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Abstract

We propose a purely combinatorial algorithm for max k-vertex cover in bipar-
tite graphs, achieving approximation ratio 0.7. The only combinatorial algorithms
currently known until now for this problem are the natural greedy algorithm, that
achieves ratio (e−1)/e = 0.632, and an easy 2/3-approximation algorithm presented
in [4].

1 Introduction

In the max k-vertex cover problem, a graph G = (V,E) with |V | = n and |E| = m is
given together with an integer k 6 n. The goal is to find a subset K ⊆ V with k elements
such that the total number of edges covered by K is maximized. This problem is NP-hard
even in bipartite graphs [2, 5].

The approximation of max k-vertex cover has been originally studied in [6], where
an approximation 1 − 1/e was proved, achieved by the natural greedy algorithm. This
ratio is tight even in bipartite graphs [3]. In [1], using a sophisticated linear programming
method, the approximation ratio for max k-vertex cover is improved up to 3/4. Finally,
by an easy reduction from Min Vertex Cover, it can be shown that max k-vertex
cover in general graphs does not admit a polynomial time approximation schema (PTAS),
unless P = NP [7].

Obviously, the result of [1] immediately applies to the case of bipartite graphs. Very
recently, [5] has improved this ratio in bipartite graphs up to 8/9, always using involved lin-
ear programming techniques, but the existence of a PTAS for such graphs always remains
open.

Finally, let us note that max k-vertex cover is polynomial in regular bipartite
graphs or in semi-regular ones, where the vertices of each color class have the same degree.
Indeed, in both cases it suffices to chose k vertices in the color class of maximum degree.

Our principal motivation for this paper is to study in what extent combinatorial meth-
ods for max k-vertex cover compete with linear programming ones. In other words,
what is the ratios’ level, a purely combinatorial algorithm can guarantee? In this purpose,
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we devise an algorithm that builds five distinct solutions and returns the best among
them; for this algorithm, we prove a worst case 0.7-approximation ratio. Let us note that
a similar issue is presented in [8] for max cut where a 0.531-ratio combinatorial algorithm
is given. Comparison of classes of methods with respect to their abilities to solve problems
seems to be a very interesting research issue. This may bring new insights to both the
problems handled and the methods themselves. Furthermore, such studies may exhibit
interesting and funny mathematical problems.

Note finally that in [4], an easy 2/3-approximation algorithm is presented, together
with a very complex one where a computer assisted analysis was giving a ratio of 0.792.
But this ratio is impossible to be proved analytically.

2 Preliminaries

Consider a bipartite graph B(V1, V2, E), fix an optimal solution O for max k-vertex
cover (i.e., a vertex-set on k vertices covering a maximum number of edges in E) and
denote by k1 and k2 the cardinalities of the subsets O1 and O2 of O lying in the color-
classes V1 and V2, respectively. W.l.o.g., we assume k1 6 k2 and we set:

k1 = µ · k2, µ 6 1 (1)

k = k1 + k2 = (1 + µ) · k2 (2)

Denote by δ(V ′), V ′ ⊆ V = V1 ∪ V2, the number of edges covered by V ′ and by opt(B)
the value of an optimal solution (i.e., the number of edges covered by O).

Let Si, i = 1, 2, be the ki vertices of Vi that cover the most of edges. Obviously, Si is
the set of the ki largest degree vertices in Vi (breaking ties arbitrarily) and the following
hold:

δ (S1) > δ (O1) (3)

δ (S2) > δ (O2)

In what follows, we call “best” vertices, a set of vertices that cover the most of uncovered
edges1 in B. Furthermore, we will also use the following additional notations and conven-
tions (we assume that vertices in both V1 and V2 are ordered in decreasing degree order),
where all the greek letters used imply parameters that are all smaller than, or equal to, 1:

• δ(O1): the number of edges covered by O1; for conciseness we set δ(O1) = α ·opt(B);

• β1 · δ (O1) = β1 · α · opt(B): the number of edges covered by S1 ∩O1;

• δ′(O2): the number of private edges covered by O2, i.e., the edges already covered
by O1 are not counted up to δ′(O2); obviously, δ′(O2) = (1− α) · opt(B);

