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ASYMPTOTIC DIFFERENTIAL APPROXIMATION RATIO:
DEFINITIONS, MOTIVATIONS AND APPLICATION

TO SOME COMBINATORIAL PROBLEMS (*)

by Marc DÉMANGE ( J ) and Vangelis T H . PASCHOS (2)

Communicated by Pierre TOLLA

Abstract. — We first motivate and de fine a notion of asymptotic differential approximation ratio.
For this, we introducé a new das s of problems called radial problems including in partieular
the hereditary ones. Next, we validate the définition of the asymptotic differential approximation
ratio by proving positive, conditional and négative approximation results for some combinatorial
problems. We first dérive a differential approximation analysis of a classical greedy algorithm for
bin packing, the "first fit decreasing ". Next we deal wit h minimum vertex-covering-by-cliques of
a g rap h and the minimum edge-covering-by-complete-bipartite-subgraphs of a bipartite grap h and
devise a differential-approximation preserving réduction from the former to the latter. Finally, we
prove two négative differential approximation results about the ability of minimum vertex-coloring
to be approximated by a polynomial time approximation schema.

Keywords: NP-complete problem, complexity, polynomial time approximation algorithm, bin
packing, coloring, covering.

Résumé. - Nous commençons par définir et motiver une notion de rapport d'approximation
différentiel asymptotique. Pour cela, nous introduisons une classe de problèmes que nous appelons
radiaux qui comprend en particulier les problèmes héréditaires. Puis nous validons la définition de
rapport d'approximation différentiel asymptotique en établissant des résultats positifs, conditionnels
et négatifs pour différents problèmes combinatoires. Nous proposons d'abord une analyse, dans le
cadre de l'approximation différentielle, d'un algorithme glouton classique (le « first fit decreasing »)
pour le problème de bin packing. Nous traitons alors les problèmes de couverture minimum des
sommets d'un graphe par des cliques induites et des arêtes d'un graphe biparti par des sous-
graphes partiels bipartis complets et donnons une réduction préservant l'approximation différentielle
du premier au second. Enfin, nous prouvons deux résultats négatifs concernant la possibilité
d'approcher le problème de coloration des sommets d'un graphe par un schéma d'approximation
différentiel polynomial.

Mots clés : Problème NP-complet, complexité, algorithme polynomial approché, bin packing,
coloration, couverture.
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1. INTRODUCTION

In [5], we have proposed and axiomatized a new approximation theory
more compatible with the combinatorial optimization theory. We will try to
informally and shortly describe the spirit of this approach.

We first recall that the purpose of the polynomial approximation is to
solve optimization NP-complete problems. A common and very complete
way for rigorously expressing the most of such problems is via the use of
mathematical (integer-linear or integer-quadratic) programs. In fact, given
a combinatorial optimization problem II, a genene instance / of II can be
written as follows:

{opt v(x)

where v(-) is a linear (or quadratic) function of x, called "objective function",
and C is a set of linear constraints. A vector y verifying the constraints is
called "feasible vector" (or "feasible solution") of / and the quantity v(y)
"feasible objective value" (sometimes, for reasons of simplicity, the term
feasible is omitted). The best between the objective values of I is called
"optimal value" of / .

Key-requirement of the differential approximation framework is the
stability of any adopted approximation ratio with respect to the affine
transformation of the objective function. In what follows, we call affine-
equivalent problems for which the objective function of the former is an affine
transformation of the objective function of the latter. Affine transformation
is very natural and frequent in combinatorial optimization and the stability
of the approximation ratio under this type of transformation is not taken into
account by the classical theory as it is shown in the following example.

Example 1: One of the most famous cases, in complexity theory, of affine
transformation is the relationship between maximum independent set1 (IS)
and minimum vertex covering2 (VC).

1 Let G — (V, E) be a graph of order n; an independent set is a subset V' Ç V such that
whenever {vitVj} C V', ViVj f E, and the maximum independent set problem (IS) is to find an
independent set of maximum size.

2 In a graph G = (V,E), a vertex cover is a subset V' Ç V such that, for each edge uv e E,
at least one of u and v belongs to V' and the minimum vertex cover problem (VC) is to find a
minimum size vertex cover.
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ASYMPTOTÏC DIFFERENTIAL APPROXIMATION RATIO 483

Given a graph, a maximal (resp., maximum) independent set is the
complement, with respect to the vertex set of the graph, of a minimal (resp.,
minimum) vertex covering. So, every algorithm solving the former solves,
via a a set-difference with respect to the vertex-set of the graph, the latter
and vice-versa.

These problems are affine-equivalent following the problematic of [5]
(Le,, every algorithm supposed to solve them has the same approximation
ratio regarding both problems), while they have conflicting behaviour in the
usual approximation framework. In fact, the maximal matching algorithm
guarantees an approximation ratio 2 for VC, while its approximation ratio
tends to 0 for IS. This asymmetry becomes even more embarrassing given
that, as it has been proved in 1992, no polynomial time approximation
algorithm can guarantee constant ratio for IS, unless P = NP [1],

The theory of differential approximation is based upon the équivalence of
problems under affine transformation, since the main axiom we have imposed
for a relevant approximation measure is to respect it. The problematic outlined
above has led us, in [5], by an axiomatic thought process, to the définition
of a notion of approximation measure quite different from the usual one
(presented in [8]), the differential approximation ratio defined by

where, given an instance ƒ of a combinatorial problem, UJ(I), X(I) and
are the values of the worst-case solution (notion discussed in [5]), the
approximated one (provided by algorithm A, supposed to solve problem II),
and the optimal one, respectively. It is easy to see that #A( I I ) = 1
corresponds to an exact algorithm A for II; otherwise, 8j±(Jl) < 1.

