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A NOVEL FUZZY DATA ENVELOPMENT ANALYSIS BASED ON

ROBUST POSSIBILISTIC PROGRAMMING: POSSIBILITY,
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Abstract. Possibilistic programming approach is one of the most popular methods used to cope with
epistemic uncertainty in optimization models. In this paper, several robust fuzzy data envelopment
analysis (RFDEA) models are proposed by the use of different fuzzy measures including possibility,
necessity and credibility measures. Despite the regular fuzzy DEA methods, the proposed models are
able to endogenously adjust the confidence level of each constraints and produce both conservative and
non-conservative methods based on various fuzzy measures. The developed RFDEA models are then
linearized and numerically compared to regular fuzzy DEA models. Illustrative results in all of the
FDEA and RFDEA models show that, maximum efficiency is obtained for possibility, credibility and
necessity-based models, respectively.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric performance measurement techniques which is widely
used in various fields, in order to measure the efficiency and ranking of homogeneous decision making units
(DMUs). This methodology was proposed by Charnes et al. [3] for the first time and it is based on Farrell’s [10]
idea. Precision and certainty of inputs and outputs data are one of the fundamental assumptions that are used
for DEA and its classic models. As a matter of fact, crisp inputs and outputs data sometimes are not available
in real-world problems. According to previously cited condition, in the presence of imprecise and vague data,
using the models that can measure performance of decision making units are essential. Overall, the integration
of DEA models and fuzzy set theory is one of the approaches that is enumerated by researchers and there are
considerable researches about fuzzy data envelopment analysis (FDEA) models.

Hatami-Marbini et al. [14] categorized fuzzy DEA models into four groups including (1) tolerance approach,
(2) fuzzy ranking approach, (3) α-level based approach and (4) possibility approach. Emrouznejad et al. [9]
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expand this classification by adding two new groups of (1) fuzzy arithmetic and (2) fuzzy random/type-2 fuzzy
set to Hatami-Marbini et al.’s [14] work categories.

According to Emrouznejad et al.’s [9] classification, possibility programming approach is one of the applicable
approaches in fuzzy DEA field. Zadeh [47] proposed the fundamental principles of the possibility theory that are
developed by many researchers such as Dubois and Prade [6] and Dubois and Prade [8]. Zadeh [47] suggested that
possibility theory is a mathematical theory for dealing with certain types of uncertainty and it is an alternative
to probability theory. In fuzzy linear programming models, fuzzy coefficients can be viewed as fuzzy variables
and constraints can be considered as fuzzy events [9]. Hence, the possibilistic programming is an applicable
approach in dealing with the uncertainty that is caused by the absence or lack of knowledge about the exact
value of model parameters in fuzzy mathematical programming [33].

Guo et al. [13] are the pioneer researchers that worked on FDEA and their study was based on possibility
and necessity measures. They have used the fuzzy DEA model in an agent-client evaluation (ACE) system.
Lertworasirikul [22–24] propose two main approaches that are called possibility and credibility approaches
for solving ranking problem of FDEA. Lertworasirikul [22] studies several defuzzification approaches including
center of area (COA) method, max–max method, min–max method and mean of maxima (MOM) method in the
DEA model. In possibility approach of Lertworasirikul [22], he has been used chance constrained programming
(CCP) that is introduced by Charnes and Cooper [2] and possibility measure to propose the fuzzy DEA model
with optimistic and pessimistic viewpoint. Next, in the credibility approach, the FDEA model was converted
into a credibility programming DEA model and fuzzy variables were replaced by expected credits, which were
obtained by applying credibility measure. Unlike the possibility approach, the DMs did not have to determine any
parameters or rank fuzzy efficiency values in the credibility approach. The possibility and credibility approaches
that are proposed by Lertworasirikul [22] illustrated with CCR model and their data considerations are based
on trapezoidal fuzzy numbers.

Lertworasirikul et al. [25] used the concept of CCP and a possibility measure to transform the FDEA model
into a possibility linear programming problem. They compared their approach to α-level based approach. Fuzzy
inputs and outputs of the DEA model are normal and convex. In a special case, if the fuzzy data were assumed
to be triangular or trapezoidal fuzzy numbers, the fuzzy DEA model becomes a linear programming model.
Lertworasirikul et al. [27] developed the fuzzy DEA model of the BCC model instead of CCR model, based
on possibility and credibility approaches proposed by Lertworasirikul [22]. Lertworasirikul et al. [26] presented
a credibility approach as an alternative way for solving FDEA models. Ramezanzadeh et al. [38] presented
a Fuzzy DEA model using CCP approach. They applied α-level method and fuzzy probability measure to
rectify the randomness by classical mean–variance method proposed by Cooper et al. [5]. Garcia et al. [11]
presented an FDEA model by utilizing the possibility approach that was proposed by Lertworasirikul et al. [25]
for determining ranking indices among failure modes in which the typical FMEA parameters are modeled as
fuzzy sets. Their model allowed the experts to apply linguistic variables in assigning more important values for
the considered indices. Wu et al. [45] applied the formulation of Lertworasirikul et al. [25] in fuzzy DEA models
to deal with the quantitative and linguistic variables for efficiency analysis of cross-region bank branches in
Canada.

Jiang and Yang [20] presented a fuzzy chance constrained DEA model based on creditability measure and
proposed a procedure for converting the fuzzy programming to a confirm programming. Wen and You [42]
proposed an FDEA model with credibility measure. Wen and Li [41] employed credibility measure to represent
FDEA model and solved it with a hybrid intelligent algorithm which integrates fuzzy simulations and genetic
algorithms. When the inputs and outputs are in the form of triangular or trapezoidal fuzzy variables, the model
can be transformed to a linear programming (LP).Wen et al. [43] developed the CCR model to a fuzzy DEA
model based on the credibility measure. For solving the FDEA model and ranking all the DMUs, they designed a
hybrid algorithm combined with fuzzy simulation and genetic algorithm. Khodabakhshi et al. [21] presented two
alternative fuzzy and stochastic DEA models for estimating returns to scale in DEA. Two approaches are used
in their study to consider imprecise data. The first one considered data as stochastic variables and the second
one as fuzzy variables. Then, they developed the fuzzy and stochastic DEA models based on the possibility
approach and the concept of chance constraint programming (CCP), respectively.
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Lin [28] presented a three-phase method as a decision support tool using an integrated analytic network
process (ANP) and fuzzy DEA approach to tackle the personnel selection problem in electric and machinery
company in Taiwan. In the first phase, a fuzzy scheme is utilized to appraise the applicants using linguistic
variables. In the second phase, the analytic network process technique was employed to obtain the global
criteria weights with regards to the DM’s preferences. In third phase, an FDEA model based on Lertworasirikul
et al. [25] is used and the global criteria weights from the second phase were considered as weight restrictions
to compute the relative effectiveness of the applicants at different possibility levels. Zerafat-Angiz et al. [48]
developed a new model to assess the performance of DMUs under uncertainty using FDEA. Zhao and Yue [51]
extended the two-subsystem FDEA model based on the fuzzy DEA model proposed by Lertworasirikul et al.
[25] to evaluate the mutual funds management companies in China.

