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HYBRID IMPROVED CUCKOO SEARCH ALGORITHM AND

GENETIC ALGORITHM FOR SOLVING MARKOV-MODULATED

DEMAND

Gholamreza Jamali1, Shib Sankar Sana2,* and Reza Moghdani3

Abstract. One of the fundamental problems in supply chain management is to design the effective
inventory control policies for models with stochastic demands because efficient inventory manage-
ment can both maintain a high customers’ service level and reduce unnecessary over and under-stock
expenses which are significant key factors of profit or loss of an organization. In this study, a new
formulation of an inventory system is analyzed under discrete Markov-modulated demand. We employ
simulation-based optimization that combines simulated annealing pattern search and ranking selection
(SAPS&RS) methods to approximate near-optimal solutions of this problem. After determining the
values of demand, we employ novel approach to achieve minimum cost of total SCM (Supply Chain
Management) network. In our proposed approach, hybrid improved cuckoo search algorithm (ICS)
and genetic algorithm (GA) are presented as main platform to solve this problem. The computational
results demonstrate the effectiveness and applicability of the proposed approach.
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1. Introduction

The problem of production-inventory planning is one of the important issues of Operations Research and
Management Science problems that have received a considerable amount of attention of industrial engineers,
practitioners, managers as well as the business researchers. In fact, supply chain management has been noticed
as an approach to enhance the efficiency of the material and information flows among different organizations
[41, 42]. Consequently, complexity of managing and handling the networks is increasing exponentially over time
and many inventory control models are appeared to cope with various aspects. Generally speaking, there are two
models in inventory control problem. Firstly, according to the work of Sethi and Thompson [60], it is assumed in
a deterministic inventory system that the values of the state variables can be measured and are unchanged over
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time. Quite often, the value of a state variable can be directly measured but clear or fixed determination of states
may not occur in practice. As a matter of fact, the stochastic statement of the production planning and inventory
control model is more realistic than deterministic statement. On the other hand, in the stochastic optimal control
theory, the condition of the system is described and supervised by stochastic processes. Therefore, the concept
of time is closely involved in the state of the system and it is delineated as a stochastic differential equation [3].
Also, it is stated in the model of Diaz et al. [20] that managers widely employ supply chain management tools
to manage resources successfully and product in order to gain maximum supply chain surpluses and minimize
the risks involved in the systems. Therefore, it is a fundamental problem of SCM to design inventory control
policies in which stochastic demands [30] should be considered. It seems that stochastic control problem is a
fairly simple concept of prompting a stochastic process in one or more aspects.

The present paper focuses on the classical stochastic inventory control problem with uncertain demands.
Hence, we consider a new approach based on Cuckoo search and Monte Carlo simulation to analyze inven-
tory control problem because we focus on the classes of costs those are considered as main parameters of
current expenses in this area. In the framework of this study, stochastic optimal control is well suited for
addressing many general problems including inventory control problems. This is becoming an essential atten-
tion of mangers to consider dynamic and stochastic forecasting of the parameters involved in the problems.
So, turbulences in markets eventually lead to demand uncertainties which have a substantial impact on perfor-
mance of SCM. In this context, firms focus on their ability to control costs and make profits. These demand
uncertainties may have influence in some situations, and it would be more realistic than simple determinis-
tic analysis. As long as uncertain demands continuously change over time, plan of supply chain of assets or
commodities frequently reveals high degrees of severity. So, one of the main challenging issues in fluctuating
demand is to find out the optimal solutions or strategies of the given problem. The evolutions in many dif-
ferent aspects in this context are to be considered and it is highly useful to have a substantial framework for
future study. The proposed model presents a hybrid algorithm to solve the problem. To be more meticulous,
we just develop a model based on stochastic demand of the customers. Furthermore, we consider the situations
in practice where the customer demand is stochastic and the on hand inventories of parts or finished-goods are
uncertain. However, a hybrid algorithm consists of a cuckoo search algorithm for inventory control optimiza-
tion and a method to evaluate different solutions in the evolution optimization process are presented in this
article.

The rest of this paper is organized as follows. In Section 2, a brief literature review of Markov-modulated
demand and stochastic inventory model is presented. The problem formulation comes in Section 3 after defining
the parameters and the variables. In Section 4, a hybrid algorithm is proposed to solve and analyze the problem.
The solution method is investigated in Section 5 by a numerical example. Finally, the conclusion is made in
Section 6.

