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COMPLEXITY OF PARTIAL INVERSE ASSIGNMENT
PROBLEM AND PARTIAL INVERSE CUT PROBLEM ∗
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Abstract. For a given partial solution, the partial inverse problem is
to modify the coefficients such that there is a full solution containing
the partial solution, while the full solution becomes optimal under new
coefficients, and the total modification is minimum. In this paper, we
show that the partial inverse assignment problem and the partial in-
verse minimum cut problem are NP-hard if there are bound constraints
on the changes of coefficients.
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1. Introduction

An inverse optimization problem is to modify the coefficients of the objective
function optimally, such that a given solution becomes an optimal solution un-
der new coefficients. Due to its theoretical and practical importance, the inverse
problem has attracted much attention. It has been shown that many inverse com-
binatorial optimization problems can be solved by combinatorial strongly polyno-
mial algorithms [1–5]. Since the given solution is a full solution of the original
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optimization problem, we may refer the inverse problems defined above as inverse
problems with full given solution.

But in reality, we may know more about a partial solution than a full solution.
Sometimes what we are most interested in is how to guarantee that a partial
solution is contained in an optimal solution. The partial inverse problem is to
modify coefficients optimally such that there exists a full solution containing a
given partial solution which becomes optimal under new coefficients. We have
shown that several partial inverse network flow problems can be solved efficiently
if there are no constraints on the modification of coefficients [6]. In this paper, we
prove that the partial inverse assignment problem and the partial inverse minimum
cut problem are NP-hard if there are bound constraints on the modification of
coefficients.

2. Partial inverse assignment problem

Let U and V be two node sets such that |U | = |V |, E = {(u, v)|u ∈ U, v ∈ V }.
Let c be a weight function defined on E. The minimum assignment is to find
a subset M ⊂ E such that each node is linked by one and only one edge in M
(that is, the nodes of U and V are connected pair-wise, and |M | = |U | = |V |)
and

∑
(u,v)∈M

c(u, v) is minimum.

Given an assignment M , the inverse assignment problem is to modify the weight
function c to c∗ such that M is minimum with respect to c∗ and the total modifi-
cation is minimum.

It has been shown that the inverse assignment problem with various cost forms
and bound constraints on the modification can be solved by combinatorial strongly
polynomial algorithms [2–4,10].

Now suppose that only a partial assignment P is given (each node is linked by
at most one edge in P , and |P | ≤ |U |). Let b be a bound function defined on E.
The partial inverse assignment problem is to modify the weight function c to c∗

such that

(a) there is an assignment M∗ covering P which is minimum with respect to c∗;
(b) |c(e)− c∗(e)| ≤ b(e), ∀e ∈ E and;
(c) the total modification

∑
e∈E
|c(e)− c∗(e)| is minimum.

If there are not bound constraints, we have proved that the inverse partial assign-
ment problem can be solved by a combinatorial strongly polynomial algorithm [6].
Here we will show that the inverse problem turns to be NP-hard when the bound
constraints are imposed.

It is clear that the partial inverse assignment is in NP-class. Therefore, to
prove the NP-hardness, we need only prove that the decision version of the partial
inverse assignment problem can be reduced to a NP-complete problem, even-odd
partition problem [7].
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Even-odd partition problem

Given a set of 2n positive integers {a1, a2, · · · , a2n} such that ai > ai+1 for
each 1 ≤ i < 2n, is there a partition of I = {1, 2, · · · , 2n} into two subsets S and
I\S such that, for each 1 ≤ i ≤ n, S (and hence I\S) contains exactly one of
{2i − 1, 2i}. (We call such subset S as even-odd subset.), and

∑
i∈S

ai =
∑

i∈I\S
ai?

If such an even-odd subset S exists, we call S a feasible even-odd partition set.

Let B = 1
2

2n∑
i=1

ai. Without loss of generality, we suppose that B is an integer

and B ≥ ai for all 1 ≤ i ≤ 2n.

