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EXTENSION OF STOCHASTIC DOMINANCE
THEORY TO RANDOM VARIABLES (*)

by Chi-Kwong Li (l) and Wing-Keung WONG (2'**)

Communicated by Jean-Yves JAFFRAY

Abstract. - In this paper, we develop some stochastic dominance theorems for the location and
scalefamüy and linear combinations of rondom variables and for risk lovers as well as risk averters
that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed
and applied to decision-making.

Keywords: Ascending stochastic dominance, descending stochastic dominance, risk lovers,
risk averters, utility function.

1. INTRODUCTION

There are three major types of persons: risk averters, risk neutrals and risk
lovers. Their corresponding utility functions are concave, linear and convex;
all are increasing functions. Many authors have studied the sélection rules
for risk averters. Markowitz (1952, 1970) and Tobin (1958, 1965) proposed
the mean-variance sélection rules for risk averters. Quirk and Saposnik
(1962), Fishburn (1964, 1974), Hadar and Russell (1969, 1971), Hanoch
and Levy (1969), Whitmore (1970), Rothschild and Stiglitz (1970, 1971),
Tesfatsion (1976), Bawa (1975), and Bawa et al (1985) studied the stochastic
dominance rules for risk averters. Meyer (1977) developed some results of
second degree stochastic dominance with respect to a function. He discussed
the stochastic dominance for risk lovers as well as risk averters. Wong and Li
(1999) extended Fishburn's convex stochastic dominance theorem to include
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5 1 0 C.-K. LI and W.-K. WONG

any distribution function and extended the results for risk lovers as well
as risk averters.

In this paper we develop some stochastic dominance theorems for the
location and scale family of random variables and linear combinations of
random variables and for risk lovers as well as risk averters that extend
results in Hadar and Russell (1971) and Tesfatsion (1976). We call stochastic
dominance for risk lovers descending stochastic dominance (DSD). To avoid
confusion, we call stochastic dominance for risk averters ascending stochastic
dominance (ASD). We note that stochastic dominance for risk neutrals is
a special case in the theory of stochastic dominance for risk averters or
risk lovers. We also remark that Stoyan (1983) developed some results in
ascending and descending stochastic dominances although he did not interpret
the results in selecting rules for risk averters and risk lovers. Instead of using
the terms ascending and descending stochastic dominances, he used concave
and convex ordings.

We begin by introducing notation and définitions in Section 2. Section 3
discusses some basic properties for the stochastic dominance theory. Section 4
concerns the study of location and scale family of distributions and the
properties of non-negative combinations of random variables for ASD and
DSD. In Section 5, the stochastic dominance théories for risk lovers and risk
averters are compared and applied to decision-making.

2. DEFINITIONS AND NOTATIONS

Dénote by R the set of real numbers and let R be the set of extended real
numbers. Suppose that ft — [a, b] is a subset of R in which a and b can be
finite or infinité. Let B be the Borel a-field of fi and / i b e a measure on
(ÎÎ ,B). The fonctions F and FD of the measure fi are defined as:

F(x) = ii[a,x] and FD(x) = n[x,b] for all x G fi. (l)

The function F is called a probability distribution function and \x is called a
probability measure if /i(ft) = 1. We remark that in this paper the définition
of F which takes care of both ascending and descending stochastic dominance
is different from the "traditional" définition of F. By the basic probability
theory, for any random variable X and for probability measure F , there
exists a unique induced probability measure /x on (fi,B) and the probability
distribution function F such that F satisfies (1) and

1 eB) for any B E B.
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EXTENSION OF STOCHASTIC DOMINANCE THEORY TO RANDOM VARIABLES 5 1 1

An intégral written in the form of JAf(t)d/i(t) or JAf(t)dF(t) is a
Lebesgue intégral for any integrable fonction f(t). If the intégral has the
same value for any set A which is equal to (c,d], [c, d) or je, d], then we
use the notation ƒƒ ƒ (t) d(i(t) instead. In addition, if ji is a Borel measure
with jjbic^ d\ — d — c for any c < d, then we write the intégral as Jc f(t) dt.
The Lebesgue intégral Jc f(t)dt is equal to the Riemann intégral if ƒ is
bounded and continuons almost everywhere on [c, d]; see Theorem 1.7.1 in
Ash (1972).