2. Literature review

The correlated demand has been modeled in different stochastic models, and it has been considered as
one of the main issue in supply chain management. A multiproduct monopoly business faces several demand
classes with random and correlated demands. Several authors study similar systems and derived heuristics
and mathematical model to solve this class of problems. Diaz and Ezell [19] employ auto-regressive (AR) to
describe auto-correlated demand in a lost sale stochastic inventory model. Diaz and Bailey [18] consider auto-
correlated demands in stochastic inventory models involving lost sale. Zhang et al. [66] develop a model to
make it more relevant to trading with the inventory replenishment problem for multiple associated products.
They consider the replenishment problem with complete backordering and correlated demand and hence a
simulation based optimization approach is used to solve this complex problem. Shaikh et al. [57] proposed
an inventory model with backlogging for deteriorating items with interval-valued inventory costs and stock-
dependent demand under inflationary conditions. Recently, Diaz et al. [20] describe an inventory system in
which condition to correlated demand is frequently determined in competitive markets where the control review
system is periodic. In their study, the demand for products is considered as a discrete Markov-modulated
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demand where a probability distribution is used in order to determine product quantities of the same items.
According to the model of Hausman and Erkip [28], cross correlated demands are two types of dependent
components those are recognized in some consumers’ demands. Markov-modulated structures are studied by
several authors with different characteristics of different demand classes. Some of those relevant studies are
being mentioned here. For instance, Cheng and Sethi [15] investigate optimality of state-dependent policies
in lost sales inventory models whose demand is represented by Markov-modulated demand. Another one is
Cheng and Song [14] who analyze a multistage serial inventory system subject to a Markov-modulated demand.
Presman and Sethi [45] discuss a stochastic continuous review inventory model where the demand process
is made up of a continuous part and a compound Poisson process. They show that the (s: minimum stock
level, S: maximum stock level) newsvendor policy is optimal by using an appropriate potential function. This
function is then shown to satisfy the dynamic programming associated with the problem. Muharremoglu and
Tsitsiklis [37] focus on Markov modulated demand and Markov modulated stochastic lead times, and demon-
strate that state dependent echelon base stock policies in capacitated serial inventory systems are optimal.
Also, Benkherouf and Johnson [6] examine the stochastic continuous review inventory model for single item
with a fixed ordering cost where the demand is driven by a special type of a piecewise Markov determinis-
tic process. Alshamrani [3] consider a stochastic optimal control of an inventory model with a deterministic
rate of deteriorating items. He presents an inventory model using perturbation by a Wiener process and he
also uses Hamilton–Jacobi–Bellman principle to solve a nonlinear partial differential equation (PDE). Betts
[8] develops a hybrid simulation model to minimize cost target level for a single item, single-stage production-
inventory system in which an analytical approximation of the inventory is derived and the short fall distribution
is used to calculate demands via simulation. The author emphasizes on optimal policy which is an eche-
lon base-stock policy with state dependent order-up-to levels and suggests some algorithms to determine
the optimal levels of stocks. In stochastic inventory literature, the works of DasRoy et al. [17], Pal et al.
[39, 40], Roy et al. [48]. Sana [49–52], Sana et al. [53] and Sarkar et al. [54–56] should be mentioned among
others.

On the other hand, mathematical programming especially Mixed Integer Linear Programming (MILP) has
become one of the most widely explored methods for process scheduling problems because of its rigorousness,
flexibility and extensive modeling capability. Fleischmann et al. [24] consider the integration of forward and
reverse distribution, and suggest a generic integer programming formulation. Schultmann et al. [59] develop a
hybrid method to establish a closed-loop supply chain for spent batteries. Their model includes a two stage
facility location optimization problem in order to minimize total cost of the system. The authors implement
the model in GAMS and solve it using a branch-and-bound algorithm. Similarly, Beamon and Fernandes [5]
focus on closed loop supply chain and address a network model where the plants produce new products and
remanufacture the used products. A multi-period integer programming model is introduced to determine what
warehouses and collection centers should be opened, and what should have the sorting capabilities and how
much would be shipped among the sites. Min et al. [36] present a nonlinear integer program to solve the multi-
echelon, multi commodity closed loop network design problem involving product returns. However, their models
do not consider temporal consolidation issues in a multiple planning horizon. Kannan et al. [32] develop a
multi echelon, multi period, multi-product closed loop supply chain network model for product return and the
decisions are made regarding all items in the network such as material procurement, production, distribution,
recycling and disposal. They suggest a heuristic based genetic algorithm (GA) in order to solve mixed integer
linear programming model. Eventually, these results achieved by GA are compared with the solutions achieved
through GAMS optimization software. The solution shows that the developed methodology executes excellently
in connection with running time and quality of solutions.

Our proposed model considers a stochastic demand in which fixed and variable cost networks, shortage
costs are changing over time and it is stated that the cost of inventories is dependent on time periods. The
objective cost function is minimized based on a novel heuristic approach called Cuckoo Search Algorithm (CS).
Furthermore, the main effects and sensitive analyses of parameters of this model are investigated. In this work,
like the model of Bertazzi et al. [7], the stochastic inventory problem involves a single-item whose replenishment
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takes place over the next business day and not as a perpetual inventory review policy. The contribution of the
existing literature is given in Table 1 as follows:

Table 1. Contribution of previous literature.

Authors’ names Optimization techniques Field of application

Abdulrani et al. [1] Cuckoo search algorithm Side lobe uppression in antenna
array

Abu-Srhan and Daoud [2] Hybrid algorithm Travelling salesman problem
Alshamrani [3] Hamilton–Jacobi–Bellman

principle
Inventory model

Asadzadeh [4] Genetic algorithm Job shop scheduling
Beamon and Fernandes [5] A sensitivity analysis Closed loop supply chain
Benkherouf and Johnson [6] Quasi-variational

inequalities (QVI)
Inventory model

Bertazzi et al. [7] Matheuristic approach,
stochastic dynamic
programming

Inventory Routing Problem,
transportation services

Betts [8] Hybrid simulation model Inventory, constrained
production

Bhandari et al. [9] Cuckoo search algorithm,
wind driven
optimization

Satellite image segmentation

Cárdenas-Barrón [10] Adaptive genetic algorithm Lotsizing problem
Cárdenas-Barrón and
Taleizadeh [11]

Hybrid metaheuristics
algorithms

Inventory management

Cárdenas-Barrón et al. [12] Calculus technique Replenishment lot size problem,
rework, EPQ

Çelebi [13] Genetic algorithm Inventory control
Chen and Song [14] Markov-modulated Inventory models
Cheng and Sethi [15] Markov-modulated Inventory models
Civiciolu [16] Backtracking Search