Loosely speaking, a differential ratio 1 — e means that A is to an extent
of e like the most stupid algorithm, and to an extent of (1 — e) like the most
intelligent algorithm. If X(I) — P{I)> then the ra tio is equal to 1, and if
X(I) = uj(I), then it is equal to 0. If, on the other hand, /?(ƒ) = w(I), then
the ratio is undefined, but this case is trivial since the optimal solution can be
found in polynomial time. Finally, the better the value of the approximation
solution, the better (closer to 1) the differential ratio. Remark that a possible
interprétation of differential approximation ratio is that it expresses the
position of X(I) into the interval of the possible objective function's values.
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As it is shown in [4, 5, 9, 10], many combinatorial optimization problems
have, in the differential approximation framework, a behaviour completely
different from the one in the usual approximation framework, where the
approximation ratio for minimization (maximization) problems is defined as

In this note, we extend the work of [5] by introducing a notion of asympîotic
differential approximation ratio (the asymptotic approximation ratio is well-
known in the classical approximation framework too). Next, we use this
notion to dérive several approximation results.

More precisely, we first evaluate the asymptotic differential approximation
behaviour of the first fit decreasing algorithm (FFD) used to solve a very
well-known NP-complete problem, the bin packing.

Next we consider two other well-known combinatorial optimization
problems, the minimum vertex-covering-by-cliques of a graph and the
minimum edge-covering-by-complete-bipartite-sub-graphs of a bipartite
graph. For these problems, we show how, for every S < 1, the existence of
a 5-differential approximation algorithm for the former implies the existence
of a polynomial time approximation algorithm for the latter, guaranteeing a
constant asymptotic differential ratio of value S.

Finally, we prove that, unless P = NP, the minimum vertex-coloring
of a graph cannot be approximated neither by a fully polynomial time
approximation schema, nor by an asymptotic one.

The problems we mainly deal with in this paper are defined as follows.

Bin packing (BP)

We are given a finite set L = {x\,..., xn} of n rational numbers and
an unbounded number of bins, each bin having capacity equal to 1 ; we
wish to arrange all these numbers in the least possible bins in such a way
that the sum of the numbers in each bin does not violate its capacity.

Vertex-covering-by-cliques of a graph (VCC)

Given a graph G — (V^EQ), we wish to cover the vertices of F by a
minimum-cardinality System of cliques of G.
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Edge-covering-by-complete-bipartite-subgraphs of a bipartite graph
(CCB)

Given a bipartite graph B — (Vi U V2,J5#), we wish to cover the
edges of EB by a minimum-cardinality system of complete bipartite
subgraphs of B.

Vertex-coloring of a graph (C)

We are given a graph of order n and wish to color its vertices with
as few colors as possible, so that no two adjacent vertices receive the
same color.

We now give a définition-panorama of the several approximation-theory
terms which will be used in the sequel.

DÉFINITION 1: Consider a generic instance I of size ra of an NP-complete
combinatorial optimization problem IL

• A polynomial time algorithm A sub-optimally solving II is called
polynomial differential 6-approximation algorithm (6-DPTAA) if A
guarantees differential approximation ratio 6 for every instance of IL

• A differential fully polynomial time approximation schema (DFPTAS) is a
séquence of 5-DPTAAs Ae guaranteeing, for every e > 0, approximation
ratio S > l — e with complexity O(p(l/e)O(nk)), where p is a polynomial
not depending on ra, and k a constant not depending neither on ra, nor
on e.

2. ASYMPTOTIC DIFFERENTIAL APPROXIMATION RATIO

In the classical approximation theory, the notion of asymptotic
approximation ratio deals, informally, with instances for which the optimal
solution value is unbounded. This notion appears to be very meaningful
given that a great number of NP-complete optimization problems become
polynomial if we consider that their optimal solution value is bounded by
a fixed constant.

These problems are called simple in the literature [13], For example, IS,
VC, BP, etc., are simple since, for instances with /?(/) < K, for a fixed

vol. 33, n° 4, 1999
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constant K, an exhaustive search, where at most all the ^-element subsets
of the input-data are examined, suffices to produce the optimal solutions.
Notice that in such a case, the complexity of an exhaustive search is
at most O(nK+1), hence polynomial in n where n dénotes the size of
problem's instance. On the other hand, since C is NP-complete for any
minimum number of colors greater than, or equal to, 3, it is not simple.

Moreover, we think that in any approximation framework, the notion of
asymptotic approximation (dealing with a class of "interesting" instances) is
pertinent. In the usual one, there exist numerous "asymptotic" approximation
results, and in the differential one, such results can be produced as we show
in the sequel. But first, we define and discuss what we call "differential
asymptotic approximation ratio" (denoted by 6j£). As we will see, the
hypotheses upon which the définition of 6™ is based are different from the
ones of the usual approximation framework.

In fact, the asymptotic approximation ratio in the usual framework is
defined on the hypothesis that the interesting (from an approximation point
of view) instances of the simple problems are the ones whose values of the
optimal solutions tend to oo (because, in the opposite case3, the problems are
polynomial). So by ruling out a few of "non-interesting" instances, people can
restrain themselves to the interesting ones and they produce approximation
results holding for the quasi-totality of the instances of a given problem
(asymptotic results). This point of view justifies the définition of the usual
asymptotic approximation ratio as it is given in [8]:

p% = inf{p > 1 : for some K E Z +
ï p A ( / ) < p,VJ with /?(ƒ) > «}.

