) = α

m∑
i=1

(li − li−1)Dj + β

na∑
j=1

Hj +
∑
Jj∈A

ej

= α

m∑
i=1

(li − li−1)

(
i∑
l=1

sl +

li∑
l=1

p[l]

)
+ β

m∑
i=1

li∑
j=li−1

Hj +
∑
Jj∈A

ej

= α

m∑
i=1

(li − li−1)

i∑
l=1

(sl + Pl) + β

m∑
i=1

li∑
j=li−1+1

li∑
l=j+1

p[l] +
∑
Jj∈A

ej

= α

m∑
i=1

(na − li−1)(si + Pi) + β

m∑
i=1

li∑
j=li−1+1

(j − 1− li−1)p[j] +
∑
Jj∈A

ej , (2.4)

where Pi =
li∑

j=li−1+1

p[j] denotes the total processing time of the jobs in the ith batch for i = 1, . . . ,m.

In what follows, borrowing the idea from Yin et al. [17,19], some structural properties of an optimal solution

for the problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej are presented.

320 W. HUANG ET AL.

Lemma 2.1. For the problem 1|rej,B|
na∑
j=1

(αD[j] +βH[j]) +
∑
j∈A

ej, an optimal schedule exists in which the jobs

in any batch are sequenced in nonincreasing order of pj, i.e., in the longest processing time (LPT) order.

Proof. The optimal job sequence within each batch should minimize the second term in equation (2.4), i.e., the
total holding cost, since it is the only term within equation (2.4) that is dependent on the internal sequence

within the batch. The total holding cost of the jobs in batch i is β
li∑

j=li−1+1

(j − 1 − li−1)p[j] for i = 1, . . . ,m.

The result follows from the well-known result in linear algebra about the minimization of the scalar product of
two vectors (see Hardy et al. [5]). �

Lemma 2.2. For the problem 1|rej,B|
na∑
j=1

(αD[j] +βH[j]) +
∑
j∈A

ej, an optimal schedule exists in which the jobs

in any two consecutive batches Bl and Bl+1 satisfy pi ≤ pj if Ji is in Bl and Jj is in Bl+1.

Proof. Because of Lemma 2.1, the condition of Lemma 2.2 holds for an optimal schedule if and only if pi ≤ pj ,
where Ji is the first job in Bl and Jj is the last job in Bl+1. Now suppose that there is an optimal schedule
π = (S,A) with na accepted jobs, and two consecutive batches Bl and Bl+1 in which pi > pj , where Ji is the
first job in Bl and Jj is the last job in Bl+1. Now break down the proof into two cases.

Case 1: |Bl| > |Bl+1| − 1. For this case, consider a new schedule π′ = (S′, A) constructed by swapping jobs Ji
and Jj . By equation (2.4), the difference between the objective values of schedules π′ and π is

∆ = −α(na − ll−1)(pi − pj) + α(na − ll)(pi − pj)
+ β(|Bl+1| − 1)(pi − pj)

= α(−ll + ll−1)(pi − pj) + β(|Bl+1| − 1)(pi − pj)
= (β(|Bl+1| − 1)− α|Bl|)(pi − pj),

which is negative because α ≥ β, |Bl| > |Bl+1| − 1, and pi > pj .

Case 2: |Bl| ≤ |Bl+1| − 1. For this case, consider a new schedule π′ = (S′, A) constructed by placing job Jj in
the last position of Bl. By equation (2.4), the difference between the objective values of schedules π′ and π is

∆ = α(na − ll−1)(sl + Pl + pj) + α(na − ll − 1)(sl+1 + Pl+1 − pj)
+ β|Bl|pj − β(|Bl+1| − 1)pj − α(na − ll−1)(sl + Pl)

− α(na − ll)(sl+1 + Pl+1)

= α(na − ll−1)pj − αPl+1(S)− α(na − ll − 1)pj

+ β|Bl|pj − β(|Bl+1| − 1)pj − αsl+1

≤ αnapj − αll−1pj − α|Bl+1|pj − α(na − lk − 1)pj

+ β|Bk|pj − β(|Bk+1| − 1)pj − αsl+1

= (α+ β)((|Bl|+ 1)− |Bl+1|)pj − αsl+1,

which is negative because |Bl| ≤ |Bl+1| − 1.
Thus, in both cases, schedule π′ is at least as good as π. Repeating this modifying argument for all the

accepted jobs not sequenced in the specified order yields the result. �

The following result presents the properties of the batch sizes.

Lemma 2.3. For the problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej, an optimal schedule exists in which |Bl| ≥

|Bl+1| for any two consecutive batches Bl and Bl+1.

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 321

Proof. Given an optimal schedule π = (S,A) with two consecutive batches Bl and Bl+1 in S such that |Bl| <
|Bl+1|. By the proof of Case 2 in Lemma 2.2, moving one job from Bl+1 into Bl does not increase the objective
value. Repeating this modifying argument until |Bl| ≥ |Bl+1| yields the result. �

Lemma 2.4. For a given na value, an optimal schedule for the problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej

exists in which

|Bl| ≤

⌊√
4α(na − 1)sna

max

(α+ β)pmin
+ 1

⌋

for any batch Bl, where pmin = min {p1, . . . , pn}, sna
max = max{s1, . . . , sna

}, and bxc denotes the largest integer
less than or equal to x.