Optimization
Numerical optimization

DasRoy et al. [17] Calculus technique Production, inventory, rework,
stochastic demand

Diaz and Bailey [18] Simulated annealing Inventory models
Diaz and Ezell [19] Auto-regressive (AR) Inventory model
Diaz et al. [20] Simulated annealing,

pattern search (PS) &
ranking and selection (RS)

Periodic stochastic inventory

Dorigo et al. [21] Ant colony optimization Traveling salesman problem
Fan and Liang [22] Hybrid of GA and PSO Nelder-Mead simplex search
Fan and Zahara [23] Hybrid simplex search and PSO Unconstrained optimization
Fleischmann et al. [24] Hybrid method Closed-loop supply
Formato [5] Metaheuristic Applied electromagnetics
Gandomi and Alavi [26] Krill herd Area of optimization
Geem et al. [27] Harmony search Traveling salesman problem
Hausman and Erkip [28] Markov-modulated Multi-echelon inventory systems
He et al. [29] Group search optimizer

inspired by animal
behavior

Train artificial neural networks

(continued...)
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Table 1. Continued.

Authors’ names Optimization techniques Field of application

Hurley et al. [30] Heuristics Stochastic Inventory Control
Models

Husseinzadeh [31] Optics inspired optimization Engineering design application
Kannan et al. [32] Genetic algorithm (GA) Closed loop supply chain model
Kennedy and Eberhard [33] Particle Swarm

Optimization (PSO)
Social behavior

Kuo and Han [34] Hybridization of GA and PSO Supply chain model
Mantegna [35] Mantegna’s algorithm Levy stable stochastic processes
Min et al. [36] A Lagrangian relaxation

heuristic
Multi-echelon, multi commodity
closed loop network

Muharremoglu and Tsitsiklis [37] Markov modulated Multi-echelon Inventory Systems
Natarajan et al. [38] Cuckoo search Spam filtering
Pal et al. [39] Calculus technique Stochastic demand, product

recovery, inventory
Pal et al. [40] Calculus technique Newsvender inventory,

distribution-free case
Panda [41] Calculus technique Coordination of two-echelon

supply chains
Panda [42] Calculus technique Coordination of a socially

responsible supply chain
Passino [43] Bacterial foraging Distributed optimization

and control
Pfeifera et al. [44] Genetic algorithm Quantifying the risk of project

delays
Presman and Sethi [45] Calculus technique Inventory model
Rao and NareshBabu [46] Cuckoo search Optimal power flow
Rinott [47] Derivation of inequalities Probability of correct selection
Roy et al. [48] Calculus technique Uncertain demand, three-layer

supply chain
Sana [49, 50] Calculus technique EOQ, random sales price,

stochastic demand
Sana [51] Calculus technique EOQ, stochastic demand, own

and rented warehouse
Sana [52] Calculus technique Sales teams’ initiative, stochastic

demand, reorder point,
production lotsize, two-stage
supply chain

Sana et al. [53] Bi-level programming,
Shapley value model

Supply chain of COCOA

Sarkar et al. [54] Calculus technique EPQ, stochastic demand, imper-
fect production

Sarkar et al. [55] Calculus technique Distribution free case, continu-
ous review inventory, service level
constaints

Sarkar et al. [56] Calculus technique Distribution free case, consign-
ment policy, retailer’s royalty
reduction

Shaikh et al. [57] PSO Two-warehouse inventory model
Santosa et al. [58] GA Multi-product inventory

(continued...)
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Table 1. Continued.

Authors’ names Optimization techniques Field of application

Schultmann et al. [59] Hybrid method Closed-loop supply chain
Sethi and Thompson [60] Optimal control theory Management and economic

modelling
Simon [61] Biogeography-based

optimization (BBO)
Optimization problems

Tofighi et al. [62] Humanitarian logistics network Mixed uncertainty problem
Tsoukalas and Fragiadakis [63] Multivariable linear

regression, genetic algorithm
Prediction of occupational risk

Valian et al. [64] Improved cuckoo search Neural network training
Yang and Deb [65] Cuckoo search, Levy

flights stochastic
process

Optimization problems

Zhang et al. [66] A heuristic approach Joint replenishment
problem (JRP)

Our present article Hybrid improved cuckoo
search algorithm
and genetic algorithm

Stochastic inventory problem

3. Model definition

The proposed model has four stages presented in Figure 1. In this model, uncertain demands are converted to
deterministic values via SAPSR&S method. Main mathematical model of this study is defined in deterministic
mode (vide Sect. 3.2) so that an optimal solution would be obtained from deterministic model by applying
metaheuristic approaches. In the following subsections, main stages of this conceptual model are defined as
follows (Fig. 1).

Stochastic and uncertain demands

Use SAPSR&S approach to gain

deterministic value from stochastic value

Input deterministic value in deterministic

model

Apply meta heuristics approaches to gain

optimal soloution

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1. Conceptual model of this study.