Wen et al. [44] investigated the sensitivity and stability analysis of the FDEA model proposed by Wen and
You [42] with credibility measure. They found that the radius of stability for all decision making units when the
inputs and outputs were fuzzy variables. Wang and Chin [40] presented a Fuzzy DEA model to compute the best
and the worst values of efficiency for each DMUs by using a fuzzy expected value approach with either fuzzy or
crisp multipliers. Then, the optimistic and pessimistic values of efficiency are geometrically averaged for ranking
all DMUs. They applied this method for the selection of a flexible manufacturing system (FMS). Hossainzadeh
et al. [17] proposed a Fuzzy DEA with fuzzy chance constraint multi- objective programming (MOP) method
by credibility measure. They first converted the fuzzy DEA model into an MOP one by considering optimistic,
pessimistic and expected values. Then, to deal the MOP and transforming it to a linear programming (LP)
model, a goal programming (GP) technique is applied. They applied this method to measure the efficiency and
ranking of Iranian electricity distribution companies.

Nedeljković and Drenovac [34], by using the possibility approach of Lertworasirikul et al. [25], transformed
FDEA models into linear programming (LP) models to measure the technical efficiency of Serbian delivery
post offices. Zerafat-Angiz et al. [49] introduced the concept of “local α-level” to develop an MOLP to measure
the efficiency of decision-making units under uncertainty that can include some uncertainty information from
the intervals within the α-cut approach. Payan and Sharifi [35] developed a method for measuring the fuzzy
malmquist productivity index (MPI) by using the credibility theory that is implemented in social security
organizations. Hatami-Marbini et al. [15] developed a new stepwise fuzzy linear programming (FLP) model
based on possibility and necessity relations. Ghasemi et al. [12] integrated fuzzy expected value approach
into the generalized data envelopment analysis (GDEA). Ruiz and Sirvent [39] extended a fuzzy cross-efficiency
evaluation based on the possibility approach by Lertworasirikul et al. [25] to FDEA. Ignatius et al. [18] presented
an FDEA model for evaluating the carbon efficiency values. Zerafat-Angiz et al. [50] proposed a new method
to assessment of performance of a DMUs under uncertainty using FDEA.

Pishvaee et al. [36] suggested that there are some main objections in the possibilistic programming approach.
First of all, by increasing the number of uncertain parameters, the number of required tests remarkably increases
to achieve the desired confidence levels of the decision. Therefore, for finding the appropriate values of confidence
levels, too much time will be waste. Additionally, there are no guarantees for optimum values of confidence levels
that chosen for the constraints. After all, the constraints with uncertain parameters may be violate because of
probable and certain dispersions in constraints. Because of this problems, Pishvaee et al. [36] proposed robust
possibilistic programming model.

This study proposed robust fuzzy data envelopment analysis (RFDEA) models based on possibilistic pro-
gramming approach. It should be noted that, for more comprehensive research and expressing of characteristics
of possibility, necessity and credibility measures, comparing of FDEA and RFDEA models will be proposed by
possibility, necessity and credibility approaches, separately.

The rest of this paper is organized as follows. The relations and formulations of possibility, necessity and
credibility measures will be explained in Section 2 which contains of modeling and implementation of Pishvaee
et al.’s [36] approach. Then, FDEA and robust fuzzy data development analysis modeling that are based on
possibility, necessity and credibility approaches will be proposed in Section 3. In Section 4, all of the proposed
models and results of this study will be evaluated. Finally, the conclusion of study will be explained in Section 5.
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2. Background

2.1. Possibility, necessity and credibility measures

In this section, three measures of possibility, necessity and credibility will be discussed one by one, in order
to measure the chances of occurrence of fuzzy events. Additionally, the transform of fuzzy chance constraints
to their equivalent crisp ones will be introduced according to possibility, necessity and credibility measures in
one special confidence level. Notably, in all of the equations that can be seen later, τ̃ and γ are fuzzy and crisp
numbers, respectively. Additionally τ̃ is a fuzzy number with trapezoidal distribution that is determined by
τ̃(τ1, τ2, τ3, τ4) with τ1 < τ2 < τ3 < τ4.

2.1.1. Possibility measure

Let the triple (Ω,P (Ω), Pos) be a possibility space where a universe set Ω is a non-empty set, containing
of all possible events and P (Ω) is the power set of Ω. For each A,B ∈ P (Ω), there are non-negative numbers,
Pos{A} and Pos{B}, the so-called possibility (Pos) measure have the following properties:

• Pos{∅} = 0.
• Pos{Ω} = 1.
• If A ∈ P (Ω) ⇒ 0 ≤ Pos{A} ≤ 1.
• Pos{

⋃
iAi} = Supi(Pos{Ai}).

• If A,B ∈ P (Ω) and A ⊆ B ⇒ Pos{A} 6 Pos{B} (Monotonicity).
• If A,B ∈ P (Ω) ⇒ Pos{A ∪B}+ Pos{A ∩B} ≤ Pos{A}+ Pos{B} (Subadditivity).

Let τ̃ be a trapezoidal fuzzy variable on the possibility space (Ω,P (Ω), Pos). The possibility (Pos) of fuzzy
events {τ̃ ≤ γ} and {τ̃ ≥ γ} are as equations (2.1) and (2.2):

Pos{τ̃ ≤ γ} =


1, if τ2 ≤ γ;
γ−τ1
τ2−τ1 , if τ1 ≤ γ ≤ τ2;

0, if τ1 ≥ γ.
(2.1)

Pos{τ̃ ≥ γ} =


1, if τ3 ≥ γ;
τ4−γ
τ4−τ3 , if τ3 ≤ γ ≤ τ4;

0, if τ4 ≤ γ.
(2.2)

According to possibility measure, converting of fuzzy chance constraints into their equivalent crisp ones in
one special confidence level (α) is equal to equations (2.3) and (2.4):

Pos{τ̃ ≤ γ} ≥ α⇔ (1−α)τ1 + ατ2 ≤ γ, (2.3)

Pos{τ̃ ≥ γ} ≥ α⇔ ατ3+(1−α)τ4 ≥ γ. (2.4)

If the DM prefers a pessimistic viewpoint in order to an allude risk, he can use the necessity measure instead
of possibility measure. The relations and properties of necessity measure is being explained in the next section.