We consider random variables, denoted by X, Y, • • *, defined on Q. The
probability distribution functions of X and Y are F and G respectively. The
following notation will be used throughout this paper:

fb
= IMX = E(X) = / xdF(x),

Ja

HG = PY = E(Y)= / xdG(x);
Ja

FP(TS — FD(x)- GP(T) — GD(T\ HP(T\ — FP(T) - GP(TY

fx
 A fb

Ja Jx
n = 2,3; and M = F,G, or H.

Throughout this paper, all functions are assumed to be measureable, all
random variables are assumed to satisfy:

Ff(a) = 0 and Ff(b) = 0. (3)

Condition (3) will hold for any random variable except a random variable
with positive probability at the points négative infinity or positive infinity.

We next define the first, second and third order ascending stochastic
dominances which are appiied to risk averters; and then define the first,
second and third order descending stochastic dominances which are appiied
to risk lovers.

DÉFINITION 1 : Given two random variables X and Y with F and G as their
respective probability distribution functions, X is at least as large as Y and
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F is at least as large as G in the sense of:

a) FASD, denoted byX>ziY orF hi G, ifand only ifF^{x) < Gf(x)
for each x in [a, 6];

b) SASD, denoted byXy2Y orF y2 G, ifand only ifF^(x) < G${x)
for each x in [a,b];

c) TASD, denoted byX y^Y orF ^3 G, ifand only ifF^{x) < Gf(x)
for each x in [a,b] and ^p > \XQ%

where FASD, SASD and TASD stand for first, second and third order
ascending stochastic dominance respectively.

If in addition there exists x in [a, b] such that F^(x) < Gf{x) for i = 1, 2
and 3, we say that X is larger than Y and F is larger than G in the sense
ofSFASD, SSASD and STASD, denoted by X yxY orF y1 G, X y2Y or
F >-2 G, and X >~3 Y or F >-3 G respectively, where SFASD, SSASD, and
STASD stand for strictly first, second and third order ascending stochastic
dominance respectively.

DÉFINITION 2: Given two rondom variables X and Y with F and G as their
respective probability distribution functions, X is at least as large as Y and
F is at least as large as G in the sense of:

a) FDSD, denoted byX y1 Y or F h1 G, ifand only ifF? (x) > G?(x)
for each x in [a,b];

b) SDSD, denoted byX h2 Y or F h2 G,ifandonlyifF?{x) > Gf (x)
for each x in [a, &];

c) TDSD, denoted byX y3 Y or F ^ 3 G,ifandonlyifF^(x) > Gf (x)
for each x in [a, b] and \±p > ^ , where FDSD, SDSD, and TDSD
stand for first, second and third order descending stochastic dominance
respectively.

If in addition there exists x in [a, 6] such that F®(x) > Gf(x) for i = 1,2
and 3, we say that X is larger than Y and F is larger than G in the sense of
SFDSD, SSDSD, and STDSDf denoted by X y1 Y or F y1 G,Xy2Y or
F y2 G, and X y3 Y or F y3 G respectively, where SFDSD, SSDSD, and
STDSD stand for strictly first, second and third order descending stochastic
dominance respectively.

We remark that if F y% G or F yi G, then -Hf is a distribution
function for any j > iy and there exists a unique measure /x such that
n[a,x] = -Hf(x) for any x G [a, 6], Similarly, if F y* G or F y'1 G, then

* is distribution function for any j > i. H^ and # ƒ are defined in (2).
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DÉFINITION 3:

a) Forn = 1,2,3, UA, U$A, U& and U£D are sets ofutility functions
u such that:

UÛ{U*A) = {u : ( -1) '+V«"> > ( > ) 0 , t = 1, • • • , « } ,

where u^ is the ith derivative of the utility fonction u.
b) The extended sets of utility functions are defined as follows:

UfA(UfSA) = {u : u is (strictly) increasing },

^2 (^2 ) — iu is increasing and (strictly) concave },

= {u is increasing and (strictly) convex },

= {ue UfA : u is (strictly) convex }, and

) = {u G UfD : u' is (strictly) convex }.

