
RAIRO. RECHERCHE OPÉRATIONNELLE

M. BECKER

A.-L. BEYLOT

G. DAMM

W.-Y. THANG
Automatic run-time choice for simulation
length in mimesis
RAIRO. Recherche opérationnelle, tome 33, no 1 (1999),
p. 93-115
<http://www.numdam.org/item?id=RO_1999__33_1_93_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1999__33_1_93_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

RAIRO Rech. Opér.

(vol. 33, nc 1, 1999, pp. 93-115)

AUTOMATIC RUN-TIME CHOICE FOR
SIMULATION LENGTH IN MIMESIS (*)

by M. BECKER (l> 2) , A.-L. BEYLOT (3),

G. DAMM i1' 2> 4) and W.-Y. THANG (4)

Communicated by Bernard LEMAIRE

Abstract. - This paper présents an algorithm which prevents a simulation user from choosing a
simulation length. This choice is always tricky and often leads to CPU-time waste, not to mention
user-time waste.

Too often, simulation users forget to compute confidence intervals: they only guess a simulation
length and ignore the confidence on the simulation results. Those who do compute them generally try
several lengths (and thus run several simulations) so as to obtain small enough confidence intervals.

The algorithm aims at optimizing this length choice by running only one simulation and by
stopping it nearly as soon as possible, i.e. when some predefined relative confidence intervals
on each of the performance criteria are reached. For this purpose, the confidence intervals are
periodically computed, at run-time, with the batch mean method. According to these intermediate
results and to estimators properties, a mobile simulation length is (also periodically) predicted. The
algorithm automatically détermines batch size and batches number. This process goes on until all
confidence intervals are smaller than the predefined thresholds.

This algorithm is implemented in MIMESIS, a computer architecture performance évaluation tooi

Keywords: Simulation, stopping procedure, confidence intervals.

Résumé. - Cet article présente un algorithme qui évite à l'utilisateur de choisir une durée de
simulation. En effet, ce choix est toujours délicat et aboutit souvent à une consommation inutile
de temps machine, sans compter la perte de temps pour Vutilisateur. Trop souvent, les résultats
de simulation sont donnés sans intervalle de confiance. Les utilisateurs choisissent arbitrairement
une durée de simulation et ignorent la confiance qu'ils peuvent accorder aux résultats. Ceux qui
prennent la peine de calculer les intervalles de confiance essaient en général plusieurs durées (et
lancent ainsi plusieurs simulations) jusqu'à obtenir des intervalles suffisamment petits.

L'algorithme présenté ici vise à optimiser ce choix de durée en n'exécutant qu'une seule
simulation qui est interrompue dès que (ou presque) certains seuils sur les intervalles de confiance
sont atteints. Pour cela, ces derniers sont calculés plusieurs fois pendant la simulation à l'aide de la
méthode des blocs. Grâce à ces résultats intermédiaires ainsi qu'aux propriétés des estimateurs, une
durée de simulation est périodiquement estimée. Le nombre et la taille des blocs sont déterminés par

(*) Received May 1996.
C1) INT/INF, 9, rue Charles Fourier, 91011 Évry Cedex, France.
(2) MASI Laboratory Associate Members, 4, place Jussieu, 75252 Paris Cedex, France.
(3) PRiSM Laboratory, University of Versailles-St-Quentin, 45, avenue des États-Unis,

78035 Versailles Cedex, France.
(4) EDF/DER, 1, avenue du Général de Gaulle, 92141 Clamart Cedex, France.

E-mails: mbecker@int-evry.fr, Andre-Luc.Beylot@prism.uvsq.fr, Gerard.Damm@int-evry.fr,
Wei-Ying.Thang@edfgdf.fr

Recherche opérationnelle/Opérations Research, 0399-0559/99/01/$ 7.00
© EDP Sciences 1999

94 M. BECKER et ai

l'algorithme en cours d'exécution. L'algorithme s'arrête lorsque tous les intervalles de confiance
sont plus petits que les seuils.

Cet algorithme a été intégré dans MIMESIS, un atelier d'évaluation des performances des
architectures informatiques.

Mots clés : Simulation, procédure d'arrêt, intervalles de confiance.

1. INTRODUCTION

Simulation users are interested in obtaining performance criteria
estimations of their modelled Systems, such as a response time, an occupation
rate or a throughput. It is very important to get these results with right
confidence intervals. The latter depend on simulation length (Le. the elapsed
simulated time), the choice of which is therefore crucial and difficult, even for
simulation specialists. If simulation length is chosen too short, the confidence
in the results may be poor, especially if the simulation is dealing with quite
rare events. If it is chosen too long CPU time is wasted. Moreover, if several
simulations are run until results are reliable, CPU time is also wasted.

This paper présents an algorithm which is able to choose, at run-time, a
satisfactory simulation length (Le. with good confidence intervais on results).
The user only has to launch the simulation without a time limit and results
are obtained automatically. Should a burst of events happen, the algorithm
would notice it and have the simulation run longer.

Confidence intervais are computed for each variable in the simulation.
Several methods exist [1] among which the most generally implemented are:

- replication/deletion methods;

- sequential methods.

We did not use replication/deletion methods [2] since independence
between runs has to be proven and also because the transient part at the
beginning of each replication is expensive [3].

As for the sequential methods, many nice papers have been written when
theoretical assumptions are made about the processes. For each variable, the
confidence interval dépends upon the estimator variance. When an assumption
of strong invariance holds (Le. when the centered partial sum process is close
to a Brownian motion with probability one), "consistency of the variance
estimator can be achieved even in the nonstationary context" [4].