• θ · δ(O1): the number of edges (if any) from O1 that go “below” O2 (recall V1 and V2
are ordered in decreasing degree order);

• γ · δ′(O2): symmetrically, it denotes the number of edges of O2 that go below the
vertices of O1;

• ζ ·δ(O1): suppose that after taking the k best vertices of V1, there still remain, say, k′1
vertices of O1 that have not been encountered yet; then, ζ · δ(O1) is the number of
edges covered by those vertices;

1For instance, saying “we take S1 plus the k2 best vertices in V2, this means that we take S1 and then k2
vertices of highest degree in B[(V1 \ S1), V2].
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• λ · δ′(O2): this is the symmetric of the quantity ζ · δ(O1) for the pair (V2, O2)
(supposing that the number of vertices in O2 that have not been encountered is k′2).

In Figure 1, the edge-sets defined by the parameters above are illustrated. Heavy lines
within rectangles V1 and V2 represent the borders of S1 and S2 (the upper ones) and those
of the k best vertices (the lower ones). Edges from O1 (arg(δ(O1))) are not shown in the
the figure. They can go everywhere in V2. Private edges of O2 (arg(δ′(O2))) are shown as
heavy lack lines (the set of edges δ′2). They can go everywhere in V1 \O1.
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Figure 1: The edge-sets induced by the several parameters.

The basic idea of the algorithm is quite simple. It computes the best among five solu-
tions built. It is presented in Section 3 while, in Section 4, we show that its approximation
ratio is bounded below by 0.7.

3 The algorithm . . .

The algorithm guesses the cardinalities k1, k2 of O1 and O2, respectively, builds the five
solutions specified just below and returns the best among them:

SOL1: take S1 plus the k2 remaining best vertices from V2;

SOL2: take S2 plus the k1 remaining best vertices from V1;

SOL3: take the k best vertices of V2;

SOL4: take the best between the following two solutions:

1. the k best vertices of V1;
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2. the best 2 · k1 vertices of V1 plus the remaining k − 2 · k1 best vertices of V2.

Let us note that the algorithm above, since it runs for any value of k1 and k2, it will run
for k1 = k and k2 = k. So, it is optimal for the instances of [3], where the greedy algorithm
attains the ratio (e−1)/e.

In what follows in this section, in Lemmata 1 to 4, we analyze the solutions built by
the algorithm and provide several expressions for the ratios achieved by each of them. All
these ratios are expressed as functions of the parameters specified in Section 2. In order
to simplify notations from now on we shall write opt instead of opt(B).

Lemma 1. The approximation ratio achieved by solution SOL1 is the maximum of the
following quantities:

1− α+ β1 · α (4)

α+ γ · (1− α) (5)

Furthermore, if S1 and O1 coincide (i.e., S1 ∩O1 = S1), SOL1 is optimal.

Proof. For (4), S1 covers, by (3), more than δ(O1) = α · opt edges. Decompose this edge-
set into a set X of edges covered by S1 \ (S1 ∩O1) and the set of edges of size β1 · α · opt
of edges covered by S1 ∩ O1. On the other hand, the k2 remaining best vertices in V2
will cover more edges than the k2 remaining best vertices in O2, that cover more than
(1− α) · opt− |X| edges, qed.

For (5), whenever S1 does not coincide with O1, there are vertices of O1 that ly
below S1. Since γ · δ′(O2) is the number of edges from O2 that go belong O1, these edges
will be not counted up in the set of edges covered by S1.

Finally, if S1 and O1 coincide, SOL1 will cover α · opt + (1− α) · opt = opt edges.

Lemma 2. The approximation ratio achieved by solution SOL2 is bounded below by:

1− α+ α · θ (6)

Proof. The proofs is similar with the one of Lemma 1 for (5).

Lemma 3. The approximation ratio achieved by solution SOL3 is the maximum of the
following quantities:

1− λ · (1− α)− α · θ (7)

(1− α) · (1 + λ · µ) (8)

Proof. If after taking the k best vertices of V2 the whole of O2 has been encountered, all
but θ · δ(O1) edges of the optimum have been covered. In this case, an appoximation ratio
1− α · θ is achieved.