Proof. Suppose that there exists an optimal schedule π = (S,A) with na accepted jobs and a batch Bl for which

|Bl| >
⌊√

4α(na−1)sna
max

(α+β)pmin
+ 1
⌋
. Clearly, |Bl| ≥ 2. Let q = |Bl|

2 if |Bl| is even, and q = |Bl|−1
2 otherwise. Now consider

a new schedule π′ = (S′, A) constructed by splitting batch Bl into two batches {J[ll−1+q+2], J[ll−1+q+3], . . . , J[ll]}
and {J[ll−1+1], J[ll−1+2], . . . , J[ll−1+q+1]}. By equation (2.4), the difference between the objective values of sched-
ules π′ and π is

∆ = α(na − ll−1)

sl +

ll∑
j=ll−1+q+1

p[j]


+ α(na − (ll − q))

sl+1 +

ll−1+q∑
j=ll−1+1

p[j]


− α(na − ll−1)

sl +

ll∑
j=ll−1+1

p[j]

− βq ll∑
j=ll−1+v+1

p[j]

+ α

m∑
j=l+1

(na − lj−1)(sj+1 − sj)

= −α(|Bl| − q)
ll−1+q∑
j=ll−1+1

p[j] − βq
ll∑

j=ll−1+q+1

p[j]

+ α(na − (ll − q))sl+1 + α

m∑
j=l+1

(lj − lj−1)sj+1

− α(na − ll)sl+1

= −α(|Bl| − q)
ll−1+q∑
j=ll−1+1

p[j] − βq
ll∑

j=ll−1+q+1

p[j]

+ αqsl+1 + α

m∑
j=l+1

|Bj |sj+1

≤ −(α+ β)(|Bl| − q)qpmin + α(q + |Bl+1|+ . . .+ |Bm|)sna
max

≤ −(α+ β)(|Bl| − q)qpmin + α(na − 1)sna
max.

322 W. HUANG ET AL.

Now, if |Bl| is even, then (|Bl| − l)l = |Bl|2
4 ; otherwise, (|Bl| − q)q = |Bl|2−1

4 . Since |Bl| >
⌊√

4α(na−1)sna
max

(α+β)pmin
+ 1
⌋
,

one have (α + β)(|Bl| − q)qpmin ≥ (α+β)(|Bl|2−1)pmin

4 > α(na − 1)sna
max, implying that ∆ < 0. Therefore, π′ is a

better schedule than π, as required. �

In what follows, number the jobs in the shortest processing time (SPT) order so that p1 ≤ p2 ≤ . . . ≤ pn. This
numbering can be done in O(n log n) time. Next, a recursion relation will be provided that can be exploited to

design a polynomial-time dynamic programming algorithm for the problem 1|rej,B|
na∑
j=1

(αD[j] +βH[j])+
∑
j∈A

ej .

Let us begin with introducing some notation that will be used later:

(i, j, x, y, r)na : a state representing the situation where the jobs {J1, . . . , Ji} have been scheduled, provided
that in the final optimal schedule for the whole job set N , there are exactly na accepted jobs,
and that in the current partial schedule for jobs {J1, . . . , Ji}, there are j (j ≤ min{i, na})
accepted jobs, and there are y jobs in the the current last batch, which will be the rth batch
(r = j = 0 or 1 ≤ r ≤ j) and contains exactly x jobs in the final optimal schedule for the whole
job set N .

Fna
(i, j, x, y, r): the optimal solution value of any schedule in state (i, j, x, y, r)na

.
Sna(i, j, x, y, r): any schedule in state (i, j, x, y, r)na with the solution value Fna(i, j, x, y, r).
φna

(i, j, x, y, r): a variable, i.e., φna
(i, j, x, y, r) is equal to the position number of job Ji in the final optimal

schedule for the whole job set N if job Ji is an accepted job, otherwise φna
(i, j, x, y, r) =

∅, provided that the jobs {J1, . . . , Ji} are scheduled corresponding to Fna(i, j, x, y, r). This
function is used to keep track of the positions of the accepted jobs in the optimal schedule.

ψna(i, j, x, y, r): a binary variable, i.e., ψna(i, j, x, y, r) = 1 if job Ji is the last job in the current last batch
corresponding to Fna

(i, j, x, y, r), and ψna
(i, j, x, y, r) = 0 otherwise. This function is used to

indicate where batches are formed in the optimal schedule.

By definition, set Fna
(i, j, x, y, r) = +∞ if no such schedule exists. Then the schedule Sna

(i, j, x, y, r) must have
been constructed by taking one of the following three decisions in the previous state.

(1) Job Ji is a rejected job. In this case, Sna
(i, j, x, y, r) must have been obtained from schedule Sna

(i −
1, j, x, y, r) and Fna

(i, j, x, y, r) = Fna
(i− 1, j, x, y, r) + ei.

(2) Job Ji is an accepted job and assigned to the last batch currently containing at least y ≥ 2 jobs. In
this case, Sna

(i, j, x, y, r) must have been obtained from schedule Sna
(i − 1, j − 1, x, y − 1, r); job Ji is

currently the first job in the current last batch, but it will be the (x − y + 1)th job in this batch in the
final optimal schedule for N ; and there are j − y jobs processed before the current last batch in the final
optimal schedule for N , implying that φna

(i, j, x, y, r) = j + x − 2y + 1. Hence the contribution made
by job Ji to the objective function of the scheduling problem is (α(na − i + j + y) + β(x − y))pi, so
Fna

(i, j, x, y, r) = Fna
(i− 1, j − 1, x, y − 1, r) + (α(na − j + y) + β(x− y))pi.

(3) Job Ji is assigned to the last batch currently containing only one job, i.e., Ji is currently the sole job in
the current last batch. In this case, Sna

(i, j, x, 1, r) must have been obtained from schedule Sna
(i − 1, j −

1, z, z, r − 1) with the minimum solution value Fna
(i− 1, j − 1, z, z, r − 1) for z ≥ x by Lemma 2.3; job Ji

will be the xth job in this batch in the final optimal schedule for N ; and there are j − 1 jobs processed
before the current last batch in the final optimal schedule for N , so φna

(i, j, x, 1, r) = j + x− 1. Hence, the
contribution of job Ji to the objective function of the scheduling problem is (α(na− i+ j+ 1) +β(x− 1))pi,
so Fna

(i, j, x, y, r) = minz≥x{Fna
(i− 1, j − 1, z, z, r − 1)}+ α(na − j + 1)(sr + pi) + β(x− 1)pi.

Based on the above analysis, an algorithm for the problem is given as follows:

Algorithm 1.

Denote Bna =
⌊√

4α(na−1)sna
max

(α+β)pmin
+ 1
⌋

for na = 1, . . . , n. Re-number the jobs in the SPT order such that

p1 ≤ p2 ≤ . . . ≤ pn.