The thought process that has led us to axiomatize the differential
approximation framework allows us to bring to the fore cases where the
size (or the value) of the optimal solution is not always a pertinent hardness
criterion for the instances of a problem. Let us explain for a while this point
of view by means of the three following examples.

Example 2; Vertex covering and independent set
We revisit the two well-known combinatorial optimization problems VC

and IS. As we have already mentioned, these two problems are affine-
equivalent and it is exactly on such a kind of équivalence that the differential

3 The case where optimal values are bounded by fixed constants.
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approximation theory is built. Consequently, these two problems are affine-
equivalent and one of the main impacts of this équivalence is that the two
problems have the same sets of "interesting" (hard) instances. Consider now
a complete graph Kn, for an n arbitrarily large. Then f3yc(Kn) — n — l and
As {Kn) — 1. Therefore, if a hardness criterion for the instances of a problem
is the value of their optimal solutions, then Kn should be considered hard
for VC but easy for IS; this contradicts the équivalence of the two problems.
In fact, it is commonly accepted (even in the usual approximation framework)
that Kn is an easy instance for both the problems under discussion.

Example 3: Bin packing

Consider an instance L of BP and another instance LK obtained by
appending, in the list of items of L, a list of K numbers, all equal to 1. It is
obvious that every solution for LK will be a solution for L followed by n
bins, each one of these bins containing one of the «; ls appended. In this
sensé, solving BP in L is exactly as hard as solving it in LK and vice-versa.
If we adopt the size of the optimal solution as a hardness criterion, then L
should be easier than LK and this does not seem pertinent,

Example 4: Coloring

As a last example, consider C. In [4], we have devised a DPTAA
guaranteeing an approximation ratio of 1/2 for C. In order to do this,
we transformed C into an affine-equivalent maximization problem C and
then, by solving the latter, we constructed a solution for the former with
the same approximation ratio.

The problem C is the following: "given a graph G = (V, E), find a partial
sub-graph H of G (the complement of G) having a maximum number of
edges and such that (i) H is acyclic (or, equivalently, H is a forest), and
(ii) every connected component (tree) of H is included in a clique of G".

We show now that C is affine-equivalent to C.

With every instance G of C, we associate the instance G of C and
vice-versa.

With every feasible solution H — ( T i , . . . , T p ) of C, we associate the
following vertex coloring X of G:

• the vertices of a component-tree T?;, i = 1 , . . . , py of H are colored by
a new color;
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• we color the vertices of (V(G) \ Ui=i,...#V(Ti)) by using a new color
per vertex4.

The set of used colors constitutes the solution X for C.

The so-obtained set X is feasible for C since tree Ti of H is the spanning
tree of a clique of G, hence V((Ti) is an independent set in G. Moreover,
the second of the above items guarantees that all the vertices of G have
been colored.

So, given a feasible solution H of C, a solution X =
( S i , . . . . SpySp+i,..., SX*(G)) is constructed (where S3 is the subset
of V(G) colored by color j and sets Sp+i , . . . , Sx> are the singletons
of the second of the above items) of cardinality x!(G). The objective
value of the solution H (the number \E(H)\ of the edges of H) is then
\E(H)\ = ELid^l - 1) = Ei (iG)(N - 1) = n - x'(G).

Conversely, given a solution X — ( S i , . . . , Sx?^Qy) for G (of objective
value -x!{G)\ recall that a vertex coloring is a partition of the vertices
of the input-graph into independent sets), one can easily construct a
solution H for C in G by simply taking the subgraph of G induced by Su
i — 1 , . . . ,x'(G9 ( tms sub-graph is obviously a clique) and by extracting
(using, for example, depth-first-seareh) a spanning tree Tu Such a solution is
feasible for C (by its définition) and constitutes a forest H on y! (G) trees.
It is well-known that the number of edges of a p-trees forest of order n is
n - p; so, E(H) = n- X ' (G).

We have shown that given a coloring of value x, one can polynomially
construct a feasible solution for C of value n — x and vice-versa. So the
affîne-equivalence between C and C is proved.

But even if C and C are affine-equivalent the latter is simple while the
former is not Since affine-equivalent problems have the same differential
approximation ratio, it seems natural that they also have the same asymptotic
differential approximation ratio. This is not the case for the two problems
under discussion (if we adopt as hardness criterion the size of the optimal
solution), since for C we cannot rule out instances with bounded optimal
solutions while, for C, such instances, being polynomially solved, can be
neglected.

4 Given a graph G, we dénote by V(G) its vertex-set.
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Considérations like the ones exposed in Examples 2, 3 and 4 have led us to
look for other hardness criteria better adapted to the differential problematic.
As we have already noticed, a possible interprétation of the differential
approximation ratio is that it expresses the position of X(I) into the interval
of the possible objective function's values (as we have restricted ourselves to
discrete problems, there exists a finite number of such values). Moreover, for
the most of the maximization problems, since the value of the worst solution
is equal to 0, the optimal value is an upper bound for the number of the
objective function's values. Observations like the ones just mentioned, give
us the terms of another hardness criterion, the number a(I) of the feasible
values of 7, which we adopt as hardness criterion for the instances of a
problem. Consequently, we propose the following définition.

DÉFINITION 2: Asymptotic differential approximation ratio
The asymptotic approximation ratio of a DPTAA A is defined as

6f = lim inf

In other words, 6^ is the lower limit of the séquence of ratios indexed by
the value of <r(/).