Note that in Définition 3 "increasing" means "nondecreasing" and
"decreasing" means "nonincreasing". We also remark that in Définition 3,
Uf - U{> and UfA = U?D . We will use two notation UfD and UfSD in
this paper such that UfD = Z/fA and UfSD ~ UfSA . It is known (e.g.
see Th. 11C in Roberts and Varberg 1973) that u in U^A, UfSA, UfD, or
UfSD , and u' in I/fA, t/3^5A, C/fD or [/3S5jD are differentiable almost
everywhere and their derivatives are continuous almost everywhere.

An individual chooses between F and G in accordance with a consistent set
of préférences satisfying the Von Neumann-Morgenstern (1967) consistency
properties. Accordingly, F is (strictly) preferred to G, or equivalently, X
is (strictly) preferred to Y if

AEu = u(F) ~- u(G) = u(X) - u(Y) > 0(> 0), (4)

where u(F) = u(X) = f*u(x)dF(x) and u(G) = u{Y) = j*u{x)dG{x).

3. BASIC PROPERTIES

In this section we present some lemmas which are useful for the extension
of stochastic dominance theory to include any random variable with any
distribution function defined on a finite or infinité interval. The lemmas also
enable the stochastic dominance results to be applicable to utility functions

voL 33, n° 4, 1999



5 1 4 C.-K. LI and W.-K. WONG

without the differentiability constraints. We also state a basic theorem of
stochastic dominance theory in this section.

LEMMA 1: Let JJL be a-finite measure defined on ([a,&],B) where B is
a a-field of [a, &]. Suppose F(x) = ju[a,z] ana FD(x) = n[xyb] for all
x e [a, 6]. We consider c and d with a < c < d < 6. IfFD(c), F{d) are finite,
and if G is increasing and continuons on [c, dj, then there exists a measure
v with i/[c, x] = G(x) — G(c) such that

f G(x) d fi(x) - F(d)G(d) - F(c)G(c) - f F(t) d v(t) (5)
J(c,d] J(c,d]

f G{x)dui{x) = FD(c)G(c) - FD\d)G{d) + f FD{t)dv{t). (6)
J(c4) J(c,d)

The proof of Lemma 1 is in the appendix. We remark that if F is continuous
on [cjd], then the continuity requirement of G can be dropped and we will
obtain results similar to (5) and (6). Where G is decreasing or differentiable,
results similar to (5) and (6) are also obtained. Applying Theorem 3.2.3 in
Rohatgi (1975) and Lemma 1, one can prove the following lemma:

LEMMA 2: If X and Y be rondom variables defined on fi with finite means
fMX eind fxy respectively, then

t*x -I*Y= f [G(t) - F(t)] dt= f [Ff(t) - G?(t)] dt.
Ja Ja

Note that E(X) is finite if and only if both E[XI[X>o}] a n d E\XI{X<0}}
are finite in Lebesgue measure. We remark that the constraint of finite
means in Lemma 2 can be further relaxed. The following theorem identifies
conditions under which ascending stochastic dominance and descending
stochastic dominance can be considered as dual problems of each other:

LEMMA 3: For any rondom variables X andY, we have the following:

a) X >:i (>~i)Y ifand only if -Y y* (yl) -X for i = 1,2 or 3.

b) X >n (M)y ifand only if X y1 (y^Y.

c) If X and Y have the same mean which is finite, then

Xy2(y2)Y ifand only if Y y2 (y2)X.

Recherche opérationnelle/Opérations Research
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For most existing stochastic dominance results, it is not difficult to modify
the proofs for the cases of continuous random variables to obtain the proofs
for any gênerai distribution function by using basic probability theory and
Lemma 1. In addition, if the stochastic dominance results for continuous
density fonctions are available, the following lemmas may be applied to
extend the results to include any gênerai probability distribution fonctions:

LEMMA 4: For any random variable X, there exisîs a séquence of random
variables {Xn} with finite supports and continuous density functions such
thaï Xn converges to X in distribution. In addition if X is of finite mean,
then {Xn} can be uniformly integrable.