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 323

(1) Initial conditions

(a) If (na, i, j, x, y, r) does not satisfy 0 ≤ na ≤ n, 1 ≤ i ≤ n, 0 ≤ j ≤ min{i, na}, r = j = 0 or 1 ≤ r ≤ j,
0 ≤ x ≤ min{na, Bna

}, and 0 ≤ y ≤ min{j, x}, then

Fna(i, j, x, y, r) = +∞, φna(i, j, x, y, r) = ∅, ψna(i, j, x, y, r) = ∅.

(b) If x = r = 0 and na < n, then

Fna
(1, 0, 0, 0, 0) = e1,

φna(1, 0, 0, 0, 0) = φ, ψna(1, 0, 0, 0, 0) = 0.

(c) If 1 ≤ x ≤ min{na, Bna
} and na ≥ 1, then

Fna
(1, 1, x, 1, 1) = αna(s1 + p1) + β(x− 1)p1,

φna(1, 1, x, 1, 1) = x, ψna(1, 1, x, 1, 1) = 1.

(2) Recursive relations

For 0 ≤ na ≤ n, 2 ≤ i ≤ n, 0 ≤ j ≤ min{i, na}, r = j = 0 or 1 ≤ r ≤ j, and 0 ≤ x ≤ min{na, Bna
}:

(a) For 2 ≤ y ≤ min{j, x}:

Fna(i, j, x, y, r) = min


Fna

(i− 1, j, x, y, r) + ei, (≡ X)

Fna(i− 1, j − 1, x, y − 1, r)

+(α(na − j + y) + β(x− y))pi, (≡ Y)

φna(i, j, x, y, r) =

{
φ, if Fna

(i, j, x, y, r) = X,

j + x− 2y + 1, if Fna(i, j, x, y, r) = Y,

ψna
(i, j, x, y, r) = 0.

(b) For y = 1:

Fna
(i, j, x, 1, r) = min


Fna(i− 1, j, x, y, r) + ei, (≡ U)

minz≥x{Fna
(i− 1, j − 1, z, z, r − 1)}

+α(na − j + 1)(sr + pi) + β(x− 1)pi, (≡ V)

φna
(i, j, x, 1, r) =

{
φ, if Fna

(i, j, x, 1, r) = U,

j + x− 1, if Fna
(i, j, x, 1, r) = V,

ψna
(i, j, x, 1, r) =

{
0, if Fna

(i, j, x, 1, r) = U,

1, if Fna(i, j, x, 1, r) = V.

(3) The optimal solution value is F ∗ = min{Fna
(n, na, x, x, r)|0 ≤ na ≤ n, 0 ≤ x ≤ min{na, Bna

}, r = na =
0 or 1 ≤ r ≤ na}.

Let u∗, x∗, and r∗ be the corresponding values. The optimal sequence can be obtained by recursively searching
the position functions φn∗

a
(i, j, x, y, r) beginning with φn∗

a
(n, n∗a, x

∗, x∗, r∗). The optimal batch delivery date of
each job can be determined from the batch indicator functions ψn∗

a
(i, j, x, y, r).

Theorem 2.5. The problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej can be solved in O(n6) time by Algorithm 1.

324 W. HUANG ET AL.

Table 1. The job processing times and rejection costs.

j 1 2 3 4
pj 3 4 7 9
ej 17 15 20 25

Proof. Optimality is guaranteed by Lemmas 2.1–2.4 and the principles underlying dynamic programming. Now,
consider the computational complexity of the dynamic programming solution algorithm. There are at most n6

states when y ≥ 2 and at most n5 states when y = 1. Computing each Fna
(i, j, x, y, r) requires constant time

when y ≥ 2, while computing each Fna
(i, j, x, 1, r) requires O(n) time when y = 1, so computing all of them

requires O(n6) time. Computing F ∗ requires linear time. The overall computational complexity of the algorithm
is therefore O(n6). �

Note that in the case of a constant setup time (i.e., si = s, i = 1, . . . ,m), which implies that the setup is
batch-independent, one can drop the decision variable r in Algorithm 1 and obtain the following result.

Theorem 2.6. The problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +
∑
j∈A

ej can be solved in O(n5) time in the case with

a common setup time.

The following example is presented to illustrate Algorithm 1 for the problem 1|rej,B|
na∑
j=1

(αD[j] + βH[j]) +∑
j∈A

ej .

Example 2.7. Let α = 1 and β = 2. Consider a problem containing n = 4 jobs with s = 3 and the other

corresponding parameters shown in Table 1. Now we can solve the problem 1|rej,B|
na∑
j=1

(αD[j] +βH[j])+
∑
j∈A

ej .

In the sequel, we apply Algorithm 1 to solve this numerical example.
Step 1. The jobs are already indexed in the SPT order.

Step 2. Calculate B1 = 1, B2 =
⌊√

4×1
3 + 1

⌋
= 1, B2 =

⌊√
4×2
3 + 1

⌋
= 1, and B4 =

⌊√
4×3
3 + 1

⌋
= 2. Set

Fna
(1, 0, 0, 0) = e1 = 17 for na = 0, 1, . . . , 3, and Fna

(1, 1, 1, 1) = αna(s+p1)+β(1−1)p1 = 6na for na = 1, . . . , 3
and F4(1, 1, x, 1) = αna(s+ p1) + β(x− 1)p1 = 24 + 6(x− 1) for x = 1, 2.
Step 3.
For na = 0, we have
F0(1, 0, 0, 0) = e1 = 17,
F0(2, 0, 0, 0) = 17 + e2 = 32,
F0(3, 0, 0, 0) = 32 + e3 = 52,
F0(4, 0, 0, 0) = 52 + e4 = 77.