3.1. Discrete Markov chain Monte Carlo procedure

There are many Markov Chain Monte Carlo procedures in the literature. We perform a simulation based
optimization that combines simulated annealing (SA), pattern search (PS), and ranking and selection (R&S)
that is proposed in the work. Therefore, we focus on discrete Markov Chain Monte Carlo with four main steps.
In this procedure, correlated demands are given via probability distribution pij , i.e., probability mass function.
Firstly, the heuristics for the Discrete Markov Chain Monte Carlo procedure is introduced as follows. Here, we
consider the following parameters to develop the model.
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i Iteration
r Period of planned horizon
xi Accepted state (accepted candidate solution)
y Nominated state (proposed candidate solution)
H(xi) Objective cost function evaluating state xi
T Temperature
α Acceptance function
χ Decision space
χmin A small region in decision spacefor objective function value,
r1 Maximum temperature
lk Stage length kth stage
Z Accepted candidate solution for specific xi value
δ Step length
h A constant that depends on the number of alternatives
A Number of alternatives
pij Transition probability
1− θ Desired confidence level
n0 Initial number of replications
Ni Additional replications
s2i Sample variance of the n0 observations
d∗ Significant difference specified by the user
IZ Indifference zone

Various steps involved in the proposed SAPSR&S heuristics are outlined as follows:
(A) i = 1 and k = 1

(B) Assign an initial state x0, and f̂min = f(x0)
(C) Repeat:
SA:
1. while k ≤ r:
2. while i ≤ lk:
3. Randomly sample y from the given distribution
4. Randomly sample U from U(0, 1)

5. ifU ≤ min

{
1, e

[f(y)−f(xi−1)]
τk

}
, xi = y

PS:
6. Deterministically generate n additional neighbors (test points) to x using step length δ

7. Simulate and obtainf̂(y) per potential neighbor

R&S:
8. Select y such that the performance of y is no more than 5% greater than the performance ofx
9. Determine the sample variance s2i of the n0 observations
10. Check the number of observations n0 to be independent and normally distributed.
11. Determine additional replications Ni per test point.
12. Execute additional replications per each competing alternative
13. Select the best y

14. if f̂min > f (xi) , f̂min =, Z = H (xi)
15. i = i+ 1,
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16. k = k + 1,
17. τk = ατk−1, until termination criteria is satisfied or k > r
(D) (Hmin, Z) is the estimated solution, where Hmin is the minimum cost value and Z

is the candidate solution.

We use number of additional replications Ni that is calculated based on formula developed by Rinott [47] as
follows:

Ni = max

{
n0 + 1,

[(
h

d∗

)2

S2
i

]}
(3.1)

According to main constraints coming from the model shown in subsection 3.2, an initial candidate solution is
created. Then, Discrete Markov Chain Monte Carlo procedure is performed to generate demands. In order to
evaluate total cost, the following procedure is applied accordingly. First of all, a random number between 0 and
1 obtained from uniform distribution is created to estimate the probabilistic displacement. The procedure will
perform local neighborhood systemically for a candidate solution that is accepted and new pair of solutions is
generated. Each pair is selected if their costs are no more than 5% greater than the original. In such iteration,
solutions whose costs are above the original, the original policy is accepted. Besides it, each new policy is
accepted by additional replications. Summarily, new replications are performed for each pair that report lower
costs. If original costs are above the acquired costs then reported lower cost policy is selected, otherwise original
policy is accepted. This process is continued until stop criteria is achieved.

3.2. Formulation of the problem

In this subsection, first the fundamental assumptions of the problem are reviewed. Then, the list of input
parameters and decision variables are introduced. Finally, the mathematical formulation is constructed in a step
by step manner. The most important assumptions and input parameters and variables of the problem are as
follows:

– shortage is allowed. Consequently, the cost of shortage is applied;
– the model is considered for finite time horizon;
– there is just one product;
– cost parameters are some non-stochastic deterministic values;
– the period demand of the customer is stochastic and uncertain;
– the time taken for transporting the product between the levels is homogeneous and not taken into

consideration.

Indices:
i Index for suppliers; i ∈ I
j Index for retailers; j ∈ J
k Index for customers; k ∈ K
t Index for time periods; t ∈ T

Input parameters:
aijt Fixed cost of sending goods from supplier i to retailer j at time t.
bijt Variable cost of sending one goods from supplier i to retailer j at time t.
fjkt Fixed cost of sending goods from retailer j to customer k at time t.
gjkt Variable cost of sending one goods from retailer j to customer k at time t.
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hjt Fixed cost of inventory level of retailer j at time t.
chjt Variable cost of inventory level of retailer j at time t.
csjt Cost of stock-out of retailer j at time t per finished-goods.
Dkt Stochastic demand of customer k at time t.
Uj Maximum inventory level of retailer j.
Cijt transportation procurement capacity of sending goods from supplier i to retailer j

at time t.

Decision variables:
γijt A binary variable equal to 1 if the quantity of sending goods from supplier i to

retailer j
at time t is greater than zero, otherwise 0.

δjkt A binary variable equal to 1 if the quantity of sending goods from retailer j to
customer k
at time t is greater than zero, otherwise 0.

αjt A binary variable equal to 1 if the quantity of inventory level of retailer j at time t
is greater than zero, otherwise 0.

βjt A binary variable equal to 1 if the level of stock-out of retailer j at time t is greater
than zero,
otherwise 0.

sijt A non-negative variable representing the quantity sent from supplier i to retailer j
at time t.

rjkt A non-negative variable representing the quantity sent from retailer j to customer
k at time t.

Íjt A non-negative variable representing the quantity level of retailer j at time t.
yjt A non-negative variable representing the shortage level of retailer j at time t.