2.1.2. Necessity measure

The necessity (Nec) measure of {A} is defined on (Ω,P (Ω), Pos) as Nec{A} = 1 − Pos{AC} where {AC}
is the complement of {A}. The necessity measure is the dual of possibility measure. For each A,B ∈ P (Ω), the
properties of the necessity (Nec) measure are presented as follows:

• Nec{∅} = 0.
• Nec{Ω} = 1.
• If A ∈ P (Ω) ⇒ 0 ≤ Nec{A} ≤ 1.
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• Nec{
⋂
iAi} = infi(Nec{Ai}).

• If A,B ∈ P (Ω) and A ⊆ B ⇒ Nec{A} ≤ Nec{B} (Monotonicity).
• If A,B ∈ P (Ω) ⇒ Nec{A

⋃
B}+Nec{A

⋂
B} ≥ Nec{A}+Nec{B} (Subadditivity).

• Pos{A} ≥ Nec{A}.
• If Pos{A} < 1 ⇒ Nec{A} = 0.
• If Nec{A} > 0 ⇒ Pos{A} = 1.

Let τ̃ be a trapezoidal fuzzy variable on the possibility space (Ω,P (Ω), Pos). The necessity (Nec) of fuzzy
events {τ̃ ≤ γ} and {τ̃ ≥ γ} is as equations (2.5) and (2.6):

Nec{τ̃ ≤ γ} =


1, if τ4 ≤ γ;
γ−τ3
τ4−τ3 , if τ3 ≤ γ ≤ τ4;

0, if τ3 ≥ γ.
(2.5)

Nec{τ̃ ≥ γ} =


1, if τ1 ≥ γ;
τ2−γ
τ2−τ1 , if τ1 ≤ γ ≤ τ2;

0, if τ2 ≤ γ.
(2.6)

According to necessity measure, converting of fuzzy chance constraints into their equivalent crisp ones in one
special confidence level (α) is as equations (2.7) and (2.8):

Nec{τ̃ ≤ γ} ≥ α⇔ (1− α)τ3 + ατ4 ≤ γ, (2.7)

Nec{τ̃ ≥ γ} ≥ α⇔ ατ1 + (1− α)τ2 ≥ γ. (2.8)

The possibility and necessity measures with optimistic and pessimistic features, respectively.

2.1.3. Credibility measure

The credibility (Cr) measure of {A} is defined on (Ω,P (Ω), Pos) as the average of its possibility (Pos)
and necessity (Nec) measures (Cr{A} = 1

2 (Pos{A} + Nec{A})). For each A,B ∈ P (Ω), the properties of the
credibility (Cr) measure are presented as follows:

• Cr{∅} = 0.
• Cr{Ω} = 1.
• If A ∈ P (Ω) ⇒ 0 ≤ Cr{A} ≤ 1.
• If Ai ∈ P (Ω) and Supi(Cr{Ai}) < 0.5 ⇒ Cr{

⋃
iAi} = Supi(Cr{Ai}).

• If A ∈ P (Ω) ⇒ Cr{A}+ Cr{AC} = 1 (Self-Duality).
• If A,B ∈ P (Ω) and A ⊆ B ⇒ Cr{A} ≤ Cr{B} (Monotonicity).
• If A,B ∈ P (Ω) ⇒ Cr{A

⋃
B} ≤ Cr{A}+ Cr{B} (Subadditivity).

• Pos{A} ≥ Cr{A} ≥ Nec{A}.

Let τ̃ be a trapezoidal fuzzy variable on the possibility space (Ω,P (Ω), Pos). The credibility (Cr) of fuzzy
events {τ̃ ≤ γ} and {τ̃ ≥ γ} is as equations (2.9) and (2.10):

Cr{τ̃ ≤ γ} =


0, if τ1 ≥ γ;
γ−τ1

2(τ2−τ1) , if τ1 ≤ γ ≤ τ2;
1
2 , if τ2 ≤ γ ≤ τ3;
γ−2τ3+τ4
2(τ4−τ3) , if τ3 ≤ γ ≤ τ4;

1, if τ4 ≤ γ.

(2.9)
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Cr{τ̃ ≥ γ} =


1, if τ1 ≥ γ;
2τ2−τ1−γ
2(τ2−τ1) , if τ1 ≤ γ ≤ τ2;
1
2 , if τ2 ≤ γ ≤ τ3;
τ4−γ

2(τ4−τ3) , if τ3 ≤ γ ≤ τ4;

0, if τ4 ≤ γ.

(2.10)

According to credibility measure, converting of fuzzy chance constraints into their equivalent crisp ones in
one special confidence level (α) is as equations (2.11) and (2.12):

Cr{τ̃ ≤ γ} ≥ α⇔
{

(2− 2α)τ3 + (2α− 1)τ4 ≤ γ, if α > 0.5;
(1− 2α)τ1 + 2ατ2 ≤ γ, if α ≤ 0.5.

(2.11)

Cr{τ̃ ≥ γ} ≥ α⇔
{

(2α− 1)τ1 + (2− 2α)τ2 ≥ γ, if α > 0.5;
2ατ3 + (1− 2α)τ4 ≥ γ, if α ≤ 0.5.

(2.12)

Generally, credibility-based fuzzy mathematical programming models categorized to “the expected value”
[31], “the chance constrained programming” [30] and “the dependent-chance constrained programming” [29],
which each of them contains of weaknesses and strengths [37].

2.2. Robust possibilistic programming

In this section, the concept of robust possibilistic programming approach that is proposed by Pishvaee et al.
[36] is explained. For acquaintance of Pishvaee et al.’s [36] modeling, a fuzzy mathematical programming model
can be considered as shown in model (2.13):

Min z = f̃y + c̃x

S.t. Ax ≥ d̃
Sx ≤ Ñy
Bx = e

x ≥ 0

y ∈ {0, 1} (2.13)

In this model, f̃ and c̃ are parameters of objective function. Additionally, d̃ and Ñ are parameters of uncer-
tainty constraints with trapezoidal distribution. In order to dealing with uncertainties in objective function, the
fuzzy expected value is used. Then, in order to dealing with uncertainties in fuzzy chance constraints and convert
of them to equivalent crisp ones, the necessity measure is used. α and β are defined as satisfying confidence
levels of constraints.

Min E[z] = E[f̃ ]y + E[c̃]x

S.t. Nec{Ax ≥ d̃} ≥ α
Nec{Sx ≤ Ñy} ≥ β
Bx = e

x ≥ 0

y ∈ {0, 1} (2.14)

It should be noted that, the concept of fuzzy expected value was proposed by Yager [46] and then was
developed by Dubois and Prade [7] and Heilpern [16]. According to Inuiguchi and Ramik [19], Liu and Iwamura
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[30], Dubois and Prade [7] and Heilpern [16], the equivalent crisp model of the model (2.14) is rewritten as
follows:

Min E[z] =

(
f1 + f2 + f3 + f4

4

)
y +

(
c1 + c2 + c3 + c4

4

)
x

S.t. Ax ≥ (1− α)d3 + αd4

Sx ≤ (1− β)N1y + βN2y

Bx = e

x ≥ 0

y ∈ {0, 1} (2.15)

Model (2.15) is defined as the basic possibilistic chance constrained programming (BPCCP) model. Pishvaee
et al. [36] suggested that, BPCCP model contains of some disadvantages that they are mentioned below:

• DM defines α and β (satisfying confidence levels of constraints) by chance. Therefore, there is no guarantee
of optimality.