For na = 1, we have
For j = 2, one have
F1(2, 0, 0, 0) = 17 + e2 = 32,
F1(2, 1, 1, 1) = F1(1, 0, 0, 0) + αna(s+ p2) + β(1− 1)p2 = 17 + 7 = 24,
F1(3, 0, 0, 0) = 32 + e3 = 52,
F1(3, 1, 1, 1) = min{F1(2, 0, 0, 0) + αna(s+ p3), F1(2, 1, 1, 1) + e3} = min{42, 44} = 42,
F1(4, 1, 1, 1) = min{F1(3, 0, 0, 0) + αna(s+ p4), F1(3, 1, 1, 1) + e4} = min{64, 67} = 64.

For na = 2, we have
For j = 2, one have
F2(2, 0, 0, 0) = 17 + e2 = 32,

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 325

F2(2, 1, 1, 1) = F2(1, 0, 0, 0) + α(na − 1 + 1)(s+ p2) = 17 + 14 = 31,

F2(2, 2, 1, 1) = F2(1, 1, 1, 1) + α(na − 2 + 1)(s+ p2) = 6× 2 + 7 = 19,

F2(3, 0, 0, 0) = 32 + e3 = 52,

F2(3, 1, 1, 1) = min{F2(2, 0, 0, 0) + α(na − 1 + 1)(s+ p3), F2(2, 1, 1, 1) + e3} = min{52, 51} = 51,

F2(3, 2, 1, 1) = min{F2(2, 1, 1, 1) + α(na − 2 + 1)(s+ p3), F2(2, 2, 1, 1) + e3} = min{41, 39} = 39,

F2(4, 2, 1, 1) = min{F2(3, 1, 1, 1) + α(na − 2 + 1)(s+ p4), F2(3, 2, 1, 1) + e4} = min{63, 64} = 63.

For na = 3, we have

For j = 2, one have

F3(2, 0, 0, 0) = 17 + e2 = 32,

F3(2, 1, 1, 1) = F3(1, 0, 0, 0) + α(na − 1 + 1)(s+ p2) = 17 + 14 = 39,

F3(2, 2, 1, 1) = F3(1, 1, 1, 1) + α(na − 2 + 1)(s+ p2) = 6× 3 + 14 = 32,

F3(3, 1, 1, 1) = min{F3(2, 0, 0, 0) + α(na − 1 + 1)(s+ p3), F3(2, 1, 1, 1) + e3} = min{62, 59} = 59,

F3(3, 2, 1, 1) = min{F3(2, 1, 1, 1) + α(na − 2 + 1)(s+ p3), F3(2, 2, 1, 1) + e3} = min{49, 52} = 49,

F3(3, 3, 1, 1) = F3(2, 2, 1, 1) + α(na − 3 + 1)(s+ p3) = 42,

F3(4, 3, 1, 1) = min{F3(3, 2, 1, 1) + α(na − 3 + 1)(s+ p4), F3(3, 3, 1, 1) + e4} = min{61, 67} = 61.

For na = 4, we have

For j = 2, one have

F4(2, 2, 1, 1) = F4(1, 1, 1, 1) + α(na − 2 + 1)(s+ p2) = 24 + 21 = 45,

F4(2, 2, 2, 2) = F4(1, 1, 2, 1) + α(na − 2 + 2)p2 + β(2− 2)p2 = 30 + 16 = 46,

F4(3, 3, 1, 1) = min{F3(2, 2, 1, 1)+α(na−3+1)(s+p3), F3(2, 2, 2, 2)+α(na−3+1)(s+p3)} = min{55, 56} = 55,

F4(3, 3, 2, 1) = F4(2, 2, 2, 2) + α(na − 3 + 1)(s+ p3) + β(2− 1)p3 = 46 + 20 + 14 = 80,

F4(4, 4, 1, 1) = F4(3, 3, 1, 1) + α(na − 4 + 1)(s+ p4) = 55 + 12 = 67,

F4(4, 4, 2, 2) = F4(3, 3, 2, 1) + α(na − 4 + 2)p4 + β(2− 2)p4 = 80 + 18 = 98.

Step 4. The optimal solution value is F ∗ = 61 which corresponds to the state S3(4, 3, 1, 1). By backtracking,
the set of accepted jobs is A = {J2, J3, J4} and each job is processed in a single batch such that there are three
batches: B1 = {J2}, B2 = {J3} and B3 = {J4}.

3. Optimal solution for the case with convex resource consumption
functions

This section provides an algorithm to solve the problem 1|covx, rej,B|
na∑
j=1

(αD[j]+βH[j]+δ[j]v[j])+
∑m
i=1 γiui+∑

j∈A
ej with the resource consumption functions given in equations (1.1) and (1.2).

Consider again an arbitrary fixed job sequence π = (S,A) with na accepted jobs in the order of S.
Assume that the job sequence S = (J[1], . . . , J[na]) is partitioned into m batches B1 = {J[1], . . . , J[l1]},
B2 = {J[l1+1], . . . , J[l2]}, . . . , and Bm = {J[lm−1+1], . . . , J[lm]}, where li denotes the number of jobs in the first
i batches for i = 0, 1, . . . ,m, with l0 = 0 and lm = na. By substituting the convex resource functions in equa-
tions (1.1) and (1.2) for each ui and vj into the objective function in equation (1.3), one obtain from the deduction

326 W. HUANG ET AL.

of equation (2.4) that

Z(S,A,B) = α

m∑
i=1

(na − li−1)

((
ωi
ui

)k
+ Pi

)

+ β

m∑
i=1

li∑
j=li−1+1

(j − 1− li−1)

(
w[j]

v[j]

)k

+

m∑
i=1

γi

(
ωi
ui

)k
+

na∑
j=1

δ[j]

(
w[j]

v[j]

)k
+
∑
Jj∈A

ej

= α

m∑
i=1

(na − li−1)

(
ωi
ui

)k
+

m∑
i=1

li∑
j=li−1+1

(α(na − li−1)

+ β(j − 1− li−1))

(
w[j]

v[j]

)k
+

m∑
i=1

γi

(
ωi
ui

)k
+

na∑
j=1

δ[j]

(
w[j]

v[j]

)k
+
∑
Jj∈A

ej , (3.1)

where Pi =
li∑

j=li−1+1

(
w[j]

v[j]

)k
denotes the total processing time of the jobs in the ith batch for i = 1, . . . ,m.