Let us note that the condition a(I) > k used in the définition of
the asymptotic approximation ratio for characterizing "the séquence of
unbounded instances" (or "limit instances") cannot be polynomially verified5.
But in practice, for a given problem, it is possible to directly interpret
condition a(I) > k by means of cu(I) and (3{I) (note that a(I) is not
a function of these values). For example, for numerous cases of discrete
problems, we are able to détermine, for each instance, a step ?r defined as
the least variation between two feasible values of the instance (for example,
for BP 7T = 1); then, a(I) < [u(I) - P(I)}/TT and consequently,

Whenever ?r can be determined, condition [00(I) — /?(ƒ)]/TT > k can be easier
to evaluate than a(I) > k, and in this case, the former is used (this is not
senseless since we try to bound below the ratio).

5 Of course, the same holds for the condition {3(1) > k indueed by the hardness criterion in the
usual approximation framework.
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490 M. DEMANGE and V.Th. PASCHOS

3. RADIAL PROBLEMS

In order to justify the adoption of a(I) as hardness criterion in the
définition of the asymptotic approximation ratio, let us introducé a class
of problems, called radial problems, large enough and including a lot of
well-known combinatorial optimization problems.

We prove in this section that, for a radial problem II, if a(I) is bounded
above, then H is polynomially solvable (see Prop. 1). Roughly speaking,
instances verifying a(I) < k are not very interesting, since there is a
bounded number of elementary stages from any feasible solution to the
best one. So, the test a(I) > k rules the less interesting instances (that are
polynomial for radial problems) out, which is just the aim of the asymptotic
notions. This thought process is largely inspired by the spirit of the notion
of simplicity [13] but seems more pertinent in the differential approximation
framework.

Before formally introducing radial problems (Def. 3), let us give an
informai description for these problems.

Informally, a problem II is radial if, given a generic instance / of II and
a feasible solution for / , one can, in polynomial time, on the one hand,
deteriorate it as much as one wants (until to finally obtain a worst-value
solution) and, on the other hand, greedily improve it in order to obtain
(always in polynomial time) a sub-optimal solution (eventually the optimal
one). The part of the informai description concerning détérioration is formally
expressed in définition 3 by conditions (i), (ii) and (iii) while improvement
is expressed by condition (iv).

DÉFINITION 3: Radial problems

Consider a combinatorial problem H and a generic instance / of II of
size n. If there exist three polynomial (in n) algorithms £, if) and tp such
that, for ail I:

(i) £ computes a feasible solution x^\

(ii) for every feasible vector x of / strictly better (in the sensé of the
objective) than x^°\ algorithm tp computes a feasible solution (p(x)
(if any exists) with v(ip(x)) strictly worse than v(x), Le., v{(p(x)) >
v(x)9 if II is a minimization problem and v(<p(x)) < v(x)9 if II is
a maximization one;
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(iii) for every feasible vector x of I with objective value strictly better
than v(fW), there exists an integer ft such that <pk(x) = öK°) (where
we dénote by cpk the ft-times itération of tp)\

(iv) for a vector y such that, either y = âfà), or y is any feasible vector of I
with objective value strictly better than v(^°)), ip(y) computes the
set of ancestors of y9 defined by ij){y) = y"1 ({y}) = {% '• <p(z) = y)
(this set is* eventually empty),

then Et is radial.

In what follows in this section, we consider maximization problems, the
case of minimization ones being completely analogous.

The notion of radial problems includes in particular the usual notion of
hereditary problems for which every subset of a feasible solution remains
feasible (for example, IS is a hereditary problem). In fact, for hereditary
problems,

(i) feasible solutions x are characteristic vectors of sets;

(ii) for ail instances I, âfô) — 0;

(iii) for every other feasible vector x, <p(x) is just obtained from x by
setting to 0 a component which equals 1 in x.

Example 5: The foin packing is radial
Let us revisit BP. First, observe that it is not hereditary, since given a

feasible solution B consisting of a certain number of bins correctly6 including
all the éléments of the initial list, if we remove some bins of B, the remaining
solution is not feasible since it does not contain all the members of L.

Let us now show that BP satisfies conditions (i) to (iv) of Définition 3.
Consîder for this an instance L of BP:

• one can easily eompute a solution B^ for BP consisting of putting
an item per bin (so B^ consists of n one-item bins); so, condition (i)
is satisfied;

• given a feasible solution B, one can deteriorate it by removing an
element from a bin of B containing at least two items and by putting
this removed element in a new (unused) bin; so, condition (ii) is satisfied;

6 In the sensé that the sum of the sizes of the éléments in each bin does not exceed L
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• one can continue this détérioration of B by repeatedly executing the
above item until solution £K°) is obtained; so, condition (iii) is satisfied;

• finally, given either solution B^ or any other feasible solution B

- one can obtain better solutions by iteratively trying to empty some
bins of BW (or B), Le., by considering an single-item bin and by
trying to put its item in another non-empty bin of B^ (or B);

- one can continue this procedure as far as it leads to smaller feasible
BP-solutions;

- moreover, if one guesses successfully the single items one tries to
move, then one could obtain even an optimal BP-solution;

hence condition (iv) of définition 3 is also satisfied.

Consequently, BP is radial.

Example 5 illustrâtes also that the class of radial problems is significantly
more gênerai than the one of the hereditary problems7. By a similar thought
process to the one of Example 5, one can prove that the radial property
described in Définition 3 is verified by a very large number of other
combinatorial problems (in particular, all the problems of this paper are
radial) such as VC, BP or, even, C and CCB.

On the contrary, the Proposition 1 below brings to the fore some problems
which do not belong to this class. For example, the problem of coloring
with as few colours as possible a 4-colorable graph (Le., we suppose that a
feasible solution does not contain more than four colours) is not radial.