• According to literature review, α and β should be considered interactive and set as a few repeat. DM
defines α and β according to sensitivity analysis by using the trying and error method.

• When the number of chance constraints increases, the interactive approach is not efficient, especially in
wasting of time and money. So, the DM must determine the confidence levels as a batch.

• The average performance of system is just considered in the objective function. In some cases, it leads to
high costs and risks for DM.

Pishvaee et al. [36] for eliminating of problems that mentioned above proposed the robust possibilistic
programming (RPP) model as shown in model (2.16):

Min E[z] + σ(zMax − zMin) + δ[d4 − (1− α)d3 − αd4] + π[βN1y + (1− β)N2y −N1y]

S.t. Ax ≥ (1− α)d3 + αd4

Sx ≤ βN1y + (1− β)N2y

Bx = e

x ≥ 0

y ∈ {0, 1}
0.5 < α, β ≤ 1 (2.16)

In this model, zMax and zMin are defined according to equations (2.17) and (2.18):

zMax = f4y + c4x, (2.17)

zMin = f1y + c1x. (2.18)

First term of the objective function represents the average performance of the system, and the second term,
represents the optimality robustness controller. σ represents the relative importance of this term for decision
making compared to other terms of objective function. The third and fourth terms control the feasibility
robustness. δ and π indicate the penalty units of possible violation of each constraints including imprecise and
vague parameters. As shown in RPP model (2.16), in spite of BPCCP model (2.15), the confidence level of
chance constraints is a variable and its value will have been optimized by robust possibilistic programming
model. It should be noted that, we can use zMax − E[z] or zMax instead of second term in objective function.
Additionally, except of the necessity measure, there are other measurement methods that can be used to cope
with uncertain parameters in the model constraints.
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3. Proposed robust fuzzy DEA (RFDEA) models

In this section, an RFDEA model is proposed step by step, according to possibility, necessity and credibility
approaches. It should be noted that the developed DEA models are based on CCR model and uncertainties
are intended to be in inputs and outputs. Additionally, the inputs and outputs have a trapezoidal distribution
x̃(x1, x2, x3, x4) and ỹ(y1, y2, y3, y4) with condition of x1 < x2 < x3 < x4 and y1 < y2 < y3 < y4. There are n
homogenous decision making units DMUj(j = 1, . . . , n) that convert m input xij(i = 1, . . . ,m) into s outputs
yrj(r = 1, . . . , s), and DMU0 is an under evaluation DMU. The non-negative weights vi(i = 1, . . . ,m) and
ur(r = 1, . . . , s) are assigned to inputs and outputs, respectively, and the efficiency score of DMU0 by an
input-oriented CCR (CCR-IO) model can be considered as model (3.1):

DEA

Max Θ =

s∑
r=1

yr0ur

S.t.

s∑
r=1

yrjur −
m∑
i=1

xijvi ≤ 0, ∀j

m∑
i=1

xi0vi = 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.1)

To consider the uncertainty on inputs and outputs, model (3.1) will be converted to model (3.2):

FDEA

Max Θ =

s∑
r=1

ỹr0ur

S.t.

s∑
r=1

ỹrjur −
m∑
i=1

x̃ijvi ≤ 0, ∀j

m∑
i=1

x̃i0vi ≤ 1

ur ≥ 0 , ∀r, vi ≥ 0, ∀i (3.2)

Proposition 3.1. The optimal solution of model (3.1) is equal to model (3.2).

Proof. With respect to the compact form of CCR-IO model, assume that the optimal solution of model (3.2)
is (ū, v̄). By contradiction, suppose that v̄x0 < 1 (it should be noted that v̄x0 > 0). (û, v̂) are considered
as û = ū/v̄x0 and v̂ = v̄/v̄x0. Because of ûyj − v̂xj = (ūyj − v̄xj)/v̄x0 ≤ 0 (with respect to 1/v̄x0 > 0 and
ūyj − v̄xj ≤ 0), v̂x0 = (v̄x0)/v̄x0 = 1, û ≥ 0 and v̂ ≥ 0, (û, v̂) is the feasible solution of model (3.2). Also, in the
objective function ûy0 = (ūy0)/v̄x0, with respect to suppose that v̄x0 < 1, thus 1/v̄x0 > 1 and finally ûy0 > ūy0
that this is contradicts with optimality of (ū, v̄). So at any optimal solution of model (3.2), always v̄x0 = 1.

Therefore, in order to dealing with uncertainties in fuzzy chance constraints in fuzzy DEA model and con-
verting them to their equivalent crisp, three measures of necessity, possibility and credibility are used. α is the
confidence level for satisfying the objective function and constraints. According to three measures of possibility,
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necessity and credibility, an FDEA model is defined as follows:

FDEAPOS

Max Θ

S.t. Pos

{
s∑
r=1

ỹr0ur ≥ Θ

}
≥ α0

Pos

{
s∑
r=1

ỹrjur −
m∑
i=1

x̃ijvi ≤ 0

}
≥ αj , ∀j

Pos

{
m∑
i=1

x̃i0vi ≤ 1

}
≥ αn+1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.3)

FDEANEC

Max Θ

S.t. Nec

{
s∑
r=1

ỹr0ur ≥ Θ

}
≥ α0

Nec

{
s∑
r=1

ỹrjur −
m∑
i=1

x̃ijvi ≤ 0

}
≥ αj , ∀j

Nec

{
m∑
i=1

x̃i0vi ≤ 1

}
≥ αn+1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.4)

FDEACR

Max Θ

S.t. Cr

{
s∑
r=1

ỹr0ur ≥ Θ

}
≥ α0

Cr

{
s∑
r=1

ỹrjur −
m∑
i=1

x̃ijvi ≤ 0

}
≥ αj , ∀j

Cr

{
m∑
i=1

x̃i0vi ≤ 1

}
≥ αn+1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.5)

By using equations (2.3), (2.4), (2.7) and (2.8) that proposed in Section 2, an equivalent crisp of fuzzy chance
constraints according to one specific confidence level with using of possibility and necessity measures can be
written as follows:

FDEAPOS

Max Θ

S.t.

s∑
r=1

(
(α0) y3r0 + (1− α0) y4r0

)
ur ≥ Θ
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s∑
r=1

(
(1−αj) y1rj + (αj) y

2
rj

)
ur −

m∑
i=1

(
(αj)x

3
ij + (1− αj)x4ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(1− αn+1)x1i0 + (αn+1)x2i0