The number of batches and the size of batches that give an optimal
confidence interval can be computed when some theoretical assumptions
hold [5].

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 95

Some recent methods consist of two stages:

- in the first stage, the confidence intervals are estimated for a given
batch size and a given batch number [6]. Then, using theoretical results, the
batch size or the batches number are computed in order to get a predefined
confidence interval,

- in the second stage, the simulation is run and the confidence interval
is not computed again.

Our work does not make assumptions about the laws of the estimators
variances. We only assume that the variances exist. So, we do not try to
détermine the batch size as a function of these laws.

Besides, we prefer to deal with a small enough number of batches (a few
tens) and to choose an adequate size for a batch since it is préférable to have
batches that are not highly correlated: the variance estimator is good enough.
Our algorithm uses a multistage method and at each stage, the confidence
interval is estimated again.

Since confidence intervals are considered for several criteria, no assumption
is made concerning the estimator processes. From each theoretical law of
each estimator process depending on some parameter A2 (for criterion ï),
nice computations for optimal size of batches and optimal number of batches
could be derived but these numbers would be different for each criterion i.
Our method is intended to be simpler.

This algorithm has been implemented in MIMESIS (Machine-Implemented
Modeling and Exploratory Simulation from Initial Spécification), which is
a CASE (Computer Aided Software Environment) designed for computer
architectures performance évaluation. It was initially developed at EDF [7]
and is now supported by Delta Partners. Potential users are not supposed to
master simulation techniques. Therefore, it is important to hide from them a
simulation-specific problem such as simulation length choice.

However, a stop condition for the method has to be specified in some
way. In this algorithm, the user chooses some performance criteria (Ci)
and indicates, for each one, a confidence le vel 1-rji and a relative confidence
interval radius pi to be reached. The algorithm computes confidence intervals
pi^x at certain instants T for each C% and stops the simulation when all
confidence levels are smaller than those specified (Le. when Vz, pi^ < pu-
in MIMESIS, default value for 1-rn is 95% and default value for pi is 10%.
The performance criteria than can be chosen are those of the components of
the MIMESIS-specific formalism [8],

vol. 33, n° 1, 1999

9 6 M. BECKER et al

Our method is relevant only for second order asymptotically stationary
processes. Only the simulation length is validated, not the accuracy of the
model. Let us consider the example of a simulation that yields a response time
estimation of 100 ms, with a 8.3% confidence interval at a 95% confidence
level. This means that there is a 95% probability that the resuit of an infinite-
length simulation of this model is between 91.7 ms and 108.3 ms (but an
infinite-length simulation is impossible, hence the interest of the algorithm).
Let us note that, even with this method, the necessary simulation length can
be too long in the case of too rare events or too bursty processes.

The algorithm is itérative. A first simulation time T\ is determined. When
Ti is reached, confidence intervals are computed. If they are all small enough,
the simulation is stopped and results are displayed. If at least one of them
is too large, a new simulation time T2 is determined, as a fonction of T\
and (pi^r^i- When T2 is reached, {piiT2)i

 a r e computed and compared to
the {pi)i, and so on. The method usually converges in only 2 or 3 itérations.
In the following, the choice of T\, T2, . . . , Tj and the method for estimating
{Pi,Tó)i are emphasized.

The paper is organized as follows. In Section 2, we present the theoretical
justification of the method (how and when to compute confidence intervals,
how to choose the next itération length). The algorithm itself is described in
Section 3. For validation purpose, a FORTRAN program was written. The
algorithm was also implemented in MODSIM, in a modular and re-usable
way, so that it could be integrated in MIMESIS. Section 4 reports about
these implementations. A few results tables are also presented.

2. ALGORITHM JUSTIFICATION

2.1. Introduction

For complex Systems performance évaluation, stochastic models are often
well suited, since they allow to study access concurrency. This paper is
concerned with models studied by simulations rather than by analytical
solutions. We focus on validating a simulation in relation to the steady-state
problem, which consists in determining confidence intervals and deciding
whether or not the simulation should be stopped.

There are two kinds of processes:
• X(t), function of the time;
• Xfcj function of &, the number of events.
All the processes are assumed to be strictly ergodic.

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 97

The time average of process X(t) is defined as ZT = y* Jo X(t)dt.
ZT dépends on the model and on the simulation exécution. Strict ergodicity
implies that for any function Y of X{t) :

i [TY(X(t))dt\- >z

where Z = lim E[Y(X(t))}.

However, a variable in a computer program is a step-function: its value is
changed when it is left-accessed (Le. modified) at instants U\ it is a constant
otherwise (variables in a simulation could be defined in a more complicated
way but only simple variables are considered here).

Therefore, in a discrete-event simulation,

T = tp and ZT = —

where p is the number of left-accesses.
A customer number in a queue or the occupied size of a memory are two

examples of such variables.
We are also interested in variables X^ that are not directly function of

the time: X^ is only defined when certain events occur. For this kind of
performance criteria, the average is not computed with respect to time, but
with respect to events. The event average is simply the arithmetic mean:
ZN — jj SfcLi Xk, where N is the number of different values for Xj~. In
this case, strict ergodicity means that for any function Y of Xk :

N

where Z = lim E[Y{Xk)}.
t—KX)

A message transfer delay is an example of such a variable.
The problem is the following: if a variable is observed during a simulation,

what confidence do we have in the time average? To put it in another way,
how close are ZT or ZN (which are known from the simulation) from Z
(which is the figure we want to know)?

