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COMBINATION OF TWO UNDERESTIMATORS FOR UNIVARIATE

GLOBAL OPTIMIZATION

Mohand Ouanes1,*, Mohammed Chebbah1 and Ahmed Zidna2

Abstract. In this work, we propose a new underestimator in branch and bound algorithm for solving
univariate global optimization problems. The new underestimator is a combination of two underestima-
tors, the classical one used in αBB method (see Androulakis et al. [J. Glob. Optim. 7 (1995) 337–3637])
and the quadratic underestimator developed in Hoai An and Ouanes [RAIRO: OR 40 (2006) 285–302].
We show that the new underestimator is tighter than the two underestimators. A convex/concave test
is used to accelerate the convergence of the proposed algorithm. The convergence of our algorithm is
shown and a set of test problems given in Casado et al. [J. Glob. Optim. 25 (2003) 345–362] are solved
efficiently.
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1. Introduction

We consider the following problem

(P )

{
min b(s)

s ∈ [s0, s1] ⊂ R

where b is a nonconvex and C2-continuous function on the real closed interval [s0, s1]. Several methods have
been studied in the literature for univariate global optimization problems (see [6, 13] and references therein).

Univariate global optimization problems attract attention of researchers not only because they arise in many
real-life applications but also the methods for these problems are useful for the extension for the multivariate
case (see [8, 12]) or by reducing the multidimensional case to the univariate case (see [10]). The lower bounding
method is one of the most widely used methods to find global minimum for sure. Among them we can cite
the classical αBB method developed in [1, 2, 3], and the method using a quadratic underestimator developed
in [9]. The efficiency of a method is in the construction of tight underestimator which allows us to discard
big regions which do not contain the global minimum. We propose a new underestimator that combines the
two underestimators given in [3, 9]. The main contributions of our paper are: (i) a construction of a new
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underestimator which is tighter than the two underestimators used in [3, 9], (ii) a convex/concave test is used
in order to accelerate the convergence of our branch and bound algorithm, (iii) a set of test problems found in
[4] are solved efficiently.

The structure of the paper is as follows. The two underestimators developed in [3, 9] with their properties are
presented in Section 2. In Section 3, a new underestimator is stated with its properties and the convex/concave
test is explained. In Section 4, the algorithm is described and its convergence is shown. Computational results
are presented in Section 5.

2. Background

2.1. Underestimator in αBB method [3]

Let Kα be a nonnegative real number such that Kα ≥ max{0,−b′′(s)}, for all s in the real interval [s0, s1].
The underestimator in αBB method on the interval [s0, s1] is given by

LBα(s) = b(s)− Kα

2
(s− s0)(s1 − s).

This underestimator has the following properties :

1. It is convex (i.e. LB′′α(s) = b′′(s) +Kα ≥ 0 because Kα ≥ −b′′(s),∀s ∈ [s0, s1]).

2. It coincides with the function b at the endpoints of the interval [s0, s1] (i.e. by construction of LBα(s)).

3. It is an underestimator of b(s) (i.e. b(s)− LBα(s) = Kα
2 (s− s0)(s1 − s) ≥ 0,∀s ∈ [s0, s1]).

For more details see [3].

2.2. Quadratic underestimator [9]

Let K be a nonnegative real number such that K ≥ |b”(s)|, for all s in the interval [s0, s1]. The quadratic
underestimator developed in [9] on the interval [s0, s1] is given by

LBq(s) = b(s0)
s1 − s
s1 − s0

+ b(s1)
s− s0

s1 − s0
− K

2
(s− s0)(s1 − s).

This quadratic underestimator has the following properties :

1. It is convex and quadratic (i.e. LB′′q (s) = K ≥ 0).
2. It coincides with the function b at the endpoints of the interval [s0, s1] ( i.e. by construction of LBq(s)).
3. It is an underestimator of b(s) (i.e. (b(s)− LBq(s))′′ = (b′′(s)−K) ≤ 0,∀s ∈ [s0, s1]) which implies that

(b(s)−LBq(s)) is concave on [s0, s1], it vanishes at the endpoints of [s0, s1] then (b(s)−LBq(s)) ≥ 0,∀s ∈
[s0, s1].