The following lemma determines the optimal resource allocation, denoted by (u∗,v∗), as a function of the
job sequence π, the number of accepted jobs na, and the partition of the accepted job sequence into batches B.

Lemma 3.1. For the problem 1|covx, rej,B|
na∑
j=1

(αD[j]+βH[j]+δ[j]v[j])+
∑m
i=1 γiui+

∑
j∈A

ej, the optimal resource

allocation (u∗, v∗) as a function of the job sequence π, the number of accepted jobs na, and the partition of the
accepted job sequence into batches B is:

u∗i =

(
kα(na − li−1)

γi

) 1
k+1

× ω
k

k+1

i (3.2)

for i = 1, . . . ,m, and

v∗[j] =

(
k(α(na − li−1) + β(j − 1− li−1))

δ[j]

) 1
k+1

× w
k

k+1

[j] (3.3)

for i = 1, . . . ,m; j = li−1 + 1, . . . , li.

Proof. Differentiating each of the terms of the objective in equation (3.1) with respect to ui and v[j] for i =
1, 2, . . . ,m and j = 1, 2, . . . , n, respectively, equating it to zero, and solving it for ui and v[j], one obtain
equations (3.2) and (3.3). Since the objective is a convex function with respect to ui and v[j] for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, respectively, equations (3.2) and (3.3) provide the necessary and sufficient conditions for
optimality. �

Substituting equations (3.2) and (3.3) into equation (3.1), a new expression is obtained for the cost function
under an optimal resource allocation as a function of the job sequence π, the number of accepted jobs na, and
the partition of the accepted job sequence into batches B as follows:

Z(π,B, (u∗,v∗), na) = k

m∑
i=1

θiσi + k

na∑
j=1

ϑ[j]ηj +
∑
Jj∈A

ej , (3.4)

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 327

where

k = k
−k
k+1 + k

1
k+1 , (3.5)

θi = (ωiγi)
k

k+1 , i = 1, . . . ,m, (3.6)

ϑ[j] = (w[j]δ[j])
k

k+1 , j = 1, . . . , na, (3.7)

σi = (α(na − li−1))
1

k+1 , i = 1, . . . ,m, (3.8)

and

ηj = (α(na − li−1) + β(j − 1− li−1)))
1

k+1 , i = 1, . . . ,m; j = li−1 + 1, . . . , li. (3.9)

Lemma 3.2. For the problem 1|covx, rej,B|
na∑
j=1

(αD[j]+βH[j]+δ[j]v[j])+
∑m
i=1 γiui+

∑
j∈A

ej, an optimal schedule

exists in which the jobs in any batch are sequenced in nonincreasing order of ϑj.

Proof. The proof is similar to that of Lemma 2.1. �

Lemma 3.3. Let v∗[j] and ϑ[j] be as given in equations (3.3) and (3.7). Then ϑ[l] ≤ ϑ[j] implies
(
w[l]

v∗
[l]

)k
≤(

w[j]

v∗
[j]

)k
for any two jobs J[l] and J[j] in batch i (i = 1, 2, . . . ,m) such that li−1 + 1 ≤ j < l ≤ li.

Proof. By equation (3.3) and ϑ[l] ≤ ϑ[j], one have

(
w[l]

v∗[l]

)k
=

ϑ[l]

(k(α(na − li−1) + β(l − 1− li−1)))
k

k+1

≤
ϑ[j]

(k(α(na − li−1) + β(j − 1− li−1)))
k

k+1

=

(
w[j]

v∗[j]

)k
·

The result follows. �

The following two results present properties regarding the sizes of the batches.

Proposition 3.4. For the problem 1|covx, rej,B|
na∑
j=1

(αD[j] + βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej, an optimal

schedule exists in which |Bs| ≥ |Bs+1| for any two consecutive batches Bs and Bs+1.

Proof. Consider an optimal schedule π = (S,A) with na accepted jobs and two consecutive batches Bs and

Bs+1 such that |Bs| < |Bs+1|. Let Jj be the last job in Bs+1. Then, by Lemmas 3.2 and 3.3,
(
w[l]

v∗
[l]

)k
≥
(
wj

v∗j

)k
for any l = ls + 1, ls + 2 . . . , ls+1. Consider a new schedule π′ = (S′, A) constructed by placing job Jj in the last
position of Bs without changing the setup and job processing times. By equation (3.1), the difference between

328 W. HUANG ET AL.

the objective values of schedules π′ and π is

∆ = α(na − ls−1)

(ωs
u∗s

)k
+ P[s] +

(
wj
v∗j

)k
+ α(na − ls − 1)

(ωs+1

u∗s+1

)k
+ P[s+1] −

(
wj
v∗j

)k
− α(na − ls−1)

((
ωs
u∗s

)k
+ P[s]

)

− α(na − ls)

((
ωs+1

u∗s+1

)k
+ P[s+1]

)

+ β|Bs|

(
wj
v∗j

)k
− θ(|Bs+1| − 1)

(
wj
v∗j

)k

= α(na − ls−1)

(
wj
v∗j

)k
− α

((
ωs+1

u∗s+1

)k
+ P[s+1]

)

− α(na − ls − 1)

(
wj
v∗j

)k
+ β(|Bs| − (|Bs+1| − 1))

(
wj
v∗j

)k

= α(|Bs|+ 1)

(
wj
v∗j

)k
− αP[s+1] + θ(|Bs| − (|Bs+1| − 1))

(
wj
v∗j

)k
− α

(
ωs+1

u∗s+1

)k

≤ α(|Bs|+ 1)

(
wj
v∗j

)k
− α|Bs+1|

(
wj
v∗j

)k

+ θ(|Bs| − (|Bs+1| − 1))

(
wj
v∗j

)k
− α

(
ωs+1

u∗s+1

)k

= (α+ β)((|Bs|+ 1)− |Bs+1|)

(
wj
v∗j

)k
− α

(
ωs+1

u∗s+1

)k
,

where P[s] =
ls∑

l=ls−1+1

(
w[l]

v∗
[l]