The distance between ZT (or Zj\r) and Z can be precisely known with
confidence intervals. How they are defined is described in Section 2.2. How
they are used to choose a simulation length is described in Section 2.3.
In order to make this paper clearer, only the time average case (ZT) is

vol. 33, n° 1, 1999

9 8 M. BECKER et al

presented. As for the event average case (Z#), the method is the same for
the following reason: to détermine a large enough events number N (for
confidence intervais to be small enough) is equivalent to détermine a large
enough simulation length T since N and T tend to be proportional (the ratio
(f tends to the density of events), because of the assumptions that were made.

2.2. Confidence intervais

Let us remind the well-known batch mean method for estimating
confidence intervais [9, 10].

ZT is an estimator of Z — E[X(t)]. The absolute confidence interval
radius on Zr , with a confidence level of 1-rç, is a number e > 0 such that:

FT(\ZT -Z\<e)> 1-77 (1)

The relative confidence interval radius is -^-. The value of 1-rç can be
chosen and ZT is obtained from the simulation. We intend to estimate Z.
How can e be found?

Let us apply Tchebychev's theorem:

- Z\ > e) < ^ u ^ a " ' J (2)

(on condition that E[\ZT - Z\a) < +00).
If a = 2 and if it is assumed that Z ^ E[ZT] (when T is large enough),

then:

E[\ZT - Zf] ~ E[|ZT - ^ [^ T] | 2] = a2(ZT)

(variance of the estimator Zj1, which is not the variance of the random
variable X(t)).

Therefore, inequality (2) is equivalent to:

P r (|Z r - Z\ < e) > 1 -

which is equivalent to inequality (1) for e = /£ -

If the confidence level is 95%, then:

ri = 0.05 and 4 = < 4.5

.2

As a conséquence, e = 4.5cr(Zr) can be chosen as a confidence interval
for a confidence level of 95%.

Let us note that, with a high probability, the estimator tends to a normal
law and this confidence interval could be reduced to 2a(ZT)- Since we

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 99

wanted our confidence to be very safe, we chose to keep the coefficient 4.5.
The user will nevertheless be notified that the confidence interval could
probably be divided by 2.25.

Now the question is: how can <T(ZT) be estimated?
If X(t) is a second order asymptotically stationary process, it can be

proved that a2(Zx) ~ ^ , where A is some positive constant. Neither
CT2(ZT) nor A can be directly computed in gênerai.

In order to compute a2(Zx) in spite of this, the simulation is eut into
n batches of length Tbatch = ^ so as to estimate cr2(^Tbatch)) variance
of ZTbatch.

Since a2(ZTbatch) « ^A-, then:

a tch)-^2(^Tb a t c h).

The variance of Z?h t h is estimated with the well-known formula:
•*• batch

^3j YA=I %f — nZx^i where Zi is the time average of X(t) on the i—
batch:

^•Tbatch

Tbatch J(2-1)-Tbatch

and ZT is the arithmetic average ^ YM=\ ^*
Thus, only n and Tbatch have to be chosen to get the confidence interval

this way:
• simulate the system until the conditions to define Tbatch are true;
• simulate the system for n - 1 batches of length Tbâtch (total length:

• at the end of each batch, compute Z%\

• at T = n • Tbatch, compute:

1
ZT — — V^ Zi (estimation of Z)

E —

(or e = 4.5 ^ Z T ^ if v = 0.05).

vol. 33, n° 1, 1999

100 M. BECKER et al

The conclusion is: "With a confidence level of (1 - rf),Z G [Zr—e;

Let us note that the estimation of cr2(Z:rbatch) is approximate but the
error can be neglected if Tbatch *s ^ ^ enough, The équation <T2(ZT) « ^
assumes strict ergodicity and asymptotic stationarity.

2.3. Use in the algorithm

How can this material be used for an automatic simulation length choice?
For each performance criteria C2, at instant T, the estimator Z^T can be
computed with a confidence interval e^r a* a confidence level 1-m. Relative
confidence interval radius pi^p is ^ ^ and we can compare p ĵ» to the
desired pi.

The first step is to dimension Tbatch f° r the first itération. For this purpose,
a counter with a limit value is attached to each observed variable Ci. Counters
can also be attached to other variables in the model When all counters have
reached their limit values, the current simulation time is chosen as the first
2batch value. What is the best limit value? On the one hand, the variables
must vary often enough so that estimations on Tbatch a r e significant. On the
other hand, they must not vary too often so that n • ïbatck is not too large.
Our experiments showed that good counter values are of the order of 500 to
1000. Smaller values can be chosen for quite rare events, for which only a
rough idea is required. Counter values also depend on (si)i.

Let us explain now the main loop in the algorithm. If, at T — n • Tbatch J
confidence intervals are not small enough, the simulation must proceed until
an instant T' greater than T. Since the variance of each estimator Z^T is
a<iT ^ 4^' rï*e confidence interval is Ei^T ^ -jk, where Bi is a constant. If
£i,T > ei» performance criterion Ci is not well enough estimated at T. Let
Si be the necessary time to obtain the confidence interval ei for d. Si and
T are related: 5,-̂ a = Tef r or:

Any length Tf > Si is also suitable. In order to reach good confidence
intervals for each C?;, we therefore choose T' = Max^^), or:

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 101

Since it is an approximation, it may be necessary to iterate once more.
The coefficient 0 — Ç also changes batch size: 2£atch = 0 • ïbatch* We will
see in the next section why it is more interesting to choose \ff] (smaller
integer greater or equal to 0) as an itération coefficient.