For more details see [9].

3. New underestimator

Let Kq be a real nonnegative number such that Kq ≥ max{0, b′′(s)}, for all s on the interval [s0, s1] and let

Lhb(s) the linear interpolant of b on this interval given by Lhb(s) = b(s0) s
1−s

s1−s0 + b(s1) s−s
0

s1−s0 (see [5]). The new

underestimator on the interval [s0, s1] is given by

LB(s) =
Kqb(s) +KαLhb(s)

Kα +Kq
− KαKq

2(Kα +Kq)
(s− s0)(s1 − s).
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Proposition 3.1.

i) LB(s) coincides with b(s) at the endpoints of [s0, s1].
ii) LB(s) is convex on the interval [s0, s1].

Proof.

i) It is obvious by construction of LB(s).
ii) For all s in the interval [s0, s1], we have

LB′′(s) =
Kqb

′′(s)

Kα +Kq
+

KαKq

Kα +Kq
=
Kq(Kα + b′′(s))

Kα +Kq
≥ 0.

Indeed Kα, Kq are nonnegative numbers and for all s in [s0, s1], we have (Kα + b′′(s)) ≥ 0. Then LB is
convex.

In the following theorem we show that LB(s) is an underestimator of b(s).

Theorem 3.2. LB(s) ≤ b(s),∀s ∈ [s0, s1].

Proof. By computing the second derivative of (LB(s)− b(s)), we have

(LB(s)− b(s))′′ =
Kq(Kα + b′′(s))

Kα +Kq
− b′′(s) =

Kα(Kq − b′′(s))
Kα +Kq

≥ 0.

As Kα and Kq are nonnegative numbers and Kq − b′′(s) ≥ 0 on [s0, s1], then (LB(s)− b(s)) is convex. It also
vanishes at the endpoints of this interval. Hence (LB(s) − b(s)) is nonpositive which implies that LB(s) ≤
b(s),∀s ∈ [s0, s1].

We will show in the two next theorems that the new underestimator is tighter than the classical
underestimator developed in αBB method [3] and the quadratic underestimator developed in [9], respectively.

Theorem 3.3. LB(s) ≥ LBα(s),∀s ∈ [s0, s1].

Proof. In the same way as above, for all s in [s0, s1], we have

(LB(s)− LBα(s))′′ =
Kα(Kq − b′′(s))

Kα +Kq
−Kα = −Kα(Kα + b′′(s))

Kα +Kq
≤ 0,

since Kα and Kq are nonnegative numbers and (Kα+ b′′(s)) is nonnegative on the interval [s0, s1], then (LB(s)−
LBα(s)) is concave. It also vanishes at the endpoints of this interval, hence LB(s)− LBα(s) ≥ 0 which implies
that LB(s) is tighter than LBα(s) on the interval [s0, s1].

Theorem 3.4. LB(s) ≥ LBq(s),∀s ∈ [s0, s1].

Proof. By computing the second derivative of (LB(s)− LBq(s)), we have

(LB(s)− LBq(s))′′ =
Kqb

′′(s)

Kα +Kq
+

KαKq

Kα +Kq
−K.

We have the relation between K,Kα, and Kq which is K = max{Kα,Kq}.
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Figure 1. Comparison of the new underestimator LB(x) (blue) with the two underestimators
LBα(x) (red) and LBq(x) (gray) for the function sinx (black).

First case: K = Kα ≥ Kq

(LB(s)− LBq(s))′′ =
Kqb

′′(s)

Kα +Kq
+

KαKq

Kα +Kq
−Kα =

Kqb
′′(s)−K2

α

Kα +Kq

≤
Kqb

′′(s)−K2
q

Kα +Kq
= (b′′(s)−Kq)

Kq

Kα +Kq
.