Theorem 1. The partial inverse assignment problem is NP-hard if there are bound
constraints.

Proof. Let a1 > a2 > · · · > a2n and B be an instance of even-odd partition
problem.

When n = 1 or 2, it is trivial to verify whether a given instance of even-odd
partition problem has a feasible solution. Thus we only consider arbitrarily large
n ≥ 3.

We construct the following partial inverse assignment problem. Let U = {u1, u2,
. . . , u2n} and V = {v1, v2, . . . , v2n}. Let us decompose the edge set into the
following five subsets.

E1 = {(ui, vi)|i = 1, 2, . . . , 2n}
E2 = {u2i−1, v2i)|i = 1, 2, . . . , n}
E3 = {u2i, v[2i+1])|i = 1, 2, . . . , n}
E4 = {u2i, v[2k+1])|1 ≤ i 6= k ≤ n}
E5 = {all other edges}·

Where [2i+ 1] = 2i+ 1 if 2i+ 1 < 2n and [2n+ 1] = 1.
Set the weight function c as

c(ui, vi) = B − 1
4nB (ui, vi) ∈ E1

c(u2i−1, v2i) = B (u2i−1, v2i) ∈ E2

c(u2i, v[2i+1]) = B + 1
2a2i−1 (u2i, v[2i+1]) ∈ E3

c(u2i, v[2k+1]) = B + 1
2a2i (u2i, v[2k+1]) ∈ E4

c(u, v) = 4nB (u, v) ∈ E5.

Define the bound function b as follows:

b(u2i, v[2i+1]) = a2i−1 (u2i, v[2i+1]) ∈ E3

b(u2i, v[2k+1]) = a2i (u2i, v[2k+1]) ∈ E4

b(u, v) = 0 all other edges.

Let P = E2 = {(u2i−1, v2i)|i = 1, 2, . . . , n}. We claim that there exists a feasible
even-odd partition if and only if there exists an assignment covering P which
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is a minimum assignment with respect to a modified weight function c∗ such
that |c(e)− c∗(e)| ≤ b(e),∀e ∈ E, and

∑
u∈U,v∈V

|c(u, v)− c∗(u, v)| ≤ B.

Obviously, the minimum assignment with respect to c is M = E1 = {(ui, vi)|i
= 1, 2, . . . , 2n}, and the total weight of M with respect to c is

∑
(u,v)∈M

c(u, v)

= 2nB − 1
2B.

Suppose that there is an assignment M∗ covering P which becomes a minimum
assignment with respect to a modified weight function c∗ such that |c(e) − c∗(e)|
≤ b(e),∀e ∈ E and

∑
u∈U,v∈V

|c(u, v)− c∗(u, v)| ≤ B.

We know that:

(1) since b(u, v) = 0 for (u, v) ∈ M , we have c∗(u, v) = c(u, v) for (u, v) ∈ M ,
and then

∑
(u,v)∈M

c∗(u, v) = 2nB − 1
2B. Thus we have

∑
(u,v)∈M∗

c∗(u, v) ≤ 2nB − 1
2
B (1)

since M∗ is minimum with respect to c∗;
(2) since P ⊂ M∗, and each edge in E1 is incident to an edge from P , no edge

in E1 is in M∗, i.e., E1 ∩M∗ = ∅.
(3) since c(u, v) = 4nB and b(u, v) = 0 for (u, v) ∈ E5, no edge in E5 is in M∗,

i.e., E5 ∩M∗ = ∅.

Let M ′ = M∗ \P . Then M ′ is a perfect matching between U ′ = {u2, u4, . . . , u2n}
and V ′ = {v1, v3, . . . , v2n−1} with respect to edge set E′ = E3 ∪E4.