There are further refinements (in order to spare CPU time), such as batch
re-use, which consists in "recycling" old batches to construct new batches,
and batches number increase, which consists in increasing n (number of
batches) when 0 < 2.

3. ALGORITHM

The algorithm has to choose the simulation size, Le. the batch size, since
the batches number is a parameter. However, the batches number can be
increased during the simulation under certain circumstances.

3.1. Sparing CPU time

3.1.1. Batch re-use

If the system has been simulated until T and if T' = 0T has been computed
as described before, n batches of size T^atch = ÖTbatch could be started again
between T and T + Tf. We rather try not to lose the simulation work already
done, especially if 0 is small. Simulation length could be T' instead of
T + Tf. Since all computations make use of averages on batches, it would be
easy to gather them to form a new average on a new batch, provided 0 were
an integer, which is not the case. For this reason, we choose f3 = |~0] as the
next itération coefficient: T' — /3T and T^atch = /?Tbatch- The averages on
j3 last itération batches are grouped and the average on next itération batches
are: A!t = jj(Ai +A2 + ... + Ap), Af

2 = J (Ap+1 + Ap+2 + • * * + Mp),
and so on. Grouping is made according to the following cases:

• if n is a multiple of /?, then S new batches can be retrieved and only
(n - -g) new batches have to be simulated until T' is reached;

• if n is not a multiple of ƒ?. a few more "old-sized" batches are simulated
so as to complete a new group of f3 batches. Thus, [f J + 1 batches can
be retrieved;

• finally, if ƒ? > n, T was definitely too small (smaller than a new batch)
and no batch can be re-used. In this case, the simulation between 0 and T is
dropped and n new batches will be simulated between T and T + Tf. This
case should not occur if the counter values are chosen large enough.

vol. 33, n° 1, 1999

102 M. BECKER et al

Also, if the first Tbatch is chosen too short, the estimation of (3 can be
very wrong and be extremely large. Some authors then suggest to limit (3 to
a maximum value in order to avoid a uselessly long simulation [11]. This
problem does not occur with the algorithm thanks to the counter feature (but
a maximum (3 value is implemented anyway).

Finally, let us note that rounding 6 up can avoid a useless itération. If we
choose exactly T' = 0T, then er̂ T' can be slightly greater than £*, therefore
leading to a new itération whereas confidence interval is nearly correct. If
we rather choose T' = \0]T, e^x* is more likely to be greater than e*, for a
low extra simulation cost (especially if 0 is not too small).

The batch re-use is not possible with replicated simulations. Thus, a single
long simulation is less expensive not only because of a single steady-state
establishment, but also because it allows batch re-use as described above.

3.1.2. Batches number increase

As P — \0~\ is an integer, 2 is the smallest value for (3 for which the
simulation proceeds (if (3 = 1, stop condition is reached). If the simulation
has already lasted long and if 0 is only slightly greater than 1, to round 0
up will probably resuit in CPU time waste. This is why the batch size is
not changed when (3 — 2. Instead, the number of batches is increased. If n
is the default number (usually 16), a (n + 1)— batch is simulated and the
(e«,(n+i)Tbatch)*

 a r e compared to the (e ^ . If necessary, a (n + 2)— batch is
simulated, and so on. If nTbatch = T and if 0 G [1 + f ; 1 + ^^](k < n), we
may need to simulate only (k + 1) batches (instead of n if we had chosen
^batch = 2îbatch)' Since this is only a guess, the increase had better be
limited: a maximum of n other batches is allowed (simulation time would
then be of 2T). If confidence intervais are not reached at this limit, batches
are grouped for the next itération.

3.1.3. Algorithm convergence

Non-convergence can occur if required (ei)i are too small or if confidence
levels (1 — r]i)i are too high. In this case, even if the method assumptions are
verified (processes are strictly ergodic), theoretical results apply but are out
of reach with the computer's resolution: numeric précision is too low [12].
Averages and confidence intervais may however be presented, even if the
latter are not those specified.

Non-convergence can also occur if the method assumptions are not verified.
For example, the modelled System can be unstable (and a variable of a
bottlenecked région has been chosen as a performance criterion) or the

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 103

program may include a bug (causing for example a variable chosen as a
performance criterion to keep increasing). In this case, theoretical results do
not apply and no resuit should be presented.

A simple mechanism prevents infinité loops in both cases: the itération
number is limited to a maximum. The chosen maximum value is four
completed itérations.

3.2. Algorithm description

• simulate the System until each counter has reached its limit value
• ^batch :— current simulation time
• compute and save estimators Z^i on this first batch
• TheEnd := FALSE
• FirstBatch := 2; LastBatch := n;
• main loop:
while NOT TheEnd

for NumBatch=FirstBatch to LastBatch
simulate the System during Tbatch
compute and save estimators Z^NumBatch

end for
compute estimators Zi^
compute confidence intervais e ^ and (3
case of /3:

j3 - 1 : TheEnd := TRUE
(3 = 2: batch number increase (batch size: Tbatch)
(3 > n : if P > Max0 then j3 := Max/? end if

FirstBatch :=1; LastBatch \- n
2 < {3 < n:

if j is integer then
^batch : = /^^batch
ry- n

K . - j
retrieve K batches (size: Tbatch)
FirstBatch : =K + 1; LastBatch : =n

else

retrieve K batches (size: ^Tbatch)
FirstBatch := n + 1; LastBatch := (K + I)j3
for NumBatch=FirstBatch to LastBatch

simulate the System during Tbatch
compute and save estimators ^ ;NumBatch

end for
retrieve another batch (size: /?îbatch)
tbatch := /?2batch

FirstBatch := K -f 2; LastBatch := n
end if

end case
stop simulation if IterationNumber > Maxlterations

end while
• display results (or write in a file): Zitx and e^y

vol. 33, n° 1, 1999

104 M. BECKER et al

4. IMPLEMENTATION

4.1. FORTRAN

The first implementation of this algorithm was developed in FORTRAN. It
did not include the batches number increase and maximum (3 value features.
The purpose of this implementation was to validate the method.