)k
and P[s+1] =

ls+1∑
l=ls+1

(
w[l]

v∗
[l]

)k
≥ |Bs+1|

(
wj

v∗j

)k
. It follows from |Bs| ≤ |Bs+1| − 1 that

∆ < 0. Therefore, schedule π′ is at least as good as π. Repeating this modifying argument until |Bs| ≥ |Bs+1|
yields the result. �

Proposition 3.5. For a given na value, an optimal schedule exists for the problem 1|covx, rej,B|
na∑
j=1

(αD[j] +

βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej in which

|Bs| ≤

√4(1 + k)(αna + β(na − 1))
k

k+1 (αna)
1

k+1 θna
max

(α+ β)ϑmin
+ 1


for any batch Bs, where ϑmin = min {ϑ1, ϑ2, . . . , ϑn} and θna

max = max{ϑ1, ϑ2, . . . , ϑna}.

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 329

Proof. Suppose that there is an optimal schedule π = (S,A) with na accepted jobs and a batch Bs for which

|Bs| >

⌊√
4(1+k)(αna+β(na−1))

k
k+1 (αna)

1
k+1 θna

max

(α+β)ϑmin
+ 1

⌋
. Clearly, |Bs| ≥ 2. Let l = |Bs|

2 if |Bs| is even, and l =

|Bs|−1
2 otherwise. Now consider a new schedule π′ = (S′, A) constructed by splitting batch Bs into two batches

{J[ls−1+l+2], J[ls−1+l+3], . . . , J[ls]} and {J[ls−1+1], J[ls−1+2], . . . , J[ls−1+l+1]} without changing the job processing
times. By Lemma 3.2, the optimal resource allocation u′∗ for schedule π′ is

u′∗i =


u∗i , i = 1, . . . , s,(
kα(na−(ls−l))

γi

) 1
k+1 × ω

k
k+1

i , i = s+ 1,(
kα(na−li−2)

γi

) 1
k+1 × ω

k
k+1

i , i = s+ 2, . . . ,m+ 1.

By equation (3.1), the difference between the objective values of schedules π′ and π is

∆ = α(na − ls−1)

(ωs
u∗s

)k
+

ls∑
j=ls−1+l+1

(
w[j]

v∗[j]

)k
+ α(na − (ls − l))

(ωs+1

u′∗s+1

)k
+

ls−1+l∑
j=ls−1+1

(
w[j]

u∗[j]

)k
− α(na − ls−1)

(ωs
u∗s

)k
+

ls∑
j=ls−1+1

(
w[j]

v∗[j]

)k
− βl

ls∑
j=ls−1+l+1

(
w[j]

v∗[j]

)k

+ α

m∑
j=s+1

(na − lj−1)

(ωj+1

u′∗j+1

)k
−

(
ωj
u∗j

)k
+ γs+1u

′∗
s+1 +

m∑
j=s+1

γj
(
u′∗j+1 − u′∗j

)
= −α(|Bs| − l)

ls−1+l∑
j=ls−1+1

(
w[j]

v∗[j]

)k
− βl

ls∑
j=ls−1+l+1

(
w[j]

v∗[j]

)k

+ α(na − (ls − l))
(
ωs+1

u′∗s+1

)k

+ α

m∑
j=s+1

(na − lj−1)

(ωj+1

u′∗j+1

)k
−

(
ωj
u∗j

)k
+ γs+1u

′∗
s+1 +

m∑
j=s+1

γj
(
u′∗j+1 − u′∗j

)

330 W. HUANG ET AL.

= −α(|Bs| − l)
ls−1+l∑

j=ls−1+1

ϑ[j]

(k(α(na − ls−1) + β(j − 1− ls−1)))
k

k+1

− βl
ls∑

j=ls−1+l+1

ϑ[j]

(k(α(na − ls−1) + β(j − 1− ls−1)))
k

k+1

+ k
−k
k+1 (α(na − (ls − l)))

1
k+1 θs+1

+ k
−k
k+1

m∑
j=s+1

(α(na − lj−1))
1

k+1 (θj+1 − θj)

+ k
1

k+1 (α(na − (ls − l)))
1

k+1 θs+1

+ k
1

k+1

m∑
j=s+1

(α(na − lj−1))
1

k+1 (θj+1 − θj)

= −α(|Bs| − l)
ls−1+l∑

j=ls−1+1

ϑ[j]

(k(α(na − li−1) + β(j − 1− li−1)))
k

k+1

− βl
ls∑

j=ls−1+l+1

ϑ[j]

(k(α(na − li−1) + β(j − 1− li−1)))
k

k+1

+ k

(
(α(na − (ls − l)))

1
k+1 θs+1

+

m∑
j=s+1

(α(na − lj−1))
1

k+1 (θj+1 − θj)
)

≤ −(|Bs| − l)l(α+ β)
ϑmin

(k(αna + β(na − 1)))
k

k+1

+ k (αna)
1

k+1

θs+1 +

m∑
j=s+1

(θj+1 − θj)


≤ −(|Bs| − l)l(α+ β)

ϑmin

(k(αna + β(na − 1)))
k

k+1

+ k (αna)
1

k+1 θm+1

≤ −(|Bs| − l)l(α+ β)
ϑmin

(k(αna + β(na − 1)))
k

k+1

+ k (αna)
1

k+1 θna
max.

Now, if |Bs| is even, then (|Bs| − l)l = |Bs|2
4 ; otherwise, (|Bs| − l)l = |Bs|2−1

4 . Since |Bs| >⌊√
4(1+k)(αna+β(na−1))

k
k+1 (αna)

1
k+1 θna

max

(α+β)ϑmin
+ 1

⌋
, one have

(|Bs| − l)l(α+ β)
ϑmin

(k(αna + β(na − 1)))
k

k+1

≥ |Bs|
2 − 1

4
× (α+ β)ϑmin

(k(αna + β(na − 1)))
k

k+1

> k (αna)
1

k+1 θna
max,

which implies that ∆ < 0. Therefore, π′ is a better schedule than π, as required. �

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 331

Lemma 3.6. For the problem 1|covx, rej,B|
na∑
j=1

(αD[j]+βH[j]+δ[j]v[j])+
∑m
i=1 γiui+

∑
j∈A

ej, an optimal schedule

exists in which the jobs in any two consecutive batches Bs and Bs+1 satisfy ϑi ≤ ϑj if Ji is in Bs and Jj is
in Bs+1.