As Kq, Kα are nonnegative numbers and (b′′(s)−Kq) ≤ 0,∀s ∈ [s0, s1], then (LB(s)−LBq(s)) is concave
on [s0, s1]. It also vanishes at the endpoints of the interval, hence LB(s)−LBq(s) ≥ 0,∀s ∈ [s0, s1] which
implies that LB(s) is tighter than LBq(s) on the interval [s0, s1].

Second case: K = Kq ≥ Kα

(LB(s)− LBq(s))′′ =
Kqb

′′(s)

Kα +Kq
+

KαKq

Kα +Kq
−Kq

=
Kqb

′′(s) +KαKq −KqKα −KqKq

Kα +Kq

= (b′′(s)−Kq)
Kq

Kα +Kq
.

In the same way as in above, we prove that LB(s) is tighter than LBq(s).

Example 3.5. We consider a simple example, b(s) = sin s, s ∈ [0, 2π] as shown in Figure 1. For this example,
we compare LB(s) with LBα(s) and LBq(s). We have

LBα(s) = sin s− 1

2
s(2π − s), LBq(s) = −1

2
s(2π − s) and LB(s) =

1

2
LBα(s).

For all s in [0, 2π], LB′′α(s) = − sin s+ 1 is nonnegative, then it is convex on this interval, as LBα vanishes at
0 and 2π, hence LBα(s) ≤ 0,∀s ∈ [0, 2π]. LB′′q (s) = 1, then LBq(s) is convex, as it vanishes at 0 and 2π, hence
LBq(s) ≤ 0,∀s ∈ [0, 2π].

– We have LB(s) = 1
2LBα(s) ≥ LBα(s). As LBα(s) ≤ 0 then LB(s) is tighter than LBα(s) on [0, 2π].

– (LB(s)−LBq(s))′′ = 1
2 (− sin s+ 1)−1 = 1

2 (− sin s−1) ≤ 0,∀s ∈ [0, 2π] then (LB(s)−LBq(s)) is concave
on [0, 2π], as it vanishes at 0 and 2π then (LB(s)−LBq(s)) ≥ 0,∀s ∈ [0, 2π], hence LB(s) ≥ LBq(s),∀s ∈
[0, 2π] i.e. LB(s) is tighter than LBq(s).
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Figure 2. The new underestimator LB(x) (blue), the αBB underestimators LBα(x) (red),
the quadratic underestimator LBq(x) (gray) and the function sinx (black).

3.1. Convex/concave test

By using the definitions of Kα and Kq, we develop a convex/concave test in order to accelerate the con-
vergence of our branch and bound algorithm. We will give here a description of the convex/concave test. At
iteration k we compute Kk

α and Kk
q on the interval [sk, sk+1] by using the following inequalities Kk

α ≥ max{0,
maxs∈[sk,sk+1](−b′′(s))}, and Kk

q ≥ max{0, maxs∈[sk,sk+1] b
′′(s)} respectively(i.e. by using interval analysis

method).

i) If Kk
α = 0, then −b′′(s) ≤ 0,∀s ∈ [sk, sk+1]), then b is convex on the interval [sk, sk+1], any local search gives

a global minimum on this interval.
ii) If Kk

q = 0, then b′′(s) ≤ 0,∀s ∈ [sk, sk+1]) then b is concave on the interval [sk, sk+1] and its global minimum
is reached at the endpoints of this interval.

iii) If Kk
α = Kk

q = 0, then b(s) is affine on [sk, sk+1] and its global minimum is reached at the endpoints of this
interval.

Remark 3.6. If the convex/concave test is satisfied for all considered subintervals during the algorithm, then
the algorithm stops, because for each subinterval, we have an exact minimum, then we find a global minimum,
or global minima if the objective function has several minima.