The chosen example was a M/M/l queue simulation. In this model,
customers arrive in a queue and are served according to a First-In-First-Out
policy. The server is characterized by its service rate.

Customers arrivai process is of Poisson type, with parameter À. The service
time is exponential, with parameter /x.

Queue capacity is infinité. The chosen performance criteria are:

• mean customer number in the queue (time average);

• mean response time (event average);

• mean waiting time (event average);

• occupation rate of the server (time average);

• throughput (time average).

The throughput is a special case: the estimator on a batch is the served
customers total number divided by batch length. The batch mean is computed
as for the other criteria. No program variable can represent the throughput
and be time-averaged. However, it is not an event average since the served
customers total number is divided by a time.

The theoretical values can be analytically computed [13]. The performance
processes are strictly ergodic on condition that A < fx. In the results tables,
the total simulation time is presented, along with the values of 9i and $ at
the end of each itération L The chosen values for the example were A = 0.5
and \x — 0.8 (see Tables 1 and 2).

Table 1 shows the counter limit value influence. This value détermines
the first itération batch size. As expected, large values result in very good
confidence intervals but also in too long simulation times. Small values result
in more itérations (3 instead of 2 in this example), because T is not well
estimated at the first itération. This is not a CPU-time waste since second
itération batches are most often re-used or the third itération (whereas first
itération batches are most often disposed of).

This table allows us to somewhat quantify the "large" and "small"
adjectives: good values are in the order of 500 to 1000.

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS

T A B L E 1

Results as a fonction of counter limit value: X =0.5, \x — 0.8,
BatchNumber - 16, e — 10%, 1 - rj = 95% (FORTRAN implementation).

105

Counter

100000

10000

3600

2000

1000

500

100

10

Itérations

1

1

1

2

3

3

3

3

T

3192039

319706

114353

187012

127558

231499

204959

298354

Bi

0.059

0.527

0.815

2.883

1.893

4.971

26.482

138.411

Pi

3

2

5

27

139

0.536

1.216

2.106

1.138

2.686

02

2

3

2

3

Os

0.867

0.573

0.532

0.343

Table 2 shows the desired relative confidence interval value influence. Of
course, the smaller e, the larger T: this is the estimator property used in the
method for the next itération size estimation. Let us note that e — 5% is the
only case that required a fourth itération.

TABLE 2

Results as afunction of e : X —0.5, }i = 0.8, Counter — 1000,
BatchNumber -16,1-7) = 95% (FORTRAN implementation).

£

0.25

0.10

0.05

0.03

0.02

0.01

Itérations

1

3

4

3

3

3

T

31899

127558

1020462

2104703

4592080

18176976

01

0.303

1.893

7.571

21.030

47.318

189.272

01

2

8

22

48

190

02

1.216

1.427

2.464

2.201

2.369

02

2

2

3

3

3

03

0.807

1.632

0.467

0.680

0.483

03

2 0.666

The algorithm was also tested for different service rates in the model.
Table 3 shows that the method was able to find a satisfactory simulation
length in each case.

If the System is heavily loaded (load p near to 1), the steady-stage
establishment is quite long: a large simulation length is necessary. The
algorithm found large enough simulation lengths in three itérations.

vol. 33, n° 1, 1999

106 M. BECKER et al

TABLE 3

Results as afunction ofthe model (load p): X =0.5, Counter = 1000, Batches
Number - 16, e = 10%, 1 - r\ = 95% (FORTRAN implementation).

0.52

0.55

0.60

0.70

0.80

1.00

2.00

5.00

50.0

(P)

(0.96)

(0.91)

(0.83)

(0.71)

(0.63)

(0.50)

(0.25)

(0.10)

(0.01)

Itérations

3

3

3

2

3

3

2

2

2

T

20651762

2314551

1361343

384161

127558

193115

62677

157955

913143

0i

78.340

35.535

13.748

11.981

1.893

2.602

1.931

4.256

28.294

Pi

79

36

14

12

2

3

2

5

29

$2

7.516

4.036

2.676

0.577

1.216

1.465

0.599

0.587

0.426

8

5

3

2

2

0.481

0.739

0.695

0.867

0.828

If the load is low (p near to 0), the required simulation length is larger
than with an average load (p is near to 0.5) for the following reason:
very few customers need to wait in the queue, so the simulation length is
increased in order to reach the confidence interval on the mean waiting time
estimation. Nonetheless, only 2 itérations were necessary to find the correct
simulation lengths.

4.2. MODSIM

A MODSIM [14] implementation was developed for the intégration in
MIMESIS. This implementation needs to be independent from the model,
since the performance criteria choice is made after the model development.