We provide the mathematical formulation of the periodic-review deterministic inventory problem and explain
some of the notation used throughout the paper. Each retailer j ∈ J defines a maximum inventory level Uj and

has a given starting inventory level Íjt ≤ Uj , where Íjt and Uj are integer values and inventory level at each
period t would not greater than Uj . Each retailer j has to satisfy the demand of customer k at time t, rjkt is
defined on the basis of a stationary random variable Dkt. The probability distribution of Dkt is discrete and
obtained from Discrete Markov Chain Monte Carlo procedure described in previous section. If j is visited at
time t, then the quantity shipped to j at time t is such that the inventory level of j reaches its maximum value
Uj . When the level of the inventory is negative, the excess demand is not backlogged. In this situation, the
initial inventory level at the successive time period is set equal to zero. The inventory level of the supplier at
time t is equal to the inventory level at time (t− 1) plus the total quantity sent to retailer j from all suppliers at
time (t− 1) and minus the quantity shipped to the all customers from retailer j at time (t− 1). So, the level of
the inventory is given by minimum between Íjt−1 +

∑
i∈I (sijt−1)γijt−1 −

∑
k∈K (rjkt−1)δjkt−1 and maximum

inventory level (Uj). Also, it is assumed that the inventory level at time t cannot be negative. Consequently,
according to previous explanation, inventory level of retailer j at time t is formulated as follows:

Íjt = max

(
0,min

(
Uj , Íjt−1 +

∑
i∈I

(sijt−1)γijt−1 −
∑
k∈K

(rjkt−1)δjkt−1

))
, j ∈ J, t ∈ T (3.2)

For each time t ∈ T , the inventory level Íjt cannot be negative. If the inventory level of retailer j at time t
is positive, fixed cost (hjt) is charged and variable cost (chjt) is calculated per goods. While total demands of
customers are not satisfied, a penalty is charged if it is negative and it is calculated based on Cost of stock-out
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of retailer. The supplier has an initial integer inventory level Íjt.The problem is to determine, for each time
period t ∈ T , the subset of retailers to serve in order to minimize the sum of the expected inventory cost at
the retailers, penalty cost for stock-out at the retailers and transportation cost over the planning horizon. The
deterministic version of the problem can be formulated as follows:

MinTC = TU + TD + TI (3.3)

The total cost of the suppliers, including procurement and transportation costs for sending the goods to the
retailers, is

TU =
∑
i∈I

∑
j∈J

∑
t∈T

aijtγijt +
∑
i∈I

∑
j∈J

∑
t∈T

bijtsijt, (3.4)

The cost of the retailers including procurement and transportation costs for sending the goods to the customers
is

TD =
∑
j∈J

∑
k∈K

∑
t∈T

fjktδjkt +
∑
j∈J

∑
k∈K

∑
t∈T

gjktrjkt, (3.5)

The cost of holding inventory and shortages at the retailers is

TI =
∑
j∈J

∑
t∈T

hjtαjt +
∑
j∈J

∑
t∈T

Íjtchjt +
∑
j∈J

∑
t∈T

yjtcsjtβjt, (3.6)

The inventory level of jth retailer at time t is

Íjt = Max

(
0,min

(
Uj , Íjt−1 +

∑
i∈I

(sijt−1)γijt−1 −
∑
k∈K

(rjkt−1)δjkt−1

))
, j ∈ J, t ∈ T (3.7)

The difference of inventory and shortage levels of jth retailer at time t is

Íjt − yjt = Íjt−1 +
∑
i∈I

(sijt−1)γijt−1 −
∑
k∈K

(rjkt−1)δjkt−1, j ∈ J, t ∈ T (3.8)

The limitations of variables with parameters of the whole chain are as follows

Íjt ≤ Ujαjt, j ∈ J, t ∈ T (3.9)

yjt ≤ Ujβjt, j ∈ J, t ∈ T (3.10)

αjt + βjt ≤ 1, j ∈ J, t ∈ T (3.11)

sijt ≥ Ujγijt − Íjt, i ∈ I, j ∈ J, t ∈ T (3.12)

sijt ≤ Uj − Íjt, i ∈ I, j ∈ J, t ∈ T (3.13)

sijt ≤ Ujγijt, i ∈ I, j ∈ J, t ∈ T (3.14)

rjkt ≤ Ujδjkt, j ∈ J, k ∈ K, t ∈ T (3.15)

rjkt ≤ Íjt, j ∈ J , k ∈ K, t ∈ T (3.16)∑
i∈I

sijt ≤ Íjt, j ∈ J, t ∈ T (3.17)
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i∈I

sijt ≤ Cijt, j ∈ J, t ∈ T (3.18)

sijt ≥ 0, i ∈ I, j ∈ J, t ∈ T (3.19)

rjkt ≥ 0, j ∈ J, k ∈ K, t ∈ T (3.20)

γijt ∈ {0, 1} , i ∈ I, j ∈ J, t ∈ T (3.21)

δijt ∈ {0, 1} , i ∈ I, j ∈ J, t ∈ T (3.22)

αjkt ∈ {0, 1} , j ∈ J, k ∈ K, t ∈ T (3.23)

βjkt ∈ {0, 1} , j ∈ J, k ∈ K, t ∈ T (3.24)

The objective function (3.3) expresses the minimization of the total cost, given by the sum of three terms:
total upstream supply chain cost (3.4), total downstream supply chain cost (3.5), and total inventory cost
(3.6) include the inventory cost at the retailers and the penalty cost due to the stock-out at the retailers. As
we mentioned before, constraints (3.7) define the inventory level at the retailers. Constraints (3.8) define the
inventory and the stock-out level at the retailers. Constraints (3.9)–(3.11) ensure that, for each retailer j ∈ J
at each time period t ∈ T , either a positive inventory level αit not greater than the maximum inventory level
Uj is permitted or a stock-out quantity βit not greater than Uj is permitted. The constraints (3.12)–(3.14)
represent the order-up-to level constraints and guarantee that the quantity sijt shipped to each retailer j at

each time t ∈ T is either
(
Uj − Íjt

)
if i is served at time t, otherwise 0. As the demand is not backlogged, the

quantity
(
Uj − Íjt

)
always allows reaching the order-up-to level when the retailer is served. The constraints

(3.15) represent the level constraints and guarantee that the quantity rjkt shipped to each retailer j at each
time t ∈ T is either Ujδjkt if customer k is served by retailer j at time t, otherwise 0.The constrain (3.16) shows

that the quantity rjkt is less than equal to Íjt. Constraints (3.17) guarantee that the total quantity sent to the
retailers at each time t ∈ T is not greater than the quantity available at the supplier. Constraints (3.18) are the
transportation capacity constraints. Finally, constraints (3.19)–(3.24) define the decision variable of the system.