We remark that {Xn} in Lemma 4 can be constructed to be defined on R
or on infinité intervais which are bounded from above or below.

LEMMA 5: Let X be a random variable, if {Xn} is a séquence of random
variables such than Xn converges to X in distribution, then

F^i —> FA and F®i —» F® almost everywhere as n —> oo,

in addition if X is of finite mean, then

Fn 2 —» FA and F®2 ~~* ^F almost everywhere as n —> oo,

where FA and FP are defined as in (2) for the probability distribution
function F of X and FA

i and F^i are similarly defined for the probability
distribution function Fn of Xn for i = 1 and 2.

LEMMA 6: Suppose Xn,Yn,X and Y are random variables such that Xn

converges to X in distribution and Yn converges to Y in distribution. If Xn

and Yn are independent, then Xn + Yn converges to X + Y in distribution.
The proofs of Lemmas 3 to 6 are straightforward and we omit the

proofs. The following theorem describes some basic relation between utility
functions and distribution functions:

THEOREM 7: Let X and Y be random variables with probability distribution
functions F and G respectively. Suppose u is a utility function. For m = 1, 2
and 3; we have the following:

a) F ym (ym)G if and only ifu(F) > (>)u(G) for any u in U such
that U^ÇUÇ UiA (U^ Ç U Ç U®SA).

vol. 33, n° 4, 1999



5 1 6 C.-K. LI and W-K. WONG

b) F t.m (ym)G if and only ifu(F) > (>)u(G) for any u in U such
that U»ÇUÇ U%D (U™ ÇUÇ £SD

There are many papers containing results similar to the above theorem.
For example, Hadar and Russell (1971) and Bawa (1975) proved the
ascending stochastic dominance results for continuous density functions
and continuously differentiable utility functions. Hanach and Levy (1969)
and Tesfatsion (1976) proved the first and second order ascending stochastic
dominance for gênerai distribution functions. Rothschild and Stiglitz (1970,
1971) studied the special case of distributions with equal means and have
proposed a condition that is equivalent to the second order ascending
stochastic dominance results. Meyer (1977) discussed second order stochastic
dominance for risk lovers and risk averters. Stoyan (1983) proved the first
and second order stochastic dominance results for risk lovers as well as risk
averters. One can modify Stoyan's proof to obtain the order the third order
results in Theorem 7.

It is known that if pp — HG> F h2 G (F y2 G) and if their variances
exist, then a\ < a2

G (a2
F < a2

G), If fj,F = /xG, F y2 G (F y2 G) and if
their variances exist, then a2

F > a2
G {a2

F > GQ). These reflect the f act that
risk averters prefer to invest in prospects or portfolios with smaller variances
while risk lovers prefer larger variances.

4. STOCHASTIC DOMINANCE FOR RANDOM VARIABLES

In this section, we study the stochastic dominance for random variables,
and non-negative combinations, or equivalently convex combinations, of
random variables. Random variables X, Y, • • • can be regarded as the returns
of individual prospects and convex combinations of random variables can
be regarded as the returns of the portfolios of different prospects. Hence,
stochastic dominance for the random variables can be applied to check the
préférences of different prospects and the préférences of different portfolios.

We remark that for any pair of random variables X and Y, the statements
X ym Y, and F ym G are equivalent. But for n > 1, the statements
Ylï=i<*iXi hm E?=i<*Yi a n d Y!i=i<*iFi ^m E L i ^ G * *& different
because the distribution functions of Y^i=i ai^i and X^-2 otiYi are different
from those of ]T^=1 otiFi and YA-I aiGi- Therefore, we cannot apply the
convex stochastic dominance theorems in Fishburn (1974) to the convex
combinations of random variables.

Recherche opérationnelle/Opérations Research



EXTENSION OF STOCHASTIC DOMINANCE THEORY TO RANDOM VARIABLES 5 1 7

First we study the stochastic dominance of random variables X and Y
which are in the same location and scale family such that Y = p + qX. The
location parameter p can be viewed as the random variable with degenerate
distribution at p.