The basic idea is to create two monitor types (a counter monitor and
a mean-computer monitor) and to attach them to the relevant program
variables. A monitor is a special object able, among other things, to exécute
functions at each left or right access to the variable it is attached to. In
MODISM, the left-accesses count, the time average and the arithmetic mean
are available from pre-defined monitor objects. For instance, the time average
ZT - i Yfi=\ x(tô • (<i+i -U), mentioned in Section 2.1, is the MODISM
définition of the TimedStatObj monitor's Mean field. The two types defined
in our implementation inherit from the MODSIM objects. These monitors
are further specialized so as to make a différence between integers and reals,
and also between event averages and time averages.

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 107

All model variables that can be chosen as performance criteria are declared
as monitored by a counter monitor and a mean-computer monitor. When the
main program is generated, the model description is only linked without any
update due to user's choices. In the main program, the performance criteria
monitors are given a référence to an object named AutoLength which is in
charge of controlling the simulation {Le. implementing the algorithm) and
synchronizing the monitors. AutoLength is given the number of performance
criteria. This referencing system does not demand to re-compile the model
description, thus allowing the independence.

Counter monitors signal to AutoLength that their limit value is reached.
When AutoLength has received all expected signais, current simulation time
is chosen as the first batch size. Mean-computer monitors are then signalled
to write the means (with respect to time or to events accordingly) in an
AutoLength table. Mean-computer monitors are synchronized with a trigger
mechanism, activated by AutoLength when a batch is finished. After having
written the batch mean in the table, mean-computer monitors reset their
statistical gatherings and wait for the next batch end signal.

Monitors of variables that are not chosen as performance criteria are
deactivated so as to spare CPU time (they would uselessly exécute left and
right accesses functions otherwise).

The batches number increase was tested with this implementation. Results
are in Tables 4 to 6. The simulated model consisted in two independent
M/M/l queues and only four time-average performance criteria were
considered, namely the mean customer number and the occupation rate
of each queue.

The variable parameter in Table 4 is the counter limit value. This table
shows that only two itérations were necessary for counter limit values greater
than 100. A very small counter limit value of 10 made the algorithm go for
a third itération because 6\ could not be correctly estimated. However, 9%
is much closer to 1 than in any other case and simulation length T is the
smallest. In this example, the estimation of T at T2 (simulation time at the
end of the second itération) with a small counter limit value pro ved to be
better than the estimation of T at T\ (simulation time at the end of the first
itération) with a large counter limit value.

A batches number increase was observed for a counter limit value of 50.
At the end of itération #2, seven supplementary batches were simulated,
thus sparing a substantial (16 - 7)/16 "= 56% of the third itération work (this

vol. 33, n° 1, 1999

108 M. BECKER et al

TABLE 4

Results as afunction of counter limit value: A == 0.5, fj, = 0.8, Default Batches Number = 16,
e = 10%, 1 - 7} = 95%, Max^ = 100 (MODSIM implementation).

Counter

1000

750

500

200

100

50

10

Itérations

2

2

2

2

2

2 (+ 7B)

3

T

108149

122770

111472

100497

93045

92353

68954

Si

3.88

5.97

7.97

16.44

30.05

47.38

60.47

Pi

4

6

8

17

31

48

61

0.59

0.47

0.42

0.84

0.83

1.74

2.95

2

3 0.959

fraction is approximate because of the start-up that had been dropped in
the first itération).

The 6 decrease is presented in Table 5. Value of T% was 64,647. Without
the batches number increase mechanism, final simulation length T — T$
would have been 129,295. Thanks to the mechanism, T is only 92,353 (an
effective sparing of 57.1% in the third itération, or 28.6% for the whole
simulation).

TABLE 5

6 évolution in a batches number increase: À =0.5, // =0.8, Counter = 50,
Default Batches Number - 16, e = 10%, 1 - rj = 95% (MODSIM implementation).

Number of
batches

17

18

19

20

21

22

23

9

1.538

1.369

1.265

1.138

1.086

1.011

0.926

Table 6 shows the results for a smaller required confidence interval, for
different counter limit values. The batches number increase occurred more

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 109

often, with only one supplementary batch in 3 cases (1000, 500 and 10). The
mechanism is the most profitable when the batches number is increased only
by one. This table also illustrâtes the maximum ƒ? value control mechanism,
for counter limit values of 50 and 100.

TABLE 6

Results as a function of counter limit value: X — 0,5, ^ = 0.8, Default Batches Number — 16,
e - 5%, 1 - f) = 95%, MaxjÖ = 100 (MODSIM implementation).

Counter

1000

750

500

200

100

50

10

Itérations

2 (+ 1B)

2

2 (+ 1B)

2 (+ 4B)

2 (+ 2B)

3 (+ 6B)

2 (+ 1B)

T

459633

511543

487690

466196

330019

545545

438367

15.52

23.87

31.86

65.75

120.21

189.54

10.32

Pi

16

24

32

66

100

100

11

L08

0.41

1.10

1.20

1.15

2.16

1.10

P2

2

2

2

2

3

2

1.69

P3

2

4.3. Intégration in MIMESIS

This method has been integrated in MIMESIS so as to prevent users
from finding themselves a fitting simulation length. In this implementation,
default values are:

• 95% confidence level;

• 10% relative confidence interval threshold;

• 16 batches;

• 200 variations to détermine the first itération batch length.

In the following, the activation and the opération of the algorithm within
the tooi are emphasized. In the first example, a very simple software is
modelled (Fig. 1).