Let us now introducé Proposition 1 that illustrâtes why we consider as
the most interesting, under the adopted asymptotic ratio's définition, the
instances with large a.

PROPOSITION 1 : Let K be afixed constant and consider a problem II satisjying
the foüowing properties:

(i) II is radial and,

7 In fact, the hereditary notion deals with problems for which a feasible solution is a subset of
die input-data, while the radial notion includes problems for which a feasible solution is not only
a subset but a second-order sub-stracture of these data.
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(ii) for every instance I ofH, a(I) < n.

Then, II is polynomial.

Proof: Let / be an instance of n and consider the feasible vector x^0^
computed by algorithm £. Let us now consider an optimal solution x of J;
if öK°) is not optimal, then, by property (iii) of Définition 3, 3k such that
<f)k{x) = x^°\ But from hypothesis (ii) of Proposition 1 and property (ii)
of Définition 3, k < K.

Then, in order to compute x, one has to perform an exhaustive search of
the at most p(n)K feasible solutions of I, where p(n) is an upper bound

4. ASYMPTOTIC DIFFERENTIAL-APPROXIMATION RESULTS

4.1. Bin packing and the asymptotic differential-approximation
behaviour of "first fit decreasing"

A broad discussion of approximation stratégies for BP is performed in [8,
11, 12]. In the usual approximation framework, the strongest approximation
resuit for BP is the one of Fernandez de la Vega and Lueker [7] who prove
that it can be solved in linear time by an asymptotic fully polynomial time
approximation schema.

One of the most classical and efficient algorithms Computing good solutions
for BP is the following ö(nlogn) first fit decreasing (Algorithm 1).

Algorithm 1. Algorithm FFD
BEGIN

sort the numbers in L in decreasing order;

let L — {&i , . . . , xn} be the resulting list;

FOR all p DO Bp <- 0 OD

FOR i ^ l T O n D O

j +- min{k : Ex6Sfc
 x ^ 1 ~ xi}>

Bj^BjUixi};

OD

remove the empty bins;

END.

The best (classical) approximation resuit for FFD (obtained by a rather
complicated and long proof) is the one cited in [8], ie., for all instances L
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of BP, X(L) < (ll/9)/3(L)+4, in other words, the asymptotic approximation
ratio of FFD (in the usual approximation framework) is 11/9.

We show in this section how the notion of asymptotic differential
approximation ratio provides a framework in which Algorithm 1 can be
also analyzed with good results. We first recall the following lemma proved
in [11, 12].

LEMMA 1 [11, 12]: Let L = {xi,... ,xn} be an instance of BP, let
L — {xi G L : Xi < 1/3} and m = |L|. Algorithm 1 optimally solves
instances L of BP for which L — 0.

THEOREM 1:

• «|?PD > 2/3

< 3/4.

Proof: Let us consider an instance L = {xi : i — 1 , . . . , n} of BP. It
is easy to see that UJ(L) = n. List L is divided into two sub-lists L of
cardinality m, and L1 of cardinality m', with

L= \xi e L :xi <

L' = L\L.

Let us consider two distinct applications of FFD, first in L', then in L and
let B1 and B be the corresponding BP-solutions; dénote by X(Lf) and À(L)
the values of B1 and B, respectively. Obviously, B1 U B is a feasible
BP-solution for L of value À(L') + A(Z).

In Algorithm 1, since L is sorted in increasing order, L' is firstly treated.
Next, in order to treat ï , the algorithm will firstly search to put some of
its éléments in bins already used for L' and next, for the rest of éléments
of L empty (still unused) bins will be used. Consequently, the value X(L)
of the obtained solution is a priori smaller (at most equal) to the value
À(Z/) + X(L) of the solution S ' u f i (thanks to the fact that some éléments
of L are, eventually, already arranged in bins already used for the items
of L')\ so,

X(L) < A(L;) + À(L)
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with equality in the case where no item of L can be introduced by
algorithm FFD in a bin already used to arrange some éléments of L'.

The following holds for A(L'), /?(£'), X(L) and (3{L):

\{Ll) = (3(Lf) (according to Lem. 1)

*M?I <- H
(3{L) > f3(Lf);

so,

As m!

Given

- P(L')

that for

m'-
~ m1 -

> 0, we get

u{L)
CÜ(L)

B P 7T =

-KL)

1, we

UJ ( JL/ )

- LJ\ }_j )

" 0(1/)

2

~ 3

have

coo
Ô F F D :

P{L)
H—|p

+ m

3[w(I

>2
~ 3

2

3[w(L) - P(L)\

2

which concludes the proof of first item.

Of course, it is natural to wonder what is the best value for £ppD . The
second item of the theorem affirms that it cannot be greater than 11/12,
while, in the third item we prove that 5FFD cannot be larger than 3/4.

Consider a 18m-element list L — {#1, . . . ^ ism} with

- -f 2e 1 < i < 6m

-1 < i < 18m.

Then,

6m (1)

7m (2)

cü(L) = 18m
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where (1) holds because, in the optimal solution for L, each bin contains the
triple (1/3 + 2e, 1/3 - e, 1/3 - e) per bin, while (2) holds because, in the
solution provided by FFD, 3m bins will contain the pair (1/3 + 2e, 1/3 + 2e)
per bin and 4m bins will contain the triple (1/3 - e, 1/3 - e, 1/3 - e) per bin.