)
vi ≤ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.6)

FDEANEC

Max Θ

S.t.

s∑
r=1

(
(α0) y1r0 + (1− α0) y2r0

)
ur ≥ Θ

s∑
r=1

(
(1−αj) y3rj + (αj) y

4
rj

)
ur −

m∑
i=1

(
(αj)x

1
ij + (1− αj)x2ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(1− αn+1)x3i0 + (αn+1)x4i0

)
vi ≤ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.7)

According to equations (2.11) and (2.12) represent in Section 2, for the confidence levels of greater or less
than 0.5, an equivalent crisp of fuzzy chance constraints would be different. Afterwards, a fuzzy DEA crisp
model for α ≤ 0.5 and α > 0.5 is proposed according to credibility measure:

FDEAα>0.5
CR

Max Θ

S.t.

s∑
r=1

(
(2α0−1) y1r0 + (2− 2α0) y2r0

)
ur ≥ Θ

s∑
r=1

(
(2− 2αj) y

3
rj + (2αj−1) y4rj

)
ur −

m∑
i=1

(
(2αj−1)x1ij + (2− 2αj)x

2
ij

)
vi ≤ 0 , ∀j

m∑
i=1

(
(2− 2αn+1)x3i0 + (2αn+1 − 1)x4i0

)
vi ≤ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.8)

FDEAα≤0.5
CR

Max Θ

S.t.

s∑
r=1

(
(2α0) y3r0 + (1− 2α0) y4r0

)
ur ≥ Θ

s∑
r=1

(
(1− 2αj) y

1
rj + (2αj) y

2
rj

)
ur −

m∑
i=1

(
(2αj)x

3
ij + (1− 2αj)x

4
ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(1− 2αn+1)x1i0 + (2αn+1)x2i0

)
vi ≤ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.9)

Therefore, after the fuzzy DEA models, an RFDEA models based on robust possibilistic programming
approach that was described by Pishvaee et al. [36] will have been proposed. It should be noted that, in robust
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possibilistic programming model of Pishvaee et al. [36], in order to determine the fuzzy chance constraints, a
necessity measure has been used. But in this study, an RFDEA model is being proposed according to possibility,
necessity and credibility measures:

RFDEAPOS

Max ∆ = Θ −
s∑
r=1

Q0

(
y4r0 −

(
(α0) y3r0 + (1− α0) y4r0

))
ur −

n∑
j=1

s∑
r=1

Qj
((

(1−αj) y1rj + (αj) y
2
rj

)
− y1rj

)
ur

−
n∑
j=1

m∑
i=1

Qj
(
x4ij −

(
(αj)x

3
ij + (1− αj)x4ij

))
vi−

m∑
i=1

Qn+1

((
(1− αn+1)x1i0 + (αn+1)x2i0

)
− x1i0

)
vi

S.t.

s∑
r=1

(
(α0) y3r0 + (1− α0) y4r0

)
ur ≥ Θ

s∑
r=1

(
(1−αj) y1rj + (αj) y

2
rj

)
ur −

m∑
i=1

(
(αj)x

3
ij + (1− αj)x4ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(1− αn+1)x1i0 + (αn+1)x2i0

)
vi ≤ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.10)

RFDEANEC

Max ∆ = Θ −
s∑
r=1

Q0

((
(α0) y1r0 + (1− α0) y2r0

)
− y1r0

)
ur −

n∑
j=1

s∑
r=1

Qj
(
y4rj −

(
(1−αj) y3rj + (αj) y

4
rj

))
ur

−
n∑
j=1

m∑
i=1

Qj
((

(αj)x
1
ij + (1− αj)x2ij

)
− x1ij

)
vi −

m∑
i=1

Qn+1

(
x4i0 −

(
(1− αn+1)x3i0 + (αn+1)x4i0

))
vi

S.t.

s∑
r=1

(
(α0) y1r0 + (1− α0) y2r0

)
ur ≥ Θ

s∑
r=1

(
(1−αj) y3rj + (αj) y

4
rj

)
ur −

m∑
i=1

(
(αj)x

1
ij + (1− αj)x2ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(1− αn+1)x3i0 + (αn+1)x4i0

)
vi ≤ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.11)

Thus, with risk averse assumption of DM and consideration of α > 0.5, an RFDEA model is being proposed
according to credibility measure as follows:

RFDEACR

Max ∆ = Θ −
s∑
r=1

Q0

((
(2α0−1) y1r0 + (2− 2α0) y2r0

)
− y1r0

)
ur

−
n∑
j=1

s∑
r=1

Qj
(
y4rj −

(
(2− 2αj) y

3
rj + (2αj−1) y4rj

))
ur
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−
n∑
j=1

m∑
i=1

Qj
((

(2αj−1)x1ij + (2− 2αj)x
2
ij

)
− x1ij

)
vi

−
m∑
i=1

Qn+1

(
x4i0 −

(
(2− 2αn+1)x3i0 + (2αn+1 − 1)x4i0

))
vi

S.t.

s∑
r=1

(
(2α0−1) y1r0 + (2− 2α0) y2r0

)
ur ≥ Θ

s∑
r=1

(
(2− 2αj) y

3
rj + (2αj−1) y4rj

)
ur −

m∑
i=1

(
(2αj−1)x1ij + (2− 2αj)x

2
ij

)
vi ≤ 0, ∀j

m∑
i=1

(
(2− 2αn+1)x3i0 + (2αn+1 − 1)x4i0

)
vi ≤ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ur ≥ 0, ∀r, vi ≥ 0, ∀i (3.12)

In all three RFDEA models that are proposed according to three measures of possibility, necessity and
credibility, Q is important factors of feasibility robustness for objective function and constraints. As shown
in models (3.10)–(3.12), an RFDEA model in all three measures is converted to a non-linear model due to
changing parameter α to a variable. So, for linearization of models (3.10)–(3.12), they are being extended
with consideration of lower and upper bounds for variables. Now, by using of McCormick’s [32] approach with
consideration of Φ = αv and Ψ = αu, by adding of batch constraints according to lower and upper bounds of
confidence level and outputs weight, the linearization process is proposed as follows:

RFDEAPOS

Max ∆ = Θ −Q0ξ0 −
n∑
j=1

Qjξj −Qn+1ξn+1

S.t.