Denote S = {2i − 1|(u2i, v[2i+1]) ∈ M∗ ∩ E3} ∪ {2i|(u2i, v[2k+1]) ∈ M∗ ∩ E4}.
Since there is exact one edge in M∗ linking to u2i, S contains one and only one
item of {2i− 1, 2i}. Therefore S is an even-odd partition set.

Denote x2i−1 = c(u2i, v[2i+1]) − c∗(u2i, v[2i+1]) for (u2i, v[2i+1]) ∈ M∗ ∩ E3,
and x2i = c(u2i, v[2k+1]) − c∗(u2i, v[2k+1]) for (u2i, v[2k+1]) ∈ M∗ ∩ E4. We have∑
(u,v)∈M∗

c(u, v) = 2nB + 1
2

∑
j∈S

aj , and then
∑

(u,v)∈M∗
c∗(u, v) = 2nB + 1

2

∑
j∈S

aj

−
∑
j∈S

xj .

From (1), we get

∑
j∈S

xj ≥
1
2

∑
j∈S

aj +
1
2
B. (2)

By bound constraints, we have

∑
j∈S

xj ≤
∑
j∈S

aj . (3)
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By the budget constraint, we have∑
j∈S

xj ≤ B. (4)

Combining (2) and (3), we have
∑
j∈S

aj ≥ B. Combining (2) and (4), we have∑
j∈S

aj ≤ B. Therefore we obtain
∑
j∈S

aj = B, that is, S is a feasible even-odd

partition set.
Conversely, let S be a feasible even-odd partition set. Denote Se the set of even

numbers in S, and So the set of odd numbers in S.
We have

|S| = |Se|+ |So| = n.

We claim that both Se and So can not be empty sets. Otherwise there must
be S = {1, 3, · · · , 2n − 1} or S = {2, 4, · · · , 2n}. Since a1 > a2 > · · · > a2n,
n∑
i=1

a2i−1 >
n∑
i=1

a2i, S can not be a feasible even-odd partition set.

Since n ≥ 3, at least one of Se and So has two or more numbers.
Without loss of generality, assume that |Se| ≥ 2, let E−3 = {(u2i, v[2i+1])

∈ E3|2i−1 ∈ So}. Let U− = U ′ \{u2i|(u2i, v[2i+1]) ∈ E−3 }, V − = V ′ \{v[2i+1]|(u2i,
v[2i+1]) ∈ E−3 }. Then |U−| = |V −| = |Se| ≥ 2.

(If |Se| = 1, we have |So| ≥ 2. Then we define E−3 = {(u2i, v[2i+1])|2i ∈ Se},
and define U−, V − according to E−3 .)

Let E− = {(u2i, v[2k+1])|u2i ∈ U−, v[2k+1] ∈ V −, k 6= i}. It is easily seen that
E− ⊂ E4.

Denote M− = {(u2i, v[2i+1])|u2i ∈ U−}. Then M− is a perfect matching be-
tween U− and V −, and (U−∪V −, E−∪M−) is indeed a complete bipartite graph.

Let E−4 be a perfect matching of bipartite graph (U− ∪ V −, E−). (It is easy to
see that such a matching exists.)

Let us construct an assignment M∗ as follows

M∗ = E2 ∪E−3 ∪E−4 .

Define a modified weight function as

c∗(u2i, v[2i+1]) = B − 1
2a2i−1 (u2i, v[2i+1]) ∈ E−3

c∗(u2i, v[2k+1]) = B − 1
2a2i (u2i, v[2k+1]) ∈ E−4

c∗(u, v) = c(u, v) all other edges.