Otherwise, by the definition of λ · δ′(O2):

opt− λ · δ′ (O2)− θ · δ (O1) = opt · (1− λ · (1− α)− θ · α)

edges of the optimum are covered.
On the other hand, taking the k best vertices of V2, consists of first taking S2 (covering

(1− α) · opt edges) and then the k1 best vertices below it. Furthermore, below the k best
vertices, the group of the k′2 “worst” vertices of O2 has average degree at least λ·δ′(O2)/k′2.
Since the algorithm takes k1 “better” vertices, they will cover at least:

k1
k′2
· λ · δ′ (O2) >

k1
k2
· λ · (1− α) · opt

(1)

=
µ · λ · (1− α) · opt

which proves (8).
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Lemma 4. The approximation ratio achieved by solution SOL4 is the maximum of the
following quantities:

1− ζ · α− γ · (1− α) (9)

(2− β1) · α+
(1− µ) · ζ · α

µ
(10)

(1− µ) + α · (2 + µ)− α · β1
2

+
(1− 2 · µ) · ζ · α

2 · µ
(11)

Proof. Let us first note that, if after taking the k best vertices in V1 all the vertices of O1

are captured, the approximation ratio achieved is 1 − γ · (1 − α) since only γ · δ′(O2) =
γ · (1− α) · opt edges of the optimum are not covered. Suppose now that k′1 verices of O1

are not captured. In this case, the k vertices taken from V1 cover:

opt− ζ · δ (O1)− γ · δ′ (O2) = (1− ζ · α− γ · (1− α)) · opt

For (10) and (11) now, observe first that the k vertices taken from V1 can be seen as
the union of k/k1 consecutive k1-groups (called clusters in what follows) and that, by (1)
and (2), k/k1 = 1+µ/µ. Assume also that the k − k′1 of O1 encountered among the k best
vertices of V1 are included in the π first clusters. Denote by κi the number of vertices of O1

in the i-th cluster, i = 1, . . . , π, and suppose that the “optimal” κi vertices of cluster i
cover βi · δ(O1) = βi · α · opt edges.

Claim 1. Consider cluster i and denote by Ō1,i the part of O1 not captured by clusters
1, 2, . . . , i − 1 (so, Ō1,i =

∑π
j=i κj + k′1). Then, the vertices of cluster i will cover at

least (1−
∑i−1

j=1 βj) · α · opt edges.

In order to prove Claim 1, observe that the part of δ(O1) covered by Ō1,i is:

δ
(
Ō1,i

)
= δ (O1)−

i−1∑
j=1

βj · δ (O1) =

1−
i−1∑
j=1

βj

 · α · opt

and that the δ(Ō1,i) edges are covered by
∑π

j=i κj + k′1 = k1 − (
∑i−1

j=1 κj) 6 k1 vertices,

while cluster i contains exactly k1 vertices with degree at least as large as those of Ō1,i.
An easy average argument derives then that the vertices of cluster i will cover at least:

k1 ·

(
1−

∑i−1
j=1 βj

)
· α · opt

k1 −
(∑i−1

j=1 κj

) >

1−
i−1∑
j=1

βj

 · α · opt

edges, qed.
Consider the two first groups clusters taken from V1. The first of them (S1) covers

more than δ(O1) = α · opt edges (by (3)) while, by Claim 1, the second one will cover
more than (k1/k1−κ1) · (1− β1) · δ(O1) > (1− β1) · α · opt edges. Observe also that, by (1)
and (2), k/k1 = 1+µ/µ. In any of the remaining 1+µ/µ − 2 = 1−µ/µ clusters, their vertices
obviously cover more than ζ · δ(O1) = ζ · α · opt edges (indeed, by the average argument
of Claim 1, more than k1 · ζ·δ(O1)/k′1 > ζ · δ(O1))). We so have:

|SOL4| >
[
(2− β1) +

1− µ
µ
· ζ
]
· δ (O1) =

[
(2− β1) +

1− µ
µ
· ζ
]
· α · opt

that proves (10).
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Let us now get some more insight in the value of SOL4. By extending the discussion
just above, the k1 vertices of cluster i will cover more than:

k1

k1 −
i−1∑
j=1

κj

·

 π∑
j=i

βj + ζ

 · δ (O1) >

1−
i−1∑
j=1

βj

 · δ (O1) (12)

Furthermore, as seen previously, all clusters below the π first ones containing the k1 − k′1
captured vertices of O1, will cover more than ζ · δ(O1) each.