It is easy to see that a(L) = 12m can be unbounded. So, the ratio
(18m - 7m)/(18m - 6m) = 11/12 is an upper bound for

In order to prove the third item, consider a 6-element list

1 1 1

It is easy to see that the value of the optimal BP-solution for L equals 2,
while FFD provides solution of value 3 and the worst value is 6. So, for
this list, the approximation ratio of FFD is (6 - 3)/(6 - 2) = 3/4 and this
complètes the proof of the third item and of the theorem. D

4.2. Covering problems on graphs

In what follows, via an approximation-preserving réduction, we show how
the existence of a DPTAA for CCB with a certain ratio, would lead to the
devising of a DPTAA for VCC with asymptotically the same ratio.

Let B and G be two generic instances of CCB and VCC, respectively.

For (JJ(G), it suffices to remark that every vertex of G can be considered
as a clique K\.

For u)(B)9 two immédiate alternatives exist for the worst-case solution. We
can either consider each edge of EB as a complete bipartite sub-graph of B,
or consider the complete bipartite subgraph of B (vUT(v), {vu : u G T(v)})9

with v G Vï, i = 1,2 and where T(v) is the set of neighbours of v. It
is easy to see that such a graph is a complete bipartite graph and that
UveVi{vu : u G T(v)}) = Eg. The two candidate solutions are both
unwarranted and either the former, or the latter can be effectively considered
as worst-case ones. But since the latter, being smaller than the former, is as
unwarranted and natural as the former, it is natural to require from an efficient
approximation algorithm for CCB to provide solutions better than the one
{(v U r(v), {vu : u G T(v)}) : v G argmin{|Vi|, IV2I}}* Moreover, from a
mathematical point of view, the greater the worst-case value considered, the
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easier the achievement of positive differential approximation results8 (a long
discussion on the notion of the worst-case solution in complexity theory and,
also on how its value can be choosen, is performed in [6]). Consequently,
in order to render the differential-approximation framework as restrictive as
possible and, therefore, the obtained results to be as non-trivial as possible,
we systematically consider the smallest between the unwarranted solutions
as the worst case one.

So, the following holds for the sizes of the worst-case solutions for CCB
and VCC, respectively:

A very interesting problem in complexity theory is the devising of
approximation preserving réductions between NP-complete problems, Le.,
réductions establishing that an approximation algorithm for an NP-complete
problem can be transformed into an approximation algorithm with the same
approximation ratio (up to a multiplicative factor) for another NP-complete
problem. Although this aspect of thepretical computer science is relatively
well-studied in the framework of the conventional approximation theory, in
the differential one (due also to the youth of this framework), it is not yet
satisfactorily developed.

Moreover, let us notice that approximation-preserving réductions for the
conventional framework does not always remain approximation-preserving
for the differential one, since the approximation ratio adopted plays a key-role
to the proofs of the préservation property, strongly conditions its existence
and requires mathematical arguments proper to the adopted framework.

In our case, a slightly different resuit (where no asymptotic ratios intervene)
happens to exist also in the conventional framework [14]; the réduction
pro ving the result of this section (Th. 2) is an adaptation of the one of [14].

8 Let us notice that another "possible" worst-case solution for CCB could be the family of
all the existing complete bipartite sub-graphs of B; but since the cardinality of such a family is
exponential in \Vi\ + |V^|, then every DPTAA for CCB (providing, naturally, a feasible solution
of size polynomial in |Vi | + |Vs |) would be considered as asymptotically optimal for this problem
(since it would always achieve a differential approximation ratio 1 - e for an e tending to 0); the
same remarks hold also for w(B) = |Vi HV21; finally, it is also a matter of intellectual honnesty for
a researcher to render the achievement of mathematical results as least trivial as possible.
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THEOREM 2: Let 8 < 1 be a fixed positive constant If there exists a
6-DPTAAfor CCB, then there exists a DPTAA for VCC guaranteeing
asymptotic dijferential approximation ratio 6.

Proof: Let G = (V,E) be an instance of VCC; let us suppose that
V = { l , . . . , n } and m = \E\.

Starting from G, we first construct the following bipartite graph B =
(V1\JV2,EB):

VI = {xi,...,xn}

V2 = {yi , . . . ,2 /n}

EB = El
B U E%

and then, we construct an instance B — (Vi U V^^E^) of CCB as follows:

) :P = k,q^l,i < jyzj e E}

k,l) :p^k,q = l,i> j,ij E E}.

In Figure 1, an example of the réduction just described is shown.
Notice that the above construction has the following properties:

(i) every clique of G covering a set Vf C V corresponds, in B, to
a complete bipartite graph covering, in particular, the edges of
the form Xiyi, i G Vf; conversely, every complete bipartite graph
covering edges of the form xiy^ i E V', corresponds to a clique
of G covering F ' ; so,

• the members of an edge-covering by complete bipartite graphs
of B are ail balanced9; moreover, if {Br = {V{,V{, Er) :
r — 1,...}, V{ Ç Vi, VJ Ç. V2, r — 1, . . . , is such an edge-
covering, then the members of V{ and V{ have the same set
of indices;

9 A bipartite graph B = (V, V',E) is called balanced if |V| -
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(xl/U)

(yU,i

(x2,l,2) (x3,l,2)

(y3,2,l) (yl,2,2> (y2,2,2)

(x3,2,2)

(y3,2,2)

Figure 1. - A graph G, instance of VCC,
and the derived bipartite graph B9 instance of CCB.