THEOREM 8: Let X be a random variable with range [a, b] andfinite mean

f^x- Define the random variable Y = p + qX with mean fiy.
a) Vv + VU > U for ail y e [a, 6], then Y >:i X, equivalently Y y1 X.

b) I/O < q < 1 such thatp/(l -q)> /.ix, i-e., MV > M A , then Y >:2 X.

c) ifO<q<l such tkatp/(l — q) < /i.v- i.e-, MA > MVÏ fAen X ^ 2 y .

The proof of Theorem 8 is in the appendix.

Parts (a) and (b) of the above theorem have also been obtained in Hadar
and Russel (1971, Th. 4) and Tesfatsion (1976, Th. 1') under stronger
assumptions. In proving (a), both papers imposed the constraints that
P > 0,2 > 1 and X is nonnegative. In proving (b), Hadar and Russel
(1971, Th. 4) imposed the constraints that p > 0,0 < q < 1 and X is
nonnegative, and Tesfatsion (1976, Th. I') later relaxed the constraint on p
and weakened the conditions on q to 0 < q < 1. In our case, we further
removed the nonnegativity assumption on X. Moreover, we include the
situation for descending stochastic dominance.

Hadar and Russell (1971, Th. 5) studied the invariance property of the
stochastic dominance and obtained the following theorem for continuous
distributed random variables.

THEOREM 9: Let X and Y dénote two random variables with distribution
functions F and G respectively, and assume that random variable W is
independent of both X and Y. Let the distribution functions of the random
variables aX -f bW and a,Y + bW be denoted by F and G, respectively,
where a > 0, and b > 0. Then the following statements are true:

a) if G is larger than F in the sensé of FASD, then G is larger thon F
in the sensé of FASD.

b) If G is larger than F in the sensé of SASD, then G is larger than F
in the sensé of SASD.

Tesfatsion (1976, Th. 2') extended the results to include random variables
with any distribution functions and release the nonnegative contraint imposed
on b. However, this still requires that W is independent of both X and Y.
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We relax this constraint and compare two sets of independent variables and
include the situation for descending stochastic dominance in the following
theorem:

THEOREM 10: Let {Xi,'-7Xm} and {Yi,--,Ym} be two sets of
independent variables. For n — 1,2 and 3; we have:

a) Xl yn (yn)Yi for i = l , - - - ,m if and only if Y!iLiaixi hn
(^n) YliLi aiyt f°r any ^ > 0,i = 1,• • •, m; and

b) Xi hn (yn)Yi for i = l , - - . ,m if and only if E™ i < r t hn

(yn) Ez=i <**Yi for any a% > 0, i = 1, • • *, m.

The proof of Theorem 10 is in the appendix. The following corollary is
obtained by applying Theorem 10:

COROLLARY 11: Let X, Y be random variables and k E R (the set of real
number). For n — 1,2 and 3,

a) if X hn (yn)Y then X + k tn (yn)Y + k; and

b) ifX hn (^n)Y then X + k hn (yn)Y + Jfc.

In Theorems 8 and 9 of Hadar and Russell (1971), it was proved that if X\
and X2 are two independent and identically distributed non-negative random
variables with continuous distributed functions, then

-(X1+X2) ^2 A i X i + A 2 X 2 ^ 2 X 1 for any (Ai,A2) GA2.

Tesfatsion (1976) improved the results by dropping the non-negative
constraint on the random variables and the continuity requirement on the
distribution functions. We remark that an alternative proof of this extension is
simply to apply Lemmas 4 to 6 and Corollary 11 in this paper to Theorems 8
and 9 in Hadar and Russell (1971). Then the results follow immediately. In
addition, one can easily extend the results to n random variables as shown
in the following theorem;

THEOREM 12: Let n > 2. If Xi, • • • }Xn are independent and identically
distributed, then

a) -y^Xi^yZ ^iXi - 2 Xi f°r any &l Î * * * Î An) G An, and
Tu

m
 1 n

i-^i h — / Xi far any (Ai, * * *, Àn) G An,
77 "̂

Recherche opérationnelle/Opérations Research
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where An = {(Ai ? - - - ,A n ) : Xi > 0 for : i = 1, • • • , n , a n d £ " = 1 A* = 1 } .