Proof. Because of Lemma 3.2, the condition of Lemma 3.6 holds for an optimal schedule if and only if ϑi ≤ ϑj ,
where Ji is the first job in Bs and Jj is the last job in Bs+1. Now suppose that there exists an optimal schedule
π = (S,A) with na accepted jobs and two consecutive batches Bs and Bs+1 in which ϑi > ϑj , where Ji is the
first job in Bs and Jj is the last job in Bs+1. Consider a new schedule π′ = (S′, A) constructed by swapping
jobs Ji and Jj without changing the setup and job processing times. By equation (3.4), the difference between
the objective values of schedules π′ and π is

∆ = −k(α(na − ls−1))
1

k+1 (ϑi − ϑj) + k(α(na − ls) + β(|Bs+1| − 1))
1

k+1 (ϑi − ϑj)

= k

(
(α(na − ls) + β(|Bs+1| − 1))

1
k+1 − (α(na − ls−1))

1
k+1

)
(ϑi − ϑj)

= k

(
(β(na − ls−1)− α|Bs|+ β(|Bs+1| − 1))

1
k+1 − (α(na − ls−1))

1
k+1

)
(ϑi − ϑj),

which is negative because α ≥ β, |Bs| > |Bs+1| − 1, and ϑi > ϑj , implying that schedule π′ is at least as good
as π. Repeating this modifying argument for all the accepted jobs not sequenced in the specified order yields
the result. �

In what follows, let (i, j, x, y, r)na
, Fna

(i, j, x, y, r), φna
(i, j, x, y, r), and ψna

(i, j, x, y, r) be defined the same
as in Section 2, and suppose that the jobs are indexed in a nondecreasing order of ϑj . Based on the results
developed above, a recursion relation is next provided that can be exploited to design a polynomial-time dynamic

programming solution algorithm with a modification of Algorithm 1 for the problem 1|covx, rej,B|
na∑
j=1

(αD[j] +

βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej as follows:

Algorithm 2.

Denote B̃na =

⌊√
4(1+k)(αna+β(na−1))

k
k+1 (αna)

1
k+1 θna

max

(α+β)ϑmin
+ 1

⌋
for na = 0, 1, . . . , n, and calculate k and ϑj

according to equations (3.5) and (3.7) for j = 1, . . . , n. Re-number the jobs such that ϑ1 ≤ ϑ2 ≤ . . . ≤ ϑn.

(1) Initial conditions
(a) If (na, i, j, x, y, r) does not satisfy 0 ≤ na ≤ n, 1 ≤ i ≤ n, 0 ≤ j ≤ min{i, na}, r = j = 0 or 1 ≤ r ≤ j,

0 ≤ x ≤ min{na, B̃na}, and 0 ≤ y ≤ min{j, x}, then

Fna(i, j, x, y, r) = +∞, φna(i, j, x, y, r) = ∅, ψna(i, j, x, y, r) = ∅.

(b) If x = r = 0 and na ≥ 0, then

Fna
(1, 0, 0, 0, 0) = e1,

φna(1, 0, 0, 0, 0) = φ, ψna(1, 0, 0, 0, 0) = 0.

(c) If 1 ≤ x ≤ min{na, B̃na} and na ≥ 1, then

Fna
(1, 1, x, 1, 1) = k

(
θ1(αna)

1
k+1 + ϑ1(αna + β(x− 1))

1
k+1

)
,

φna(1, 1, x, 1, 1) = x, ψna(1, 1, x, 1, 1) = 1.

332 W. HUANG ET AL.

(2) Recursive relations

For 0 ≤ na ≤ n, 2 ≤ i ≤ n, 0 ≤ j ≤ min{i, na}, r = j = 0 or 1 ≤ r ≤ j, and 0 ≤ x ≤ min{na, B̃na
}:

(a) For 2 ≤ y ≤ min{j, x}:

Fna(i, j, x, y, r) = min


Fna(i− 1, j, x, y, r) + ei, (≡ X)

Fna
(i− 1, j − 1, x, y − 1, r)

+kϑi (α(na − j + y) + β(x− y))
1

k+1 , (≡ Y)

φna
(i, j, x, y, r) =

{
φ, if Fna

(i, j, x, y, r) = X,

j + x− 2y + 1, if Fna(i, j, x, y, r) = Y,

ψna
(i, j, x, y, r) = 0.

(b) For y = 1:

Fna
(i, j, x, 1, r) = min



Fna
(i− 1, j, x, y, r) + ei, (≡ U)

minz≥x{Fna
(i− 1, j − 1, z, z, r − 1)}

+k
(
θr (α(na − j + 1))

1
k+1

+ϑi

(
α(na − j + 1) + β(x− 1)

) 1
k+1

)
, (≡ V)

φna(i, j, x, 1, r) =

{
φ, if Fna

(i, j, x, 1, r) = U,

j + x− 1, if Fna(i, j, x, 1, r) = V,

ψna
(i, j, x, 1, r) =

{
0, if Fna(i, j, x, 1, r) = U,

1, if Fna
(i, j, x, 1, r) = V.

(3) The optimal solution value is F ∗ = min{Fna
(n, na, x, x, r)|0 ≤ na ≤ n, 0 ≤ x ≤ min{na, B̃na

}, r = na =
0 or 1 ≤ r ≤ na}.

Let n∗a, x∗, and r∗ be the corresponding values. The optimal sequence can be obtained by recursively searching
the position functions φn∗

a
(i, j, x, y, r) beginning with φn∗

a
(n, n∗a, x

∗, x∗, r∗). The optimal batch delivery date
of each job can be determined from the batch indicator functions ψn∗

a
(i, j, x, y, r) and the optimal resource

allocation (u∗,v∗) can be calculated by equations (3.2) and (3.3).