• every vertex-covering by v cliques in G corresponds to a family
of v complete bipartite graphs of B covering Eg and vice-
versa (but it does not necessary cover E2

B, which explains the
usefulness of introducing B)\

(ii) for every p = l , . . . , m and for every edge ij G E, i < j , the vertices
{(xiyPiQ)i{yjiP>l) : Q)l = l , . . . , m } induce in B a complete
bipartite graph; the same holds for the vertices {(xjiqyp)y(yiylip) :
g, l — 1 , . . . , m } ; so, the 2m2 corresponding complete bipartite graphs
cover the edges of the set E2^ U E^\
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(iii) for every i G V and every (p, q) / (fc, /), edges [x^p, q){yup> q) and
(xi,kj)(yi,k,)l) cannot belong to the same complete bipartite sub-
graph of B; consequently, every edge-covering of B by JJL complete
bipartite graphs is partitioned into m2 edge-coverings of B, each
covering containing m complete bipartite graphs; since Y^iL\ M* = M>
it is immediately deduced that min^l/^} < ji/m2.

Let us now suppose that we are given a £-PTAA A C C B for CCB. Then,
we consider the following algorithm for VCC.

Algorithm 2. A VCC-algorithm A v e c
BEGIN

starting from G construct B and B;

Apply A C C B on B;

let Bo = argmin^l^i};

construct, following (i), the corresponding clique-covering of V;

END.

We then have the following:

following (iii)

P(B) < m2P{G) + 2m2 following (i) and (ii) (3)

Notice that the righthand side of expression (3) represents the size of the
feasible solution deduced from items (i) and (ii) above. The size of this
solution is, a priori, greater than, or equal to, the size of the optimal solution
for B.

Based upon the above expressions and the hypothesis that
guarantees differential approximation ratio 6, we get:

_ w(G) - \{G) _ u{G) - \{G)
Ô A v c c ~ w(G) - P(G) w(G) - P(G) u(G) - P{G) u{G) -

u(B) - X(B) + 2m2 2 > 2
u(B) - 0(B) + 2m2

 UJ(G) - f3(G) ~ u>(B) -

To complete the proof of the theorem, it suffices to remark that VCC is
radial. So 6^ > 6, and this complètes the proof of the theorem. D
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4.2.1. Graph coloring

We prove in this section that, unless P = NP, C cannot be approximated
by neither a DFPTAS, nor by an asymptotic DFPTAS.

Let us notice that the non-existence of a DFPTAS for C was already
announced in [4] but without proof because of the imperatives on the
length of the paper. So, here we give the full proof of this result and,
moreover we somewhat strengthen it by proving that even the existence
of an asymptotic DFPTAS of a certain form for C is also to be excluded,
unless P = NP.

Before stating and proving our result, we need the following définition
(already given in [3] and also used in [8], Chap. 6, Sect. 6.2, pp. 142-143).

DÉFINITION 4: Consider two graphs H — (U,EH) and I ~ (W,Ej). The
composition (product in [3]) G — H[I] of H and / , is a graph G = (V, E)
with

V = U x W
E = {(u,w)(uf,w') : (uuf G EH) V [(u = u) A ( W G Ex)]}.

In other words, G is constructed by replacing each vertex of H by a copy
of / and then replacing each edge uv! of H by a complete bipartite graph
joining the copy corresponding to u to the one corresponding to v!'.

Figure 2 shows an example of the composition described in Définition 4.

wl

(ul,w2)

(u2, w2) (u3,wl ) (u3,w2)
G

Figure 2. - The graphs H and / and their composition graph G = H[ï\.

vol. 33, n° 4, 1999



502 M. DEMANGE and V.Th. PASCHOS

THEOREM 3: Consider a graph G of order n» generic instance of C Then,
unless P — NP, C cannot be approximated

• neither by a DFPTAS;

• nor by an asymptotic DFPTAS guaranteeing, for every e > 0, differential
ratio of the form

where a is a fixed positive constant

Proof: In order to prove the first item, let us suppose the existence of
a DFPTAS Ae for C. We will show how we can use it to polynomially
solve the 3-coloring problem10.

Consider a graph G = (V,E) with |V| = n. Apply A i / n to G (Ae being
a DFPTAS, its complexity is not exponential in e; hence A1^n is polynomial
in n) and recall that that UJ{G) — n. So,

- \Al/n(G) l

- n

which, after some easy and short algebra, gives

It is easy to see that if G is 3-colorable, then (3(G) — 3 and, consequently,
ÀA1/n(G) < 4; on the contrary, if G is not 3-colorable, then obviously,
ÀA l /n(G) > P{G) > 4. Therefore, following the value of A6 (obtained in
polynomial time thanks to the fact that Ae is polynomial for every e), one can
décide in polynomial time if G is 3-colorable1 J or not (Xj±1/n(G) > 4). The
fact that 3-cotorability is NP-complete, suffices to deduce that a DFPTAS
for C cannot exist unless P = NP.

Let us now prove the second item of the theorem. Let us notice that the
ratio claimed in this item is a restricted form of asymptotic ratio.

10 Given a graph, we wish to décide if its vertices can be colored by using only 3 distinct colors;
this version of C is another famous NP-complete problem [8}.

11 A A 1 / 7 I (G) < 4 means that G is 3-, or 2-colorable; on the other hand, deciding if a graph is
2-colorable is polynomial.
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Consider a graph G — ( V", E) of order n, instance of C and the composition
graph Kg[G}9 where Kg is a clique on £ vertices.