The proof of Theorem 12 is in the appendix.

5. PREFERENCES OF RISK AVERTERS AND RISK LOVERS

In this section, we study the préférences of risk averters and risk lovers in
an investment or gamble. We also study their préférences in a portfolio or
any non-negative combination of investments or gambles. We call a person a
second order ascending stochastic dominance (SASD) risk averter if his/her
utility function belongs to U^, and a second order descending stochastic
dominance (SDSD) risk lover if his/her utility function belongs to U^D.

Tesfatsion (1976, Th. 1') extended the results in Hadar and Russel (1971,
Th. 4). From his theorem, Tesfatsion claimed that the décision maker is
confronted with the choice of transforming his current portfolio containing
a randorn prospect into a diversified portfolio containing a sure prospect
and a specified amount of the original random prospect. He also claimed
that part (ii) of his theorem gives a necessary and sufficient condition for
the second degree stochastic dominance of one portfolio over the other,
assuming the diversified portfolio contains a positive "percentage" of the
random respect. By Theorem 8 in our paper, we further include the following
information for risk averters or risk lovers in a single investment or gamble:

PROPERTY 13:

a) Let X and Y be the returns of two investments or gambles. If X has
the same distribution form as Y but has a higher mean, then all risk
averters and risk lovers will prefer X.

b) For an investment or gamble with the mean of return less than or
equal to zero, the highest préférence of SASD risk averters is not to
invest or gamble.

c) For an investment or gamble with the mean of return which is greater
than or equal to zero, SDSD risk lovers will prefer to invest or gamble
as much as possible.

d) Let X be the return of an investment or gamble with zero return, and
Y = qX with 0 < q < 1, then SASD risk averters will prefer Y while
SDSD risk lovers will prefer X.

Hadar and Russell (1971) have pointed out that a diversified portfolio can be
larger in the sense of SASD than a specialized portfolio only if its constituent

vol. 33, n° 4, 1999
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prospects have equal means. They also derived several useful results in the
portfolio diversification for risk averters in the case that all prospects are
of the same mean. Applying Theorem 12, we can extend Theorem 9 in
Hadar and Russell (1971) for the portfolio of n independent and identically
distributed prospects to the foliowing property:

PROPERTY 14: For the portfolio ofn independent and identically distributed
prospects with n > 2, SASD risk averters will prefer the equal weight portfolio
whereas SDSD risk lovers will prefer a single prospect

Finally, we remark that all other theorems in this paper can be applied to
make inferences about the préférences of the risk averters and risk lovers.
For example in the sufficient part of Theorem 10, we can infer that if a
risk averter prefers prospect Xj to prospect Y, for each i, then he will
prefer a portfolio formed by the convex combination of Xi rather than the
corresponding portfolio of Yt,

6. CONCLUDING REMARKS

In this paper we establish some stochastic dominance theorems for risk
lovers as well as risk averters, and apply the results to investment decision-
making. We first proved basic properties which are helpful in generalizing
existing stochastic dominance results, and then illustrated the techniques if
generalization by proving some theorems.

Our development excluded only random variables with positive probability
at the points of négative infinity or positive infinity. While it would not have
been difficult to include such random variables in the theory, they seem to
be of little practical interest.

APPENDIX

Proof of Lemma 1: For the proof of (5) in the case in which G is
increasing, we let

' 1 c<t <x

,0 x <t<d'

Since G is continuous and increasing on [c:d], there exists a measure v
such that

G(x) = G(c) + v{c,x) = G(c) + I x[t,.v.)du{t).

Recherche opérationnelle/Opérations Research
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By Fubini's theorem and Corollary 2.6.5 in Ash (1972), we have

du(t)
(c,d] J(c,d] J(c4]

f
(c,d]

f
(c,d]

J(c,à

/ x(t, x)dfi(x)

J(c,d]

f dn{x)\dv{t)

= / [F(d)-F(t)]du(t).
J(c,d]

Hence,

/ G(x)dfi(x)= f [G(c)+ f x(t,x)
J(c,d\ J(c,d\ J(c,d]

= F(d)G(d) - F(c)G(c) - / F(t)dv(t).