s∑
r=1

(
y3r0Ψr0 + y4r0ur − y4r0Ψr0

)
≥ Θ

s∑
r=1

(
y4r0Ψr0 − y3r0Ψr0

)
= ξ0

s∑
r=1

(
y1rjur − y1rjΨrj + y2rjΨrj

)
−

m∑
i=1

(
x3ijΦij + x4ijvi − x4ijΦij

)
≤ 0, ∀j

s∑
r=1

(
y2rjΨrj − y1rjΨrj

)
+

m∑
i=1

(
x4ijΦij − x3ijΦij

)
= ξj , ∀j

m∑
i=1

(
x1i0vi − x1i0Φin+1 + x2i0Φin+1

)
≤ 1

m∑
i=1

(
x2i0Φin+1 − x1i0Φin+1

)
= ξn+1

Ψrh ≥ 0.5ur + αhu
l
r − 0.5ulr, ∀h = 0, . . . , n+ 1

Ψrh ≥ ur + αhu
u
r − uur , ∀h = 0, . . . , n+ 1

Ψrh ≤ ur + αhu
l
r − ulr, ∀h = 0, . . . , n+ 1

Ψrh ≤ 0.5ur + αhu
u
r − 0.5uur , ∀h = 0, . . . , n+ 1
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Φih ≥ 0.5vi + αhv
l
i − 0.5vli, ∀h = 0, . . . , n+ 1

Φih ≥ vi + αhv
u
i − vui , ∀h = 0, . . . , n+ 1

Φih ≤ vi + αhv
l
i − vli, ∀h = 0, . . . , n+ 1

Φih ≤ 0.5vi + αhv
u
i − 0.5vui , ∀h = 0, . . . , n+ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ulr ≤ ur ≤ uur , ∀r, vli ≤ vi ≤ vui , ∀i (3.13)

Proposition 3.2. The model (3.13) is feasible.

Proof. To prove the feasibility of model (3.13), it is sufficient to show that the model (3.13) has a feasible
solution. The point of (u, v, Ψ, Φ, α) = (0, 0, 0, 0, 0.5), is satisfied in all of the constraints of model (3.13), so this
point is feasible solution of this model and finally model (3.13) is feasible.

RFDEANEC

Max ∆ = Θ −Q0ξ0 −
n∑
j=1

Qjξj −Qn+1ξn+1

S.t.

s∑
r=1

(
y1r0Ψr0 + y2r0ur − y2r0Ψr0

)
≥ Θ

s∑
r=1

(
y1r0Ψr0 − y1r0ur + y2r0ur − y2r0Ψr0

)
= ξ0

s∑
r=1

(
y3rjur − y3rjΨrj + y4rjΨrj

)
−

m∑
i=1

(
x1ijΦij + x2ijvi − x2ijΦij

)
≤ 0, ∀j

s∑
r=1

(
y4rjur − y4rjΨrj + y3rjΨrj − y3rjur

)
+

m∑
i=1

(
x1ijΦij − x1ijvi + x2ijvi − x2ijΦij

)
= ξj , ∀j

m∑
i=1

(
x3i0vi − x3i0Φin+1 + x4i0Φin+1

)
≤ 1

m∑
i=1

(
x4i0vi − x4i0Φin+1 + x3i0Φin+1 − x3i0vi

)
= ξn+1

Ψrh ≥ 0.5 ur + αhu
l
r − 0.5ulr, ∀h = 0, . . . , n+ 1

Ψrh ≥ ur + αhu
u
r − uur , ∀h = 0, . . . , n+ 1

Ψrh ≤ ur + αhu
l
r − ulr, ∀h = 0, . . . , n+ 1

Ψrh ≤ 0.5ur + αhu
u
r − 0.5uur , ∀h = 0, . . . , n+ 1

Φih ≥ 0.5vi + αhv
l
i − 0.5vli, ∀h = 0, . . . , n+ 1

Φih ≥ vi + αhv
u
i − vui , ∀h = 0, . . . , n+ 1

Φih ≤ vi + αhv
l
i − vli, ∀h = 0, . . . , n+ 1

Φih ≤ 0.5vi + αhv
u
i − 0.5vui , ∀h = 0, . . . , n+ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ulr ≤ ur ≤ uur , ∀r, vli ≤ vi ≤ vui , ∀i (3.14)
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Proposition 3.3. The model (3.14) is feasible.

Proof. To prove the feasibility of model (3.14), it is sufficient to show that the model (3.14) has a feasible
solution. The point of (u, v, Ψ, Φ, α) = (0, 0, 0, 0, 0.5), is satisfied in all of the constraints of model (3.14), so this
point is feasible solution of this model and finally model (3.14) is feasible.

RFDEACR

Max ∆ = Θ −Q0ξ0 −
n∑
j=1

Qjξj −Qn+1ξn+1

S.t.

s∑
r=1

(
y1r0Ψr0 −

1

2
y1r0ur + y2r0ur − y2r0Ψr0

)
≥ 1

2
Θ

s∑
r=1

(
y1r0Ψr0 − y1r0ur + y2r0ur − y2r0Ψr0

)
=

1

2
ξ0

s∑
r=1

(
y3rjur − y3rjΨrj + y4rjΨrj −

1

2
y4rjur

)
−

m∑
i=1

(
x1ijΦij −

1

2
x1ijvi + x2ijvi − x2ijΦij

)
≤ 0, ∀j

s∑
r=1

(
y4rjur − y4rjΨrj + y3rjΨrj − y3rjur

)
+

m∑
i=1

(
x1ijΦij − x1ijvi + x2ijvi − x2ijΦij

)
=

1

2
ξj , ∀j

m∑
i=1

(
x3i0vi − x3i0Φin+1 + x4i0Φin+1 −

1

2
x4i0vi

)
≤ 1

2

s∑
r=1

(
x4i0vi − x4i0Φin+1 + x3i0Φin+1 − x3i0vi

)
=

1

2
ξn+1

Ψrh ≥ 0.5ur + αhu
l
r − 0.5ulr, ∀h = 0, . . . , n+ 1

Ψrh ≥ ur + αhu
u
r − uur , ∀h = 0, . . . , n+ 1

Ψrh ≤ ur + αhu
l
r − ulr, ∀h = 0, . . . , n+ 1

Ψrh ≤ 0.5ur + αhu
u
r − 0.5uur , ∀h = 0, . . . , n+ 1

Φih ≥ 0.5vi + αhv
l
i − 0.5vli, ∀h = 0, . . . , n+ 1

Φih ≥ vi + αhv
u
i − vui , ∀h = 0, . . . , n+ 1

Φih ≤ vi + αhv
l
i − vli, ∀h = 0, . . . , n+ 1

Φih ≤ 0.5vi + αhv
u
i − 0.5vui , ∀h = 0, . . . , n+ 1

0.5 < αh ≤ 1, ∀h = 0, . . . , n+ 1

ulr ≤ ur ≤ uur , ∀r, vli ≤ vi ≤ vui , ∀i (3.15)

Proposition 3.4. The model (3.15) is feasible.

Proof. To prove the feasibility of model (3.15), it is sufficient to show that the model (3.15) has a feasible
solution. The point of (u, v, Ψ, Φ, α) = (0, 0, 0, 0, 0.5), is satisfied in all of the constraints of model (3.15), so this
point is feasible solution of this model and finally model (3.15) is feasible.