Hence, summing (12) for i = 1 to π, taking into account the remark just above, and
setting β0 = 0, the following holds:

|SOL4| >

π−1∑
i=0

1−
i∑

j=0

βj

+

(
1 + µ

µ
− π

)
· ζ

 · δ (O1)

=

(
π −

π−1∑
i=1

(π − i) · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π − π ·

π−1∑
i=1

βi +
π−1∑
i=1

i · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1) (13)

Observe now that:

π ·
π−1∑
i=1

βi = π · (1− βπ − ζ) · δ (O1) (14)

and combine (14) with (13). Then, the latter becomes:

|SOL4| >

(
π − π · (1− βπ − ζ) +

π−1∑
i=1

i · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

i · βi + πζ +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

i · βi +

(
1 + µ

µ

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

βi +
π∑
i=2

βi +
π∑
i=3

(i− 2) · βi +
1 + µ

µ
· ζ

)
· δ (O1)

=

(
(1− ζ) + (1− β1 − ζ) +

π∑
i=3

(i− 2) · βi +
1 + µ

µ
· ζ

)
· δ (O1)

=

(
(2− β1) +

π∑
i=3

(i− 2) · βi +
1− µ
µ
· ζ

)
· δ (O1)

>

(
(2− β1) +

π∑
i=3

·βi +
1− µ
µ
· ζ

)
· δ (O1) (15)

Set
∑π

i=3 ·βi · δ(O1) = X. These edges are covered by both O1 and SOL4. Then, (15)
becomes:

|SOL4| >
(

(2− β1) +
1− µ
µ
· ζ
)
· δ (O1) +X =

(
(2− β1) +

1− µ
µ
· ζ
)
·α · opt +X (16)
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On the other hand, consider Item 2 in SOL4. The 2 · k1 best vertices from V1 cover
(1 − ζ) · δ(O1) − X edges of the optimum. Let Y + [(1 − ζ) · δ(O1) − X] be the total
number of edges covered by those vertices. Then, best k − 2 · k1 vertices of V2 will cover
at least as many edges as the k − 2 · k1 best vertices of O2, that will cover at least
((k−2·k1)/k2) · δ′(O2)− Y . Putting all this together, we get:

|SOL4| > Y + [(1− ζ)δ(O1)−X] +
k − 2 · k1

k2
· δ′ (O2)− Y

=

(
(1− ζ) · α+

k − 2 · k1
k2

· (1− α)

)
· opt−X

(1),(2)
= ((1− ζ) · α+ (1− µ) · (1− α)) · opt−X (17)

Expression (16) is increasing with X, while (17) is decreasing. Equality of them, leads
after some easy algebra to:

X =

(
(1− µ)− α · (2− µ) + β1 · α

2
− ζ · α

2 · µ

)
· opt (18)

Embedding (18) to (16) and dividing the ratio obtained by opt, derives the ratio claimed
by (11).

4 . . . and its approximation ratio

The objective of this section is to prove the following theorem.

Theorem 1. max k-vertex cover is combinatorially approximable within ratio 0.7.

Proof. For the proof we propose an exhaustive parameter-elimination method (very prob-
ably non-optimal) that has the advantage to be quite simple. It consists of subsequently
eliminating parameters from the ratios proved in Lemmata 1 to 4 until two ratios that are
only functions of µ are got. These ratios have opposite monotonies with respect to this
parameter, hence by equalizing them we determine a lower bound for the overall ratio of
the algorithm.