Theorem 3.7. The problem 1|covx, rej,B|
na∑
j=1

(αD[j] + βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej can be solved in

O(n6) time by Algorithm 2.

Proof. The proof is similar to that of Theorem 2.5. �

Note that for the case where θi = θ for i = 1, . . . ,m, which implies that the setup is a constant, one can drop
the decision variable r in Algorithm 2 and obtain the following result.

Theorem 3.8. The problem 1|covx, rej,B|
na∑
j=1

(αD[j] + βH[j] + δ[j]v[j]) +
∑m
i=1 γiui +

∑
j∈A

ej can be solved in

O(n5) time in the case with a common setup time.

SINGLE-MACHINE BATCH SCHEDULING PROBLEM 333

4. Conclusions

This paper considers single-machine batch scheduling with job reject penalty, batch availability, and batch-
dependent setup times, under the assumption that both the setup and job processing times are convex decreasing
functions of the amounts of a resource allocated to the operations. This paper aims to solve this more realistic and

complex scheduling model. Specially, it is shown that both the problems 1|rej,B|
na∑
j=1

(αD[j]+βH[j])+
∑
j∈A

ej and

1|covx, rej,B|
na∑
j=1

(αD[j] +βH[j] +δ[j]v[j])+
∑m
i=1 γiui+

∑
j∈A

ej can be solved in O(n6) by dynamic programming

algorithms. It is also shown that the case of both problems with a common setup time can be solved in O(n5)
time.

Several important issues are interesting for future research.

• Ascertaining the computational complexity status of the case of the problem where α < β since in this case
Lemmas 2.3 and 3.6 may not hold;

• Investigating the case that the processing times (setup times) can not be less than a minimum duration;
• Extending our model to consider the linear resource consumption functions;
• Extending our model to different machine environments (e.g., flowshop).

Acknowledgements. We are grateful to the Editor-in-Chief and two anonymous referees for their many helpful comments
on earlier versions of our paper. This work was supported in part by the Ministry of Science Technology (MOST) of
Taiwan under grant numbers MOST 105-2221-E-035-053-MY3 and MOST 103-2410-H-035-022-MY2.

References

[1] A. Allahverdi, J.N.D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations. Omega 27
(1999) 219–239.

[2] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall and L. Stougie, Multiprocessor scheduling with rejection. in: Seventh
ACM-SIAM Symp. Discrete Algorithms (2000) 95–103.

[3] T.C.E. Cheng and M.Y. Kovalyov, Single machine batch scheduling with deadlines and resource dependent processing times.
Oper. Res. Lett. 17 (1995) 243–249.

[4] T.C.E. Cheng, A. Janiak and M.Y. Kovalyov, Single machine batch scheduling with resource dependent setup and processing
times.Eur. J. Oper. Res. 135 (2001) 177–183.

[5] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge University Press, Cambridge (1934).

[6] C.L. Monma, A. Schrijver, M.J. Todd and V.K. Wei, Convex resource allocation problems on directed acyclic graphs: Duality,
complexity, special cases and extensions. Math. Oper. Res. 15 (1990) 736–748.

[7] G. Mosheiov and D. Oron, Single machine scheduling with batch-dependent setup times. Inf. Proc. Lett. 98 (2006) 73–78.

[8] E. Nowicki and S. Zdrzalka, A survey of results for sequencing problems with controllable processing times. Discrete Appl.
Math. 26 (1990) 271–287.

[9] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: A review. Eur. J. Oper. Res. 120 (2000) 228–249.

[10] C.N. Potts and L.N. Van Wassenhove, Integrating scheduling with batching and lot-sizing: a review of algorithms and com-
plexity. J. Oper. Res. Soc. 46 (1991) 395–406.

[11] D. Shabtay, The single machine serial batch scheduling problem with rejection to minimize total completion time and total
rejection cost. Eur. J. Oper. Res. 233 (2014) 64–74.

[12] D. Shabtay, N. Gaspar and L. Yedidsion, A bicriteria approach to scheduling a single machine with job rejection and positional
penalties. J. Comb. Optim. 23 (2012) 395–424.

[13] D. Shabtay and G. Steiner, A survey of scheduling with controllable processing times. Discrete Appl. Math. 155 (2007a)
1643–1666.

[14] D. Shabtay and G. Steiner, Single machine batch scheduling to minimize total completion time and resource consumption
costs. J. Scheduling 10 (2007b) 255–261.

[15] R.G. Vickson, Two single-machine sequencing problems involving controllable job processing times. AIIE transactions 12
(1980a) 258–262.

[16] R.G. Vickson, Choosing the job sequence and processing times to minimize total processing plus flow cost on a single machine.
Oper. Res. 29 (1980b) 1155–1167.

334 W. HUANG ET AL.

[17] Y. Yin, T.C.E. Cheng, C.-J. Hsu and C.-C. Wu, Single-machine batch delivery scheduling with an assignable common due
window. Omega 41 (2013b) 216–225.

[18] Y. Yin, T.C.E. Cheng, D, Wang and C.-C. Wu, Improved algorithms for single-machine serial-batch scheduling with rejection
to minimize total completion time and total tejection cost. IEEE Trans. Syst. Man Cybernetics-Systems 46 (2016) 1578–1588.

[19] Y. Yin, S.-R. Cheng, C.-C. Wu and S.-R. Cheng, Single-machine common due-date scheduling with batch delivery costs and
resource-dependent processing times. Int. J. Production Res. 51 (2013a) 5083–5099.

[20] Y. Yin, D. Ye, and G. Zhang, Single machine batch scheduling to minimize the sum of total flow time and batch delivery cost
with an unavailability interval. Information Sci. 274 (2014) 310–322.

	Introduction
	Problem definition
	Relevant previous work

	Optimal solution for the case with fixed setup and processing times
	Optimal solution for the case with convex resource consumption functions
	Conclusions
	References