Example 3.7. We consider again the same example, b(s) = sin s, s ∈ [0, π].
One has Kα = 1,K = 1, and Kq = 0.
Kq = 0 then b is concave on [0, π], hence its global minimum is reached at the endpoints of this interval (i.e.

at 0 and π).
For this example the convex/concave test allows us to stop the algorithm at the first iteration and to find

the global minimum while the two methods in [3, 9] can’t do that at the first iteration (see Fig. 2).

4. Algorithm and its convergence

Definition 4.1. [11] Let s∗ be an arbitrary global optimal solution of problem (P ) and ε > 0, sk is an ε-global
optimal solution of (P ) if it satisfies the inequality b(sk) ≤ b(s∗) + ε.

We now present our branch and bound algorithm.

4.1. Algorithm

1. Initialization step :
i) Let ε be a given sufficiently small number, let [s0, s1] the initial interval, compute K0

α and K0
q such

that
K0
α ≥ max{0,−b′′(s)},∀s ∈ [s0, s1], and K0

q ≥ max{0, b′′(s)},∀s ∈ [s0, s1].
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ii) Convex/concave test
If K0

α = 0 stop b is convex, any local search gives an optimal solution.
If K0

q = 0 stop b is concave, the optimal solution is reached at the endpoints of [s0, s1].
iii) Set k := 0;T 0 = [s0, s1];M := {T 0}
iv) Solve the convex problem

min
{
LB0(s) : s ∈ T 0

}
with

LB0(s) =
K0
q b(s)+K

0
α(b(s

0) s
1−s

s1−s0
+b(s1) s−s

0

s1−s0
)−

K0
αK

0
q

2 (s−s0)(s1−s)
K0
α+K

0
q

to obtain an optimal solution s∗0.
v) Set UB0 := min

{
b(s0), b(s1), b(s∗0)

}
Set s0 the best current solution i.e. UB0 = b(s0).
Set LB0 := LB(T 0) = LB0(s∗0).

2. Iteration step While UBk − LBk > ε, do
2.1 Let T k = [sk, sk+1] ∈ M be the interval such that LBk = LB(T k) and let s∗k be the solution of the

convex problem on T k.
2.2 Bisect T k into two intervals T k1 = [sk, s∗k] and T k2 = [s∗k, s

k+1]
Set T k1 := [sk1 , s

k+1
1 ] and T k2 := [sk2 , s

k+1
2 ].

2.3 For i = 1, 2 do

a. Convex/concave test

– Compute Kki
α and Kki

q on T ki .

– If Kki
α = 0, b is convex on T ki , any local search gives an optimal solution s∗ki on T ki , then update

LB(T ki ) = UB(T ki ) = b(s∗ki) and goto c.
– If Kki

q = 0, b is concave on T ki , then update

LB(T ki ) = UB(T ki )=min{b(ski ), b(sk+1
i )} and goto c.

b. Set s∗ki the solution of the convex problem
min

{
LBki(s) : s ∈ T ki

}
with

LBki(s) =
Kki
q b(s)+K

ki
α (b(ski )

s
k+1
i

−s

s
k+1
i

−sk
i

+b(sk+1
i )

s−ski
s
k+1
i

−sk
i

)−
Kkiα Kkiq

2 (s−ski )(s
k+1
i −s)

Kki
α +Kki

q

and set LB(T ki ) = LBki(s∗ki).
c. To fit into M the intervals T ki : M ←M

⋃
{T ki : UBk − LB(T ki ) ≥ ε} \ {T k}.

d. Update UBk+1 := min{UBk, b(ski ), b(sk+1
i ), b(s∗ki)}.

Set sk+1 the best current solution i.e. UBk+1 = b(sk+1).

2.4 Update LBk+1 := min{LB(T ) : T ∈M}.
2.5 Delete from M all intervals T such that LB(T ) > UBk+1 − ε.
2.6 Set k := k + 1.
2.7 End while.