4. Improved cuckoo search genetic algorithm

In this section, all approaches used to analyze the proposed problem are described. Cuckoo Search (CS) algo-
rithm will be presented in the first subsection, then how CS algorithm performance can improve via successfully
manipulation is detailed. Finally, GA and Improved Cuckoo Search Genetic Algorithm (ICSGA) are cited at
the end of this section.

4.1. Cuckoo search algorithm

In recent years, in the literature, numerous works on this topic have been presented based on swarm algo-
rithms. These algorithms include the biological evolutionary processes, such as: genetic algorithm (GA) [10, 58],
Hybrid Metaheuristics Algorithms [11, 12], Particle Swarm Optimization Algorithm (PSO) [33] and Harmony
Search (HS) [27], Bacterial Foraging Optimization Algorithm (BFOA) [43], Artificial Bee Colony Algorithm
(ABC), Central Force Optimization Algorithm (CFO) [25], Group Search Optimizer (GSO) [29], Krill Herd
Algorithm (KH) [26], Optics Inspired Optimization (OIO) [31], Biogeography Based Optimization (BBO) [61],
Ant Colony Optimization (ACO) [21] and Backtracking Search Optimization (BSO) [16].

Cuckoo Search Algorithm (CS) has been introduced by Yang and Deb [65] based on the Lèıvy flight behavior
and brood parasitic behavior. In many scientific literatures, the CS algorithm has been elegantly demonstrated
to provide excellent performance in optimization: power flow [46], Symmetric Linear Antenna Array [1], Neural
Network Training [64], Image Segmentation [9] and other optimization [38]. The main idea of the algorithm is
based on breeding behavior such as brood parasitism of some species.
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Similar to other evolutionary methods, CS also starts with an initial population. New solutions x(t+1) are
generated for a cuckooi; a Lévy flight is performed using the following equation:

x
(t+1)
i = x

(t)
i + α

⊗
Lévy(λ) (4.1)

where α(α > 0) represents a step size. To determine step size, we should pay attention to the scales of problem.
The Lévy flight is a random walk with the random step size which follows the following Lévy distribution.

Lévy (λ) ∼ u = t−λ, (1 ≤ λ ≤ 3) (4.2)

There are a few ways for generation of steps of the Lévy flights, but one of the most efficient and yet straight
forward way is to use the so-called Mantegna [35] algorithm for a symmetric Lévy stable distribution. Here
‘symmetric’ means that the steps can be positive and negative. In an algorithm proposed by Mantegna [35], the
step lengths can be calculated by

S =
u

|v|1/β
(4.3)

where β(0 < β ≤ 2) is an index, and u and v are stochastic variables drawn from normal distributions as follows:

u ∼ N
(
0, σ2

u

)
, v ∼ N

(
0, σ2

v

)
, (4.4)

σu =

 Γ (1 + β) sinπβ2

Γ
(

1+β
2

)
β.2(β−1)/2

1/β

, σv = 1 (4.5)

Finally, Gamma function (Γ (x) ) is calculated by

Γ (x) =

∫ ∞
0

tz−1e−tdt (4.6)

Concisely, CS is a population based algorithm in which initial population is randomly generated within the
limits of the control parameter. Then, the Lévy flight operator is applied on all individuals until a stopping
criterion is reached.

4.2. Improved cuckoo search algorithm

Improved Cuckoo Search Algorithm is inspired in the work of Valian et al. [64]. There are two important
factors in cuckoo search. These parameters perform as fixed value in traditional version of cuckoo search and
are introduced in order to find globally and locally improved solutions. The first parameter is pa which is very
important to fine-tuning of solution vectors, and can be possibly used in fitting convergence rate of algorithm.
The second parameter, λ, is the step size related to the scales of problem. If these parameters are not tuned
well, the performance of the algorithm would be poor and may be gone to increase in number of iterations or
lost best solution.

In order to solve potential problem aroused from traditional version of algorithm, we perform Improved
Cuckoo Search which is focus on these parameters (pa and λ). The most significant difference between the ICS
and CS is in the way of tuning pa and λ . Fixed value parameters (pa and λ) of CS algorithm lead to drawbacks
in computing best solution. Therefore, to improve the performance of the CS algorithm and eliminate difficulties
related to tuning pa and λ, the ICS algorithm uses variables pa and λ. To achieve a better fine-tuning of solution
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Figure 2. Proposed approach flowchart.

vectors, the values of pa and λ should be dynamically changed with the number of iteration and decreased them
from high value to low value. Therefore, we use equations (4.7)–(4.9) as ICS operators, where NI and gn denote
the number of total iterations and the current iteration respectively [64].