The proof for (6) can be obtained similarly. D

Proof of Theorem 8: For part (a),

P(Y <y)<P(Y<p + qy) = P(p + qX<p + qy) = P(X < y).

Hence, Y >\ X . Apply Lemma 3b, we have F > 1 X. Refer to Tesfatsion
(1976) for the proof of part (b). For part (c), we let F ' = ~Xy Xf = - y ,
and pf — -p, apply Lemma 3(a) and part (b) of this theorem, then delete
all the ', we get the result.

Proof of Theorem 10: The proof s for the necessary parts of the theorem are
obvious. For the sufficient part in part (a), it suffices to prove the following
two lemmas:

LEMMA A: X and Y are rondom variables. For n = 1,2 and 3, and for
a> Q,X >n (yn)Y implies aX yn (y

LEMMA B: Suppose X\, X2, Y\ and Y2 are rondom variables such that X\
and X% are independent, and Y\ and Y2 are independent. For n = 1, 2 or 3,

fori = l and 2, then Xi + X2 hn (^n)Yi + Y2.

The proof of Lemma A is obvious. For Lemma B, we only prove the case
for the second order ascending stochastic dominance. The proofs for other
cases can be obtained similarly. We suppose without loss of generality that
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Xi, X2, Y\ and Y2 are defined on [a,b]. Let X = Xi + X2 and Y = Yi +Y2.
Let the probability distribution functions of X, X\, X2, Y, Yi and Y2 be F ,
Fi, F2 , G, Gi and G2 respectively. We define ff^n, F ^ , and G^n in terms
of Fi and Gz- for % — 1,2 and for n = 1,2 in the same manner of (2).

Since X\ and X2 are independent and Yi and Y2 are independent, by
Theorem 6.1.1 in Chung (1975), we have

and

Hence,

Ja
rR

Gf(x)= / GÎt{x-
Ja

Hf(y)= IV F1
A(x)Gf(x)dx

J2a

[ FfA(x-t)dF^(t)dx
2a Ja

ry r*

Jïa Ja

by Fubini's Theorem and Corollary 2.6.5 in Ash (1972), we have

H2 (y) = I / FA
a (x -t)dxd F2

A
X (t)

Ja t/2a
rR fy

 A A

- GfA(x-t)dxdGfA(t)
Ja Jia

Ja Ja
fR

< Gf^y-^diF^-G^t) since Xi >2
Ja

Applying Lemma 1 twice, we have

ry—a

Jy-b
as B-22 < 0 and GA

a is the probability distribution function.
Hence,
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For the proof of part (b), the results hold by applying Lemma 3 and part (a)
of this theorem. D

Proof of Theorem 12: We prove by induction on n. The resuit is true if
n = 2. Suppose the resuit is true up to (n — 1) independent variables
with n > 3. We consider the case with n variables X\,...,Xn. Let
(Ai,...,Àn) e A„.

For part (a), to prove the second inequality, construct the new variable
y = (A2X2 + ... + A î l-yn)/(l-Ai).ThenAiXi + ( l - A i ) y > 2 - y i , y ; a n d
also Y >2 Xi for i = 2,..., n, by induction assumption. The resuit follows.

To prove the first inequality, let Àz and X3 be the maximum and minimum
among A&'s. If A« > Ay, we replace both Xi and Xj by their average
A = (Ai + Aj)/2. Then (Xi + Xj)/2 h2 (XzXl + X3XJ)/2X by the 2-variable
resuit, and hence XXi + XXj y2 XiXi + XjXj. Adding the other X^X^s on
both sides will clearly preserve >i2 by Theorem 10. As a resuit, whenever
Xi are not ail equal, one can find a convex combination of X\, ...,Xn with
larger value under the ordering ^2. Hence the maximum value must occur
at the combination with equal Xi^i.e.^Xi = 1/n for ail i.

One can prove (b) by similar arguments.
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