Models (3.13)–(3.15) RFDEA linear programming (LP) model with possibility, necessity and credibility
approaches, respectively.

4. Numerical experiments

In this section, the result of analysis models that proposed in this research will be evaluated by using a
numerical example. The numerical example is related to five DMUs with two fuzzy inputs and two fuzzy
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Table 1. Data of five DMUs with two fuzzy inputs and two fuzzy outputs.

DMUs Inputs Outputs

I (1) I (2) U (1) U (2)

DMU A (3.25, 3.75, 4.25, 4.75) (2.25, 2.5, 2.75, 3) (1, 2, 3, 4) (4, 4.5, 5, 5.5)
DMU B (2, 4, 6, 8) (4, 4.5, 5, 5.5) (0.5, 1, 1.5, 2) (2, 3, 4, 5)
DMU C (2.25, 2.75, 3.25, 3.75) (2, 3, 4, 5) (1, 3, 5, 7) (1.5, 2.5, 3.5, 4.5)
DMU D (3.5, 4.5, 5.5, 6.5) (4.5, 5, 5.5, 6) (1.5, 2, 2.5, 3) (0.25, 0.5, 0.75, 1)
DMU E (0.5, 1, 1.5, 2) (1.5, 1.75, 2, 2.25) (3, 4, 5, 6) (2, 2.75, 3.5, 4.25)

outputs in the form of a trapezoidal fuzzy number is trapezoidal. Numerical data of the example are presented
in Table 1.

Now, solving the fuzzy DEA model will be investigated. Therefore, models (3.6)–(3.9) are fuzzy DEA model
with possibility approach, fuzzy DEA model with necessity approach, fuzzy DEA model with credibility approach
with condition of α = 0.5 and fuzzy DEA model with credibility approach with condition of α < 0.5 will have
been solved with different confidence level for objective function and constraints, respectively. The results of
fuzzy DEA models according to possibility approach, necessity approach and credibility approach are shown in
Tables 2–4.

After solving of fuzzy DEA models, solving and analyzing of RFDEA models will be discussed. Models (3.13)–
(3.15) are RFDEA model with possibility approach, RFDEA model with necessity approach and RFDEA model
with credibility approach, respectively. They are being solved according to different coefficients for different
terms of objective function and consideration of relative importance for DM terms. With respect to results
of FDEA models and data, in all of RFDEA models, Q that is important factors of feasibility robustness for
objective function and constraints is set equal to 0, 0.01, 0.02, 0.03, 0.04 and 0.05, respectively. The results of
RFDEA models according to possibility approach, necessity approach and credibility approach are shown in
Tables 5–7.

Possibility, necessity and credibility measures are three measures with optimistic, pessimistic and combination
of two modes of optimistic and pessimistic viewpoint, respectively, in order to measure the chances of occurrence
of fuzzy events. Thus, by solving of FDEA and RFDEA models according to possibility, necessity and credibility
approaches, three efficiency values of optimistic, pessimistic and combination of two modes of optimistic and
pessimistic viewpoint for each DMU are calculated. Triple efficiency values that cited above are caused to better
deciding and sensitive analysis for DM.

As can be seen in results of fuzzy DEA models, for the same confidence levels in objective function and con-
straints, maximum efficiency is obtaining for possibility approach, credibility approach and necessity approach,
respectively. Additionally, for RFDEA models, maximum efficiency occurred for possibility, necessity and
credibility approaches as shown in Tables 5–7.

Table 2. Results of fuzzy DEA (FDEA) model – possibility approach.

DMUs Confidence levels (α)

α= 0 α = 0.2 α= 0.4 α= 0.6 α= 0.8 α= 1

Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank

DMU A 2.183 4 1.934 3 1.724 2 1.544 2 1.390 2 1.258 2
DMU B 2.500 3 1.767 4 1.286 4 0.954 4 0.744 4 0.626 4
DMU C 2.625 2 2.063 2 1.634 3 1.301 3 1.041 3 0.845 3
DMU D 0.571 5 0.465 5 0.380 5 0.328 5 0.286 5 0.250 5
DMU E 8.500 1 6.039 1 4.416 1 3.296 1 2.496 1 1.909 1
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Table 3. Results of fuzzy DEA (FDEA) model – necessity approach.

DMUs Confidence levels (α)

α= 0 α = 0.2 α= 0.4 α= 0.6 α= 0.8 α = 1

Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank

DMU A 0.818 1 0.732 1 0.655 1 0.587 1 0.525 1 0.471 1
DMU B 0.300 4 0.256 3 0.217 3 0.183 3 0.154 3 0.128 3
DMU C 0.313 3 0.255 4 0.207 4 0.167 4 0.134 4 0.106 4
DMU D 0.127 5 0.111 5 0.096 5 0.084 5 0.072 5 0.063 5
DMU E 0.700 2 0.606 2 0.524 2 0.452 2 0.389 2 0.333 2

Table 4. Results of fuzzy DEA (FDEA) model – credibility approach.

DMUs Confidence levels (α)

α = 0 α = 0.2 α= 0.4 α= 0.6 α= 0.8 α = 1

Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank Θ∗ Rank

DMU A 2.183 2 1.724 2 1.390 2 0.732 1 0.587 1 0.471 1
DMU B 2.500 4 1.286 4 0.744 4 0.256 3 0.183 3 0.128 3
DMU C 2.625 3 1.634 3 1.041 3 0.255 4 0.167 4 0.106 4
DMU D 0.571 5 0.380 5 0.286 5 0.111 5 0.084 5 0.063 5
DMU E 8.500 1 4.416 1 2.496 1 0.606 2 0.452 2 0.333 2

Table 5. Results of robust fuzzy DEA (RFDEA) model – possibility approach.

DMUs Confidence levels (α)

Q = 0 Q = 0.01 Q = 0.02 Q = 0.03 Q = 0.04 Q = 0.05

∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank

DMU A 1.631 4 1.618 4 1.605 4 1.591 4 1.578 4 1.565 4
DMU B 1.636 3 1.623 3 1.609 3 1.595 3 1.582 3 1.568 3
DMU C 1.674 2 1.658 2 1.641 2 1.624 2 1.607 2 1.591 2
DMU D 0.389 5 0.382 5 0.374 5 0.366 5 0.358 5 0.350 5
DMU E 5.167 1 5.120 1 5.073 1 5.027 1 4.980 1 4.933 1

Table 6. Results of robust fuzzy DEA (RFDEA) model – necessity approach.

DMUs Confidence levels (α)

Q = 0 Q = 0.01 Q = 0.02 Q = 0.03 Q = 0.04 Q = 0.05

∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank

DMU A 0.663 1 0.656 1 0.649 1 0.642 1 0.635 1 0.628 1
DMU B 0.214 3 0.210 3 0.205 3 0.201 3 0.196 3 0.192 3
DMU C 0.207 4 0.201 4 0.195 4 0.189 4 0.182 4 0.176 4
DMU D 0.094 5 0.091 5 0.088 5 0.084 5 0.081 5 0.078 5
DMU E 0.513 2 0.504 2 0.496 2 0.487 2 0.479 2 0.470 2
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Table 7. Results of robust fuzzy DEA (RFDEA) model – credibility approach.