Pa (gn) = Pamax
− gn

NI
(Pamax

− Pamin
) (4.7)

α (gn) = αmax exp (c.gn) (4.8)

c =
1

NI
ln

(
αmin

αmax

)
(4.9)

4.3. Genetic algorithm

The genetic algorithm (GA) is a stochastic global search technique that solves problems by imitating processes
observed during natural evolution [34]. The procedure of GA is a simulation following behavior of biological
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evolution. GA not only adopts the spirit of creature elimination rule but also finds the approximate optimal
solution after the process of coding, decoding and constant operation (reproduction, crossover and selection).
GA is performed in many applications by scholars like Humanitarian Logistics Network Design [62], Job Shop
Scheduling [4], Prediction [63], Inventory Control [13] and Risk of Project [44]. Crossover and mutation are
introduced as main GA operators. In the next subsection, we shall describe how to apply these operators in ICS
to achieve better performance.

4.4. Hybrid of ICS and GA

Due to each own merits in searching, there already have been many researches working on integrating meta-
heuristic algorithms. GA, known as most famous evolutionary algorithm, has been applied with other meta-
heuristics in order to improve solution procedure. Mostly, GA has been performed with PSO. For example, Fan
and Liang [22] integrate Nelder–Mead simplex search method (NM) with GA and PSO. Fan and Zahara [23]
introduce GA into calculation process of PSO and calculate its adaptive value, and compare the value with
single GA and PSO. Kuo and Han [34] extend an efficient method based on hybrid of GA and PSO. There
are many studies which introduce hybrid GA with other algorithms, but it is rarely considered hybrid of GA
with CS in the existing literature. Idea of hybrid GA with CS is developed by Abu-Srhan and Daoud [2]. Our
suggested algorithm in this study combines the advantages of GA and ICS and overcomes the main disadvantage
of GA easily becoming trapped in the local minima through the ICS. So, the main steps of proposed approach
are introduced as follows (see Fig. 2 above).

In order to demonstrate and evaluate the performance of the proposed hybrid intelligent algorithm and to
validate the results obtained from ICSGA; existing algorithms of CS, ICS and GA are employed as well.

5. Numerical test

In this section, we present some numerical examples to illustrate the effective range of analytical results of
previous section. We present the numerical solution of the stochastic inventory control and particular values
of the parameters. The specific input variables integrated in the simulation model are specified in Table 2. In
this table, three levels of input data of stochastic inventory model, the SAPSR&S algorithm and employed
algorithms with numeric information are processed and output data is generated.

This example is selected in a manner to demonstrate the capability of the proposed method. In addition, the
performances of the proposed methods (ICSGA) are compared with GA, CS and ICS. So, the following data
shown in Tables 3 and 4 and parameters are used to justify the stochastic inventory model.

– number of supplier of finished goods = 3;
– number of retailer = 2;
– number of customer = 4;
– number of time periods = 10;

The algorithms mentioned above are implemented in Mat lab 2014, Mac OS edition and run on a computer
whose processor is Intel Core i5 1.6 GHz, with 4GB main memory, 250GB hard disk. As we mentioned before
(Tab. 2) the performances of all methods have been compared, while the number of runs is set at 100 for all
methods. According to Figures 3–6, total cost (TC) value is obtained in each proposed method.

The levels of both inventories are illustrated in Figures 7–10 given by different algorithms. We conclude that
inventory levels given by the algorithms go to maximum level during time periods and total pattern of them
are not significantly different.

To determine objective of this study, we perform four algorithms. Figures 11–13 show the performance of
each algorithm based on different types of cost: total downstream supply chain cost (TD), total upstream
supply chain cost (TU), and total inventory cost (TI). In the convergence paths of TU and TI, GA has the
best performance than others, but in compare with ICSGA, this gap is not significantly promising. In other
hand, in the convergence paths of TD, GA has the worst performance, while ICS provides the best result.
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Table 2. Input type description.

(1) Inventory model (1.1) Demand distribution: discrete demand modeled as Markov Chain
(1.2) Costs:
(1.2.1) Fixed Costs
(1.2.2) Variable Costs
(1.2.3) Shortage
(1.3) Maximum inventory level allowed in the system(Uj=70)

(2) SAPSR&S algorithm (2.1) SA
(2.1.1) Maximum temperature (based in acceptance =98%)
(2.1.2) Temperature Gradient τk = 0.85τk−1
(2.1.3) Length of the stage (20,000 periods)
(2.1.4) Stopping criteria (combination of (s, S)±10%, average costs ±5%, and τi<
100 units)
(2.2) Pattern search
(2.2.1) Step Size δ± 15%
(2.2.2) Number of neighbors to explore per iteration = 11
(2.3) Ranking and selection
(2.3.1) Indifference zone value 5%
(2.3.2) h based on the indifference value and the number of neighbor to explore
3.619
(2.3.3) Initial number of replications n0= 2

(3) Employed algorithms
(CS, ICS, GA and ICSGA)

(3.1) Common parameters

(3.1.1) Number of population (nests) =40
(3.1.2) Number of Iterations =100
(3.2) CS, ICS and ICSGA
(3.2.1) β= 1.5
(3.2.1) α=1
(3.3) GA and ICSGA
(3.3.1) Crossover probability=0.7
(3.3.2) Mutation probability=0.03
(3.4) ICSGA and ICS
(3.4.1) Pamax

= 1
(3.4.2) Pamin

= 0
(3.5) CS
(3.5.1) Pa=0.3

Finally, according to Figures 3–6, proposed approach (ICSGA) achieves the best result and introduces as the
best algorithm in this study.