Cl

Ml

M3

C2

Figure 1. - Software and hardware model (MIMESIS).

vol. 33, n° 1, 1999

1 1 0 M. BECKER et al

It consists of two processes PI and P2. PI sends messages Ml to P2 in
the following loop:

loop
WAIT exp(Xl) seconds
EXECUTE exp(Xl) seconds
SEND Ml TO P2

end loop

where (Xl=l) or (XI =2) and "exp" désignâtes an exponential distribution.
"WAIT", "EXECUTE" and "SEND" are MIMESIS instructions. The WAIT
instruction causes a process to be idle during the specified duration. The
EXECUTE instruction blocks the calling process until the specified time has
been spent on a processing unit, with possible compétition.

Upon receiving a message Ml, P2 performs some work but does not send
any message back to PI.

The hardware model, also very simple, consists of two computers Cl and
C2 connected to a network. When the user sélects the network so as to probe
it, two simulation results are selected as performance criteria: the network
activity rate and the mean messages number in the network.

PI is placed on Cl and P2 on C2. Therefore, the message sent by PI to
P2 causes some traffic on the network.

If (Xl=l), a message is sent approximately every two seconds. If (Xl=2),
a message is sent approximately every four seconds. It takes 13 s for a
message to be processed by the network, but only one message at a time
can be served.

With this information, a user familiar with simulation theory might estimate
a correct simulation length in the two cases. In MIMESIS, the user only
has to specify a maximum duration. Simulation is stopped either by the
algorithm or if the maximum simulation length is reached. Other monitors
compute the confidence intervais in case the maximum is reached, so that
they can be displayed as they are at this point.

Let us suppose that the user, having no idea of what simulation length
would be suitable, enters 1,000,000,000 as a maximum duration and launches
the simulation. MIMESIS then automatically activâtes the relevant monitors.

When (Xl=l), and with this very large TMAX value, the simulation was
stopped by the algorithm at T - 3911.17 and the relative confidence intervais
are (RI = 3.67%) and (R2 = 5.98%). The algorithm stopped at the end of
its first itération. We have restarted the simulation of the same model with
other maximum lengths so as to check this resuit (see Table 7).

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS

TABLE 7

Relative confidence intervals for XI—1 (16 batches).

111

TMAX

100

500

1000

2000

2500

RI

44.7%

14.8%

9.7%

6.8%

4.6%

R2

51.9%

21.2%

13.0%

10.8%

7.6%

With these TMAX values smaller than 3911, the simulation was stopped by
TMAX and the confidence intervais are computed with 16 batches. We can
observe that a simulation length between 2000 and 2500 would be optimal
(RI and R2 would be both smaller than 10%). The length 3911 is larger
than the optimum because of the first batch size estimation: it was decided
at (T = 244.4 = 3911/16).

Nonetheless, the results were obtained very quickly from the user point
of view.

When (XI = 2) and TMAX is still very large, the simulation is stopped
by the algorithm at T = 6796.19 and the relative confidence intervais are
(RI = 5.59%) and (R2 = 6.01%). Hère again, the algorithm stopped at the
end of its first itération. We did the same kind of checking:

TABLE 8

Relative confidence intervais for XI =2 (16 batches).

TMAX

500

1000

2000

3000

4000

6000

RI

32.8%

21.5%

11.8%

9.8%

7.3%

6.0%

R2

34.9%

21.8%

12.2%

10.0%

7.3%

6.4%

The results in Table 8 show that the optimal simulation length would
have been 3000.

vol. 33, n° 1, 1999

1 1 2 M. BECKER et al

Let us check that the algorithm is executing as expected. When (XI = 2),
a message is emitted every four seconds in average, Le. 0.25 messages/s
are processed by the network. The program variables used for estimating
the activity rate and the messages number are modified twice for each
message (arrivai and departure). As a conséquence, these two variables are
each modified approximately 0.5 times a second. 200 left-accesses are thus
made in approximately 400 seconds, which détermines the first batch size.
Finally, 16 batches of 400 seconds resuit in a 6400-second simulation (the
actual simulation length turned out to be 6796 seconds, Le, a first batch
size of 424.8 s).

In the two previous examples, the simulation was stopped at the end of
the first simulation. In order to observe more itérations in the algorithm, we
added another pair of processes (P3 and P4) in the software model. P3 sends
messages M3 to P4 in the following loop:

loop
WAIT exp(X3) seconds
EXECUTE exp(X3) seconds
SEND M3 TO P4

end loop

The size of message M3 is ten times that of message Ml. The values
chosen for XI and X3 are respectively 2 and 25. In average, PI sends a
(short) message to P2 every 4 seconds whereas P3 sends a (long) message
to P4 every 50 seconds. The network model is still assumed to process only
one message at a time. PI (sender) and P4 (receiver) are placed on computer
Cl. P2 (receiver) and P3 (sender) are placed on computer C2.

The following observations were made during the algorithm exécution:

• the simulation was stopped at T = 53,104 by the algorithm;

• two itérations were completed;

• the first itération batch size was 465.8;

• the second itération batch size was 2,794.9;

• at the end of the first itération, two more batches have been simulated
(for batch re-use purpose, see 3.1.1);

• at the end of the second itération, three more batches have been simulated
(batches number increase, see 3.L2).

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 113

Tables 9 and 10 illustrate a few results for this exécution. Table 9 shows
the algorithm itérations. Table 10 shows the évolution of 0 when the number
of batches increases.

TABLE 9

Algorithm exécution results: XI—2, X3—25 (MIMESIS implementation).

Itérations

2 (+ 3B) 53104

Bi

5.65

Pi

6

02

1.07 2

TABLE 10

> évolution in the batches number increase (MÏMESIS implementation).