3. Output : sk is an ε- global optimal solution of (P ).

4.2. Convergence

The following theorem shows the convergence of our branch and bound algorithm.

Theorem 4.2. The sequence {sk} generated by the algorithm converges to an optimal solution of problem (P ).

Proof. If the algorithm stops at iteration k which may be obtained by the convex/concave test or the stopping
rule UBk − LBk ≤ ε then one obtains an exact or an ε-global optimal solution.

If the algorithm is infinite then it generates an infinite sequence {T k} of intervals whose lengths hk decrease
to zero, then the whole sequence {T k} shrinks to a singleton, we must show that limk→∞(UBk − LBk) = 0.
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One has

0 ≤ UBk − LBk
= b(sk)− LB(s∗k)

= b(sk)− Kqb(s
∗
k) +KαLhb(s

∗
k)

Kα +Kq
+

KαKq

2(Kα +Kq)
(s∗k − ski )(sk+1

i − s∗k)

=
Kq(b(s

k)− b(s∗k)) +Kα(b(sk)− Lhb(s∗k)) +
KαKq

2
(s∗k − sk)(sk+1 − s∗k)

Kα +Kq
.

We have the following inequalities:

i) One has

Kq(b(s
k)− b(s∗k)) = Kqb

′(ξk1 )(sk − s∗k)

≤ KqC1(sk+1 − sk),

with C1 ≥ |b′(ξk1 )| ≥ 0, ξk1 between sk and s∗k(i.e. by the mean value theorem).

ii) by definition of Lhb, one has

Lhb(s
∗
k) ≥ min{b(sk), b(sk+1)},

suppose that this minimum is b(sk) then

Kα(b(sk)− Lhb(s∗k)) ≤ Kα(b(sk)− b(sk))

= Kαb
′(ξk2 )(sk − sk)

≤ KαC2(sk+1 − sk),

with C2 ≥ |b′(ξk2 )| ≥ 0, ξk2 between sk and sk(i.e. by the mean value theorem).
We have the same reasoning if we suppose that min{b(sk), b(sk+1)} = b(sk+1).

iii) One has

KαKq

2
(s∗k − sk)(sk+1 − s∗k) ≤ max

s∈[sk,sk+1]

KαKq

2
(s− sk)(sk+1 − s)

=
KαKq

8
(sk+1 − sk)2

(i.e. maximum of concave function on [sk, sk+1]).

By using the results shown in i), ii) and iii), we have

0 ≤ UBk − LBk

≤ (sk+1 − sk)
KqC1 +KαC2 +

KαKq

8
(sk+1 − sk)

Kα +Kq

and
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0 ≤ lim
k→∞

(UBk − LBk)

≤ lim
k→∞

(sk+1 − sk)
KqC1 +KαC2 +

KαKq

8
(sk+1 − sk)

Kα +Kq


= 0

(i.e. T k = [sk, sk+1] shrinks to a singleton). Hence the sequence {sk} converges to a global optimal solution of
problem (P ).

We have shown that

0 ≤ UBk − LBk

≤ (sk+1 − sk)
KqC1 +KαC2 +

KαKq

8
(sk+1 − sk)

Kα +Kq

≤ C(sk+1 − sk)

with C =
KqC1 + KαC2 +

KαKq

8
(s1 − s0)

Kα + Kq
> 0.

then for any ε > 0 there exists n ∈ N such that ∀k ≥ n,
we have

0 ≤ b(sk)− b(s∗) ≤ UBk − LBk ≤ C(sk+1 − sk) ≤ ε

(i.e. limk→∞(sk+1 − sk) = 0) where s∗ is an arbitrary global optimal solution, then sk is an ε-global optimal
solution of (P ).