The corresponding solutions are tabulated in Table 5. It reveals that the result of using GA is not better
than the hybrid method in TC and TU. Among the other three methods, ICS has the smallest cost in TU.
Additionally, total rank is gained from total score computed by average rank of algorithm in different costs
(TU, TD, TI and TC). It is resulted that total score of ICSGA has minimum value, so it will be selected as the
best approach in this study. Regarding Table 5 and the converging paths shown in Figures 3–6, GA has better
performance than ICS and CS, so second place goes to this algorithm.
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Table 3. Fixed cost and variable costs of the model.

Fixed cost
fijt vjkt

j = 1 j = 2 k = 1 k = 2 k = 3 k = 4
i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

t = 2 31 27 26 38 21 33 31 33 29 21 23 28 29 39
t = 3 38 24 32 37 32 28 38 31 27 31 32 34 38 26
t = 4 34 28 25 25 29 37 25 35 36 31 25 34 28 34
t = 5 23 30 37 32 34 35 26 30 33 38 20 29 36 29
t = 6 27 22 40 20 34 40 22 40 36 30 35 20 28 37
t = 7 29 32 35 28 33 31 39 24 39 28 25 26 36 36
t = 8 40 24 27 26 20 26 33 22 40 34 29 28 35 23
t = 9 23 28 32 23 21 22 30 22 24 35 34 25 27 38
t = 10 37 32 22 23 26 32 33 21 22 30 27 24 24 40

Variable cost
aijt bjkt

j = 1 j = 2 k = 1 k = 2 k = 3 k = 4
i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

t = 1 5 5 8 6 7 7 5 2 2 9 7 2 6 9
t = 2 8 1 6 9 6 6 6 2 5 1 1 1 8 5
t = 3 6 2 9 5 3 9 1 1 8 1 8 9 4 7
t = 4 2 2 7 5 6 6 6 6 8 2 9 3 5 9
t = 5 2 7 6 8 1 1 4 3 3 2 9 3 1 3
t = 6 4 5 8 3 6 2 1 5 2 6 8 3 2 4
t = 7 7 2 8 5 6 8 5 7 6 6 8 5 6 5
t = 8 8 5 9 9 7 5 2 5 6 1 5 6 3 7
t = 9 8 2 1 6 9 8 2 5 4 9 2 1 9 8
t = 10 3 1 8 8 9 2 2 5 2 7 4 8 2 1

Table 4. Costs of retailers.

H co Cs
j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

t = 1 10 11 2 7 69 49
t = 2 14 11 8 6 68 61
t = 3 13 15 2 10 41 60
t = 4 12 10 2 7 62 56
t = 5 15 12 6 9 48 61
t = 6 13 11 2 6 53 60
t = 7 13 15 9 5 56 45
t = 8 15 14 9 9 69 43
t = 9 14 13 8 2 52 70
t = 10 13 12 3 3 70 45
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Figure 3. The convergence paths of TC given by CS.

Figure 4. The convergence paths of TC given by ICS.
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Figure 5. The convergence paths of TC given by GA.

Figure 6. The convergence paths of TC given by ICSGA.
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Figure 7. Inventory level given by CS.

Figure 8. Inventory level given by ICS.
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Figure 9. Inventory level given by GA.

Figure 10. Inventory level given by ICSGA.
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Figure 11. The convergence paths of TU based on algorithms.

Figure 12. The convergence paths of TD based on algorithms.
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Figure 13. The convergence paths of TI based on algorithms.

Table 5. Comparison of optimum values and ranks of cost functions by ICSGA, ICS, GA and
CS.

Algorithm TU TD TI TC Total score Total rank
Value Rank Value Rank Value Rank Value Rank

ICSGA 5938 2 5387 2 4775 2 16 100 1 1.750 1
ICS 5889 1 5585 4 4857 4 16 331 2 2.750 3
GA 6321 4 5378 1 4645 1 16 344 3 2.250 2
CS 6195 3 5417 3 4831 3 16 443 4 3.250 4

6. Conclusion

This study links between the model of stochastic and deterministic inventory control problem which is fairly
new. It is observed that proposed model has different view point from the original model. The proposed supply
chain model deals with downstream, upstream and inventory costs. Downstream cost is along with total cost
of sending finished-goods from focal company to the customer, and upstream cost is accompanied by all costs
related to receive finished-goods from suppliers to the focal companies’ inventories. In this model, SAPSR&S are
used to deal with stochastic demands. So, these models can help the practitioners of the industrial management
who face the uncertain demands that do not follow a probability distribution. Nature inspired meta-heuristic
approaches are proved to be dominant techniques to attract combinatorial optimization problems in generating
near optimal solutions. In this paper, ICSGA algorithm has been used to find near good quality solutions to
document stochastic inventory control problem and proposed approach is compared with the existing popular
techniques generated by CS, ICS and GA. It is observed that the performance of ICSGA algorithm is as good as
GA in some cases and generally better in most situations. We also have showed that the proposed model is more
suitable for the practical applications, especially in supply chain. Three hybrid methods through integrating ICS
and GA have been validated using a numerical example. The experimental results indicate that hybrid method
is better than using one algorithm alone. Consequently, we may suggest that ICSGA is superior to the others,
among the three existing methods. The major limitation of this proposed model is that theoretical analyses
of the proposed optimization techniques are not compared, only numerical comparisons have been drawn. In
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future, one can develop theory and practices of this proposed model to find out well tuned parameters in
fuzzy environment. Mutiobjective version of this model can be studied further using NSGA-II and Neuro-fuzzy
techniques. In this study, we perform a simulation-based optimization built on an simulated annealing algorithm
in an inventory problem. Since there are many successful metaheuristic methods recently proposed, it would
be interesting to apply these approaches instead of simulated annealing. In other hand, other random searches
methods could be used to generate additional candidate solutions.
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