Number of
batches

16

17

18

19

9

1.068

1.096

1.005

0.929

Let us compare the results of the algorithm to the effective confidence
intervals found for predefined simulation lengths.

Table 11 confirms that the simulation was optimally stopped by the
algorithm. The 10% confidence interval for the first resuit (activity rate)
is reached before 10,000, but the System has to-be simulated a bit more
than 50,000 so that the 10% threshold is reached for the second criterion

TABLE 11

Relative confidence intervals for XI-2 andX3~25 (16 batches).

TMAX

5000

; ïoooo
20000

30000

40000

50000

Rl

13.1%

9.6%

7.5%

6.6%

5.4%

5.5%

R2

24.4%

. 21.4%

17.5%

13.2%

11.0%

10.6%

vol. 33, n° 1, 1999

114 M. BECKER et al

(mean messages number). The dynamic batches number increase proved to
be efficient, since the second itération ended at T - 44,719. With three more
batches, the simulation ended at T = 53,104. Without this, there would have
been a third itération until T = 89,438.

5. CONCLUSION

An automatic run-time choice algorithm for simulation length has been
designed and implemented. The processes are supposed to be second order
asymptotically stationary. The method consists in running a single simulation
until some predefined relative confidence intervais on the performance criteria
are reached. At run-time, the simulation is eut into equi-sized batches. The
batch mean method is used for estimating confidence intervais which are in
turn used for iteratively determining a sufficient simulation length.

In ail our tests, the algorithm was able to stop the simulation when
necessary, reaching the required confidence intervals without wasting too
much CPU time. However, it might diverge should the user ask really too
small confidence intervais and/or too high confidence levels.

Some practical features have been added to the theoretical idea so as
to make the implemented method more efficient. The simulation length
multiplying coefficient 0 is rounded up in order to re-use batches and also to
avoid an itération in some cases. This coefficient is limited to a maximum
value so that the first itération is not too long. Also, the itération number
itself is limited to avoid divergence. In the same vein, the batches number
is dynamically modified when the coefficient is small.

The method rests on the définition of the states of a System and the
automatic observation of the changes in the states, which are called events.
Therefore, the method can be applied to any system that can be described in
terms of states, which is the case of a large range of complex Systems. It is a
useful feature in a simulation tooi such as MIMESIS. The user no longer has
to worry about finding a satisfactory simulation length: performance criteria
are nearly always obtained with small enough confidence intervals.

Further work should be done in two directions. Firstly, for some
complex Systems, especially those involving rare events, simulation is not a
performance évaluation method to resort to. Our algorithm does not solve this
problem: other techniques must be used to deal with rare events. Secondly,
the method is valid only for steady state simulations. A study of the automatic
détection of non steady state period is in progress. Later on, it will be possible
to analyze simulations during a non steady state period.

Recherche opérationnelle/Opérations Research

AUTOMATIC RUN-TIME CHOICE FOR SIMULATIONS 1 1 5

REFERENCES

1. A. LAW and W. D. KELTON, Simulation Modeling & Analysis, Me Graw Hill, 1991.
2. M. BADEL, Quelques problèmes liés à la simulation de modèles de systèmes

informatiques, Thèse de Docteur-Ingénieur, Université de Paris VI, France, 1975.
3. A. LAW and W. D. KELTON, Confidence Intervais for Steady-State Simulations: I. A.

Survey of Fixed Sample Size Procedure, Opérations Research, 1984, 32, n° 6,
pp. 1221-1239.

4. H. DAMERDJI, Strong Consistency of the Variance Estimator in Steady-State
Simulation Output Analysis, Maihematics of Opérations Research, 1994, 19,
n° 2, pp. 494-512.

5. C. CHIEN, Batch Size Sélection for the Batch Means Method, Proceedings of the
1994 Winter Simulation Conference, 1994, pp. 345-352.

6. M. K. NAKAYAMA, Two-Stage Stopping Procedures Based on Standardized Time
Series, Management Science, 1994, 40, n° 9, pp. 1189-1206.

7. W. Y. THANG and G. DAMM, An Environment for Performance Evaluation: MEVIESIS
(Machine-Implemented Modelling and Exploratory Simulation from Initial
Spécification), Proceedings of the Summer Computer Simulation Conference
1996, Portland, Oregon, USA, July 1996.

8. G. DAMM, W. Y. THANG, A. L. BEYLOT and M. BECKER, Generic Components
for a Library of Parallel Architectures Models in MIMESIS, Proceedings of
the Summer Computer Simulation Conference 1995, Ottawa, Ontario, Canada,
July 24-26, 1995, pp. 773-778.

9. M. BECKER, Validité des Simulations de Files d'Attente, Thèse de Doctorat d'État,
Université Paris VI, France, 1976.

10. P. LE GALL, L'ergodisme et la convergence des méthodes aléatoires, Annales des
Télécommunications, 1967, 22, n° 7-8, pp. 221-228.

11. M. BECKER and P. DOIHLLET, Hierarchical Simulation for Rare Events, IASTED
Modelling and Simulation, May 10-12, 1993.

12. M. BECKER and P. BECKER, Optimal Simulation Lengths for Various Algorithms
Computing the Mean, IMACS, 1978, 20, n° 1, pp. 44-52.

13. L. KLEINROCK, Queueing Systems, Volume 1: Theory, John Wiley & Sons, 1975.
14. CACI Products Company, MODSIM II, The Language for Object-Oriented

Programming: Référence Manual, La Jolla, CA, USA, 1993.

vol. 33, n° 1, 1999