DMUs Confidence levels (α)

Q = 0 Q = 0.01 Q = 0.02 Q = 0.03 Q = 0.04 Q = 0.05

∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank ∆∗ Rank

DMU A 1.694 1 1.679 1 1.664 1 1.649 1 1.634 1 1.619 1
DMU B 0.558 4 0.548 4 0.538 4 0.528 4 0.518 4 0.508 4
DMU C 0.602 3 0.587 3 0.571 3 0.556 3 0.541 3 0.526 3
DMU D 0.119 5 0.112 5 0.105 5 0.099 5 0.092 5 0.086 5
DMU E 1.727 2 1.649 2 1.571 2 1.493 2 1.415 2 1.336 2

According to DEA, each DMU could specify a set of weights that show in the most favorable condition
in comparison to other DMUs. According to RFDEA models that presented in this study, each DMU could
specify a set of confidence levels for objective function and constraints that show it in the most favorable
condition in comparison to other DMUs. Based on this flexibility in choosing of confidence levels for each
DMU, if efficiency value of DMU be less than one, there is no doubt in inefficiency of DMU. For Example,
the results of confidence levels (α0, α1, α2, α3, α4, α5, α6) in RFDEA model based on necessity approach for
DMU E are (0.5000000, 0.5007330, 0.5005236, 1.000000, 0.5007330, 0.5000000, 0.5000000) that presented flex-
ibility in choosing of confidence levels for each DMU. So, the use of RFDEA models (specially, model that
proposed according to possibility approach) instead of FDEA models, when recognition of inefficient DMUs for
reviewal in their performance and filtering of them is DM’s goal, it could be more efficient in the presence of
uncertainty.

Based on reasons that mentioned in Section 2, defining of confidence levels of objective function and con-
straints in FDEA models is contestable and time consuming. But as can be seen in the results of RFDEA
models, determination of confidence levels by using of time consuming and costly approaches that introduced
in literature is not required and it is a great advantage. The ability to adjusted degree of feasibility robustness
by using of Q coefficients is another advantages of RFDEA models.

5. Conclusions

In this study, an RFDEA model is proposed by the use of possibility approach, necessity measures. The
RFDEA models were proposed according to robust possibilistic programming approach that suggested by Pish-
vaee et al. [36]. Additionally, due to changing the nature of confidence level from parameter to variable in
RFDEA models and converting these models to non-linear, the linearization of models are considered by using
the McCormick’s [32] approach. Finally, to show the validation of developed fuzzy DEA and RFDEA models,
a numerical example is used. At the end, it should be noted that, the DEA model in this study was CCR with
uncertainty on inputs and outputs data and trapezoidal distribution. For the future studies, the RFDEA models
could be proposed based on other DEA models such as BCC [1] and additive [4] models.
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[34] R. Nedeljković and D. Drenovac, Efficiency measurement of delivery post offices using fuzzy data envelopment analysis
(possibility approach). Int. J. Traffic Transp. Eng. 2 (2012) 22–29.

[35] A. Payan and M. Shariff, Scrutiny Malmquist productivity index on fuzzy data by credibility theory with an application to
social security organizations. J. Uncertain. Syst. 7 (2013) 36–49.

[36] M.S. Pishvaee, J. Razmi and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network
design: a new approach. Fuzzy Sets Syst. 206 (2012) 1–20.

[37] M.S. Pishvaee, S.A. Torabi and J. Razmi, Credibility-based fuzzy mathematical programming model for green logistics design
under uncertainty. Comput. Ind. Eng. 62 (2012) 624–632.

[38] S. Ramezanzadeh, A. Memariani and S. Saati, Data envelopment analysis with fuzzy random inputs and outputs: a chance-
constrained programming approach. Iran. J. Fuzzy Syst. 2 (2005) 21–29.

[39] J.L. Ruiz and I. Sirvent, Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy Optim. Decis. Mak. 16 (2017) 111-126.
[40] Y.M. Wang and K.S. Chin, Fuzzy data envelopment analysis: a fuzzy expected value approach. Expert Syst. Appl. 38 (2011)

11678–11685.

[41] M. Wen and H. Li, Fuzzy data envelopment analysis (DEA): model and ranking method. J. Comput. Appl. Math. 223 (2009)
872–878.



AN FDEA BASED ON ROBUST POSSIBILISTIC PROGRAMMING 1463

[42] M. Wen and C. You, A Fuzzy Data Envelopment Analysis (DEA) Model With Credibility Measure. Technical report (2007).

[43] M. Wen, C. You and R. Kang, A new ranking method to fuzzy data envelopment analysis. Comput. Math. Appl. 59 (2010)
3398–3404.

[44] M. Wen, Z. Qin and R. Kang, Sensitivity and stability analysis in fuzzy data envelopment analysis. Fuzzy Optim. Decis. Mak.
10 (2011) 1–10.

[45] D.D. Wu, Z. Yang and L. Liang, Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis. Appl.
Math. Comput. 181 (2006) 271–281.

[46] R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24 (1981) 143–161.

[47] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1 (1978) 3–28.
[48] M.L. Zerafat-Angiz, A. Emrouznejad and A. Mustafa, Fuzzy assessment of performance of a decision making units using DEA:

a non-radial approach. Expert Syst. Appl. 37 (2010) 5153–5157.
[49] M.L. Zerafat-Angiz, A. Emrouznejad and A. Mustafa, Fuzzy data envelopment analysis: a discrete approach. Expert Syst.

Appl. 39 (2012) 2263–2269.
[50] M.L. Zerafat-Angiz, M.K.M. Nawawi, R. Khalid, A. Mustafa, A. Emrouznejad, R. John and G. Kendall, Evaluating decision-

making units under uncertainty using fuzzy multi-objective nonlinear programming. Inf. Syst. Oper. Res. 55 (2017) 1–15.
[51] X. Zhao and W. Yue, A multi-subsystem fuzzy DEA model with its application in mutual funds management companies’

competence evaluation. Proc. Comput. Sci. 1 (2010) 2469–2478.


	A novel fuzzy data envelopment analysis based on robust possibilistic programming: possibility, necessity and credibility-based approaches
	1 Introduction
	2 Background
	2.1 Possibility, necessity and credibility measures
	2.1.1 Possibility measure
	2.1.2 Necessity measure
	2.1.3 Credibility measure

	2.2 Robust possibilistic programming

	3 Proposed robust fuzzy DEA (RFDEA) models
	4 Numerical experiments
	5 Conclusions

	References