It is straightforward to verify that |c(e) − c∗(e)| ≤ b(e),∀e ∈ E,
∑

u∈U,v∈V
|c(u, v)

−c∗(u, v)| = B, hence the bound constraints and budget constraint are satisfied.
Notice that, E1 ∪ E2 ∪ E−3 ∪ E−4 is the set of 4n lightest edges with respect

to c∗, and it is an union of cycles covering every vertex of graph (U ∪ V,E)
with 2n vertices. Moreover E1 and M∗ are only two perfect matchings contained
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in E1 ∪ E2 ∪ E−3 ∪ E−4 , and
∑
e∈E1

c∗(e) =
∑

e∈M∗
c∗(e) = 2nB − 1

2B. Therefore M∗

is a minimum assignment with respect to c∗ which covers P = E2. �

Remark. When n = 2, we can simply re-define the weights on the graph
(U ∪V,E), and check directly that a feasible even-odd partition set is correspond-
ing to a minimum assignment under new weights with given partial assignment
and required budget constraint.

In fact, let us set

c(ui, vi) = 7
8B i = 1, 2, 3, 4

c(u1, v2) = c(u3, v4) = B
c(u2, v1) = B + 1

2a1

c(u2, v3) = B + 1
2a2

c(u4, v1) = B + 1
2a3

c(u4, v3) = B + 1
2a4

c(u, v) = 8B for all other edges

and

b(u2, v1) = a1

b(u2, v3) = a2

b(u4, v1) = a3

b(u4, v3) = a4

b(u, v) = 0 for all other edges.

There are two perfect matchings contains P = {(u1, v2), (u3, v4)}, namely M1

= P ∪ {(u2, v1), (u4, v3)} and M2 = P ∪ {(u2, v3), (u4, v1)}.
If there exists a feasible even-odd partition set S, say S = {1, 4} and a1+a4 = B,

we can modify c(u2, v1) and c(u4, v3) as c∗(u2, v1) = B
− 1

2a1 and c∗(u4, v3) = B − 1
2a4, and keep weights of other edges unchanged.

It is straightforward to check that M1 becomes a minimum assignment with re-
spect to a modified weight function c∗ such that |c(e)− c∗(e)| ≤ b(e),∀e ∈ E, and∑
u∈U,v∈V

|c(u, v)− c∗(u, v)| ≤ B.

Conversely, if there exists an assignment covering P which is a minimum as-
signment with respect to a modified weight function c∗ such that |c(e) − c∗(e)|
≤ b(e),∀e ∈ E, and

∑
u∈U,v∈V

|c(u, v) − c∗(u, v)| ≤ B, we may assume the assign-

ment is M2.
Notice that E1 = {(u1, v1), (u2, v2), (u3, v3), (u4, v4)} is an assignment

of (U ∪ V,E), and we can not change weights on E1, we have∑
(u,v)∈M2

c∗(u, v) ≤
∑

(u,v)∈E1

c(u, v) =
7
2
B.

It is not difficult to deduce that c∗(u2, v3) = B − 1
2a2 and c∗(u4, v1) = B − 1

2a3

and a2 + a3 = B. Therefore S = {2, 3} is a feasible even-odd partition set.
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3. Partial inverse minimum cut problem

Let G = (V,A) be a directed graph, s, t be two specific vertices of V . Let c
be a capacity function defined on A. Let W be a subset of V such that s ∈ W
but t /∈ W , and denote W = V \ W , and (W,W ) = {(u, v)|u ∈ W, v ∈ W}.
Then (W,W ) is called a cut of G. The capacity of (W,W ) is defined as c(W,W )
=

∑
(u,v)∈(W,W )

c(u, v). A cut is called a minimum cut if its capacity is minimum.

Min-cut and Max-flow theorem is a fundamental work in combinatorial optimiza-
tion.

Given a cut (W,W ), the inverse minimum cut problem is to modify the capacity
function c to c∗ such that (W,W ) is minimum with respect to c∗ and the total
modification is minimum.

It has been shown that the inverse minimum cut problem with various cost forms
and bound constraints on modification can be solved by combinatorial strongly
polynomial algorithms [8, 9].