It is easy to see that in ZQ[G] a vertex of a copy corresponding to a
vertex of G is linked to every vertex of any other copy; so for the coloring
of ÜQ[G], the following holds:

fl(Kt\G\) = £0(G)

w(Kg[G\) = £(*){G)

Moreover, at every vertex-coloring of G by X(G) colors, a vertex-coloring
of Kt[G] by £X(G) colors is easily constructed by considering À new colors
proper to every copy of G in K([G]. Conversely, given a coloring of Kg[G\
by X(Kg[G]) coiors, a vertex-coloring of G by at most X(Kg[G])/£ colors can
easily determined. This can be done by projecting the coloring of ÜQ[G] onto
each copy of G; we so obtain £ (not necessarily distinct) vertex-colorings
of G and by choosing as final coloring-solution of G the projection inducing
the best (largest) between the £ differential approximation ratios, we get the
coloring claimed. So, every coloring-algorithm has on G approximation ratio
greater than its approximation ratio on Kg[G].

Suppose now that C can be approximately solved by an asymptotic
DFPTAS with ratio as the one claimed and consider an instance G of C. Fix
a positive integer e and construct üf pe-(i/«)-| [G], Since the quantity [e""^1^]
is polynomial in n, the whole construction can be performed in polynomial
time.

We run Ae on Kj€-(i/a)^[G] and starting from the coloring solution
obtained, we construct, as discussed just above, a coloring solution for G.
For this latter coloring, the following holds:

> • ! - € - > 1 - 2e.

\

But 5Ae(G) > 1 - 2e means that C admits a real (non-asymptotic) DFPTAS,
contradicting so the first item of the theorem and completing the proof of
the second item. G
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5. DISCUSSION

The purpose of this paper was less to produce particular results for
combinatorial problems than to show that the differential approximation
theory is as rich as the usual one. We have tried to enrich the differential
polynomial approximation theory by adding new concepts (already existing in
the classical approximation theory) and by justifying the working hypotheses
associated with these concepts. In this spirit we have defined the class
of radial problems which justifies why one can consider as "interesting
instances", the ones for which the number of feasible solution-values is
unbounded; next, based upon this characterization of the hard instances, we
have introduced the concept of the differential asymptotic approximation
ratio.

Next, we have proved that the définition of 6°° is scientifically non-empty,
since it provides a working-framework for the asymptotic analysis of the
behaviour of approximation algorithms.

We now informally describe under which problematic we have adopted the
quantity a(I) as threshold between easy and hard instances. First, we must
notice that the concept itself of the instance has some structural characteristics
which have to be explored in order to devise algorithms that both come up
to the optimal solution and move away from the worst one (this is the spirit
of the differential approximation measure).

In the exciting work of [2], the authors propose the foliowing notion of
the structure of an instance.

DÉFINITION 5: Structure of the instance of a combinatorial problem [2]
The structure S(I) of an instance I of a combinatorial problem is the list

(a i , - - - ,a c ) wi thc= \/3(I)-w(I)\ and a* = \{x e Ci : \V(X)-LJ(I)\ = i}| ,
where Cj is the constraint-set of the instance I and v(x) is the value of
the solution x.

This notion of instance-structure is quite adequate for unweighted
(cardinality) combinatorial problems but somewhat missleading when
weighted problems are treated12. So, in a first time, we define the generalized
structure S*(I) of an instance I as follows.

12 For example, the weighted version of IS is the one where weights are associated with the
vertices of the graph and the objective becomes to maxi mi ze the sum of the weights of an
independent set.
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DÉFINITION 6: Generalized structure of an instance
Given a combinatorial optimization problem II, the generalized

structure S*(I) of an instance ƒ of II is the list ((t^, a?;))i=i;_;Cr, ordered
in increasing order with respect to vu where a is the number of feasible
values of / and ai = \{x G Cj : \v(x) - w(/)| = VÎ}\; let us note that
ui = 0 and ^ =

But even the concept of S*(I) has the drawback to be incompatible
with the affine (and homothetic) transformations (and such transformations
play, as we have seen, a crucial rôle to the considération of the differential
framework). Let us explain it by means of the foliowing example.

Example 6: We revisit our old friend IS and express it as a linear-integer
program:

{max l|y| • x

where A is the edge-vertex incidence matrix of the input-graph and, by !# ,
we dénote the one-column vector of RD (D G N), all the coordinates of
which are equal to 1. For this problem, it can be seen that all the integer
values in [/?(/). u;(/)] can be attained.

Consider now the following problem:

{max 2|y| • x

A-x<

f G {0,

where 2|y| is the one column vector of R ^ with all its components equal
to 2. For HIS, which is an IS where we simply search to maximize
the double of an independent set of the input-graph (we apply a simple
homothetic transformation of the objective function of IS), all integer values
in \fl(I),uj(I)] cannot be attained since the odd ones are never attained;
so, HIS has not the same generalized structure as IS.

But homothetic transformations of the objective function (which are very
natural, in particular when dealing with weighted problems) do not change
the nature of the resulting problems (by making them, for instance, more or
less significant regarding their asymptotic approximation behaviour). They
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generate problems strictly identical (from optimization point of view\ to the
initial one, and in the differential approximation context, we consider that
not only homothetic but also affine transformations generate problems of the
same structure, since such problems are affine-equivalent

So we replace the notion of the (generalized) structure by the one of the
distribution S(J) of the values of an instance defined as follows.

DÉFINITION 7: Distribution of the feasible values of an instance
Given an instance I of a combinatorial optimization problem and the

list 5*(/), the distribution S( / ) of the feasible values of I is the équivalence
class of S*{I) defined by the following équivalence relation:

p = q) A [3X e R*,3/xG IR,

Vi e {!,-.. ,p} : [(ai = bi) A ( vi = Xwi + fi)]].

The quantity P is exactly the threshold a(I) discussed in the previous
sections.

We conclude this paper by noticing that the affine-equivalence preserves
distribution. Moreover, all the "structure-preserving-reduetions" of [2]
preserve also distribution.
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