Elimination of θ: ratios (6) and (7)

Equalizing ratios given by (6) and (7) leads to 2α · θ = α− λ · (1−α)⇒ α · θ = α−λ·(1−α/2
and embedding it in (6) derives:

2− α · (1− λ)− λ
2

(19)

Elimination of λ: ratios (8) and (19)

Equalizing ratios given by (8) and (19) gives λ = α/(1−α)·(1+2·µ). This, together with (8),
derives:

1− α · 1 + µ

1 + 2 · µ
(20)

Elimination of γ: ratios (5) and (9)

It gives γ = 1−α−ζ·α/2·(1−α) and the ratio obtained is:

1 + α− ζ · α
2

(21)
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Elimination of ζ: ratios (10) and (21)

We have:

(2− β1) · α+
(1− µ) · ζ · α

µ
=

1 + α− ζ · α
2

⇒ 2− µ
µ
· ζ · α = 1 + α− 2 · (2− β1) · α = 1− 3 · α+ 2 · β1 · α

⇒ ζ =
µ

2− µ
· 1− 3 · α+ 2 · β1 · α

α
(22)

and embedding (22) in (10), we get:

(2− β1) · α+
1− µ
2− µ

· (1− α · (3− 2 · β1))

=
(2− µ) · (2− β1) · α+ (1− µ)− α · (1− µ) · (3− 2 · β1)

2− µ

=
(1− µ) + α · (1 + µ− µ · β1)

2− µ
(23)

First elimination of β1: ratios (4) and (23)

We have:

1− α+ β1 · α =
(1− µ) + α · (1 + µ− µ · β1)

2− µ
⇒ 2 · β1 · α = (1− µ) + α · (1 + µ)− (2− µ) + α · (2− µ) = −1 + 3 · α

⇒ β1 =
3 · α− 1

2 · α
(24)

Now, combination of (4) and (24) derives:

1− α+ β1 · α = 1− α+
3 · α− 1

2
=

1 + α

2
(25)

First ratio function of µ: combination of ratios (20) and (25)

Ratio (20) is decreasing with α, while ratio (25) is increasing. Combination of them allows
elimination α in order to get a first ratio that is only a function of µ. Equalizing (20)
and (25) gives:

1− α · 1 + µ

1 + 2 · µ
=

1 + α

2
⇒ α · (4 · µ+ 3) = 2 · µ+ 1

⇒ α =
2 · µ+ 1

4 · µ+ 3
(26)

and embedding (26) in (20) derives:

1− α · 1 + µ

1 + 2 · µ
= 1− 2 · µ+ 1

4 · µ+ 3
· 1 + µ

1 + 2 · µ

=
2 + 3 · µ
3 + 4 · µ

(27)
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Second elimination of β1: ratios (4) and (11)

Revisit ratio (11) and observe that its last term (1−2·µ)·ζ·α/2·µ is negative when µ > 1/2.
On the other hand, ratio (27) is increasing with µ and bounded below by 0.7 as long as
µ > 1/2. We so seek an “interesting” ratio when µ 6 1/2 and, in this case (1−2·µ)·ζ·α/2·µ > 0
and can be omitted.

Hence, combination of ratios (4) and (11), for µ 6 1/2, leads to:

(1− µ) + α · (2 + µ)− α · β1
2

= 1− α+ β1 · α

⇒ (1− µ) + α · (2 + µ)− α · β1 = 2− 2 · α+ 2 · β1 · α

⇒ 3 · β1 · α = −(1 + µ) + α · (4 + µ)⇒ β1 =
α · (4 + µ)− (1 + µ)

3 · α
(28)

Then, combining (4) and (28), derives this time:

1− α+ β1 · α =
3− 3 · α+ α · (4 + µ)− (1 + µ)

3
=

2− µ+ α · (1 + µ)

3
(29)

Second ratio function of µ: combination of ratios (29) and (20)

Once again, ratio (20) is decreasing with α, while ratio (29) is increasing. Combination
of them allows elimination α in order to get a second ratio exclusively function of µ.
Equalizing (20) and (29) gives:

1− α · 1 + µ

1 + 2 · µ
=

2− µ+ α · (1 + µ)

3
⇒ 2 · α · (1 + µ) · (2 + µ)

3 · (1 + 2 · µ)
=

1 + µ

3

⇒ α =
1 + 2 · µ

2 · (2 + µ)
(30)

and embedding (30) in (20) derives:

1− α · 1 + µ

1 + 2 · µ
=

3 + µ

4 + 2 · µ
(31)

Final ratio

As noted above, ratio (27) increases with µ, while (31) decreases. The value of µ guar-
anteeing equality of these ratios also gives a lower bound for them. This value is µ = 1/2
and, with this value, both ratios become 0.7.
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