5. Computational results

We solve a set of test problems found in [4] and compare the number of partitions(subintervals) used in [7]
to find global minimum and the number of subintervals used in our branch and bound algorithm to find global
minimum. The experimental environment is implemented in MATLAB programs and executed on a DELL
Computer with the configuration of Intel Core I3 CPU M370 at 2.40 GHz and 4GB RAM. Let us notice that
Intlab was used for interval analysis to compute Kα, K and Kq.

In Table 1, we report the performance comparison results of the proposed BB algorithm and the algorithm
given in [7].

– NbF is the number of partitions (subintervals) used in [7]
– GoF is the global optimum found in [7]
– NbO is the number of subintervals used in our branch and bound algorithm
– GoO is the global optimum found by our branch and bound algorithm
– GsO is global solutions found by our branch and bound algorithm

A proposed branch and bound algorithm allows us to find all the optimal solutions for all problems and the
number of subintervals used in our algorithm is less than the number of partitions (subintervals) used in [7] to
construct a convex envelope in order to find global minima for each function.
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Table 1. Comparison in term of subintervals used in our Branch and Bound algorithm
with the number of partitions(subintervals) used in the algorithm given in [7] to find global
minimum of test functions found in [4].

Fct NbF GoF NbO GoO GsO

1 16 −1 7 −1
7.853981
14.137166
20.420352

2 8 −1 3 −1 6.283185
3 1 0 1 0 0.999991
4 64 −17.58287 27 −17.582871 6.894525
5 1024 −0.020903 1 −0.020903 0.067812
6 8 −0.952897 13 −0.952896 2.839347
7 8 −6.262872 1 −6.262872 6.920063
8 16 0.077590 3 0.077589 0.902209
9 16 0.211315 1 0.211314 0.224882
10 16 −0.478362 5 −0.478361 0.724896
11 4 −5.815675 3 −5.815674 5.872866
12 8 −7.047444 5 −7.047444 5.134338
13 8 −4.60138 5 −4.601307 5.199786
14 4 −0.14110 3 −0.141100 0.408237
15 16 −0.870885 11 −0.870885 4.858047
16 16 −9.031249 13 −9.031249 5.791796
17 1 0.475689 1 0.475688 −0.787891

18 8 0 5 0
3.141584
6.283180

19 64 −1 3 −1 −0.000044
20 1 1 1 1 0
21 16 1 3 1 0.000055
22 4 −0.918397 3 −0.918397 3.251079
23 64 −0.824239 15 −0.824239 −0.679575
24 4 −0.027864 5 −0.027864 3.926986

25 8 3.5 5 3.5
2.094394
4.188791

26 8 0.367879 7 0.367879
5.759584
3.665190
1.570799

27 8 −0.451388 7 −0.451387
5.006390
1.864797

28 8 −1 7 −1
4.712397
10.995573
17.278759

29 2 −0.410135 3 −0.410315 3.862077
30 16 −0.718282 9 −0.718281 2.617937
31 128 −14.59265 1 −14.592642 0.685999

(continued)
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Table 1. continued.

Fct NbF GoF NbO GoO GsO

32 1024 −1 15 −1

0.212206;0.090945
0.057874;0.042441
0.033506;0.027679
0.023578;0.020536

33 32 −12.03125 37 −12.031249 −6.774573
34 4 −0.535534 5 −0.535533 2.414211
35 512 −13.92245 1 −13.9 0.937823
36 1 −0.35 1 −0.35 2.000012
37 4 −32.78126 3 −32.781261 0.713679
38 8 7 7 7 2.999991

39 16 −1 9 −1
1.381976
3.618035

40 4 −89 5 −89 2.000058

6. Conclusion

We proposed in this paper a new underestimator in branch and bound algorithm for univariate global opti-
mization problems. This new underestimator is tighter than the classical underestimator developed in αBB
method and the quadratic underestimator developed in [9]. The computational results show the efficiency of our
proposed branch and bound algorithm. The extension of our algorithm for the multivariate case is currently in
progress.
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