Now suppose that there are two subsets S ⊂ V and T ⊂ V such that s ∈ S,
t ∈ T and S ∩T = ∅. Let b be a bound function defined on A. The partial inverse
minimum cut problem is to modify the capacity function c to c∗ such that:

(a) there is a cut (W,W ) satisfying S ⊂W,T ⊂W , (we may call (W,W ) covering
(S, T )), and (W,W ) is minimum with respect to c∗;

(b) |c(e)− c∗(e)| ≤ b(e), ∀e ∈ A and;
(c) the total modification

∑
e∈A
|c(e)− c∗(e)| is minimum.

As the inverse partial assignment problem, the inverse minimum cut problem has
been shown to be “easy” problem [6] if there are not bound constraints. Now we
show that the inverse problem becomes NP-hard when the bound constraints are
imposed. To this end, let us introduce a variant of partition problem as follows:

Let a1, a2, . . . , a2n and B be 2n + 1 positive integers, such that
2n∑
i=1

ai = 2B,

does there exist I ⊂ {1, 2, . . . , 2n} so as to
∑
i∈I

ai = B?

Since the number of item ais is 2n, we may call this partition problem an even-
item partition problem. It is easy to show that the even-item partition problem is
NP-complete.

In fact, let {c1, c2, . . . , cn and D} be an instance of partition problem. Without
loss of generality, we assume that D > 1. Let us construct an instance of even-item
partition as: ai = ci, an+i = D2ci, i = 1, 2, . . . , n, and B = D +D3.

If there exists I ′ ⊂ {1, 2, . . . , n} such that
∑
i∈I′

ci = D, setting I = I ′ ∪ {i+ n|i

∈ I ′}, we can obtain
∑
i∈I

ai = B.

Conversely if there exists I ⊂ {1, 2, . . . , 2n} such that
∑
i∈I

ai = B, let us de-

compose I = I ′ ∪ I ′′ such that I ′ ⊂ {1, 2, . . . , n} and I ′′ ⊂ {n+ 1, n+ 2, . . . , 2n}.
Then

∑
i∈I

ai =
∑
i∈I′

ci +
∑

i+n∈I′′
D2ci.
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We claim that
∑

i+n∈I′′
ci = D. Otherwise, suppose that

∑
i+n∈I′′

ci > D

(or
∑

i+n∈I′′
ci < D), then

∑
i+n∈I′′

ci ≥ D+1 (or
∑

i+n∈I′′
ci ≤ D−1) since all numbers

involved are positive integers. Therefore,
∑

i+n∈I′′
D2ci ≥ D2(D + 1) > D +D3 (or∑

i+n∈I′′
D2ci < D3 − D). This contradicts

∑
i∈I

ai = B = D + D3 since 0 ≤
∑
i∈I′

ci

≤ 2D.
Now we can get

∑
i∈I′

ci = B −
∑

i+n∈I′′
D2ci = D.

The equivalence between the partition problem and the even-item partition
problem shows that the even-item partition is NP-complete.

It is clear that the partial inverse minimum cut problem is in NP-class. There-
fore, to prove the NP-hardness, it is sufficient to prove that the decision problem of
a partial inverse minimum cut problem can be reduced to an even-item partition
problem.

Theorem 2. The partial inverse minimum cut problem with bound constraints is
NP-hard.

Proof. Let a1, a2, . . . , a2n and B be an instance of even-item partition problem.
We construct the following partial inverse cut problem.

V = {s, t} ∪ {ui, vi, wi|i = 1, 2, . . . , n}
A = {(s, ui), (ui, vi), (ui, wi), (vi, t), (wi, t)|i = 1, 2, . . . , n}·

Define the capacity function as

c(s, ui) = 2B − 1
2nB i = 1, 2, . . . , n

c(ui, vi) = B i = 1, 2, . . . , n
c(ui, wi) = B i = 1, 2, . . . , n
c(vi, t) = B + 1

2a2i−1 i = 1, 2, . . . , n
c(wi, t) = B + 1

2a2i i = 1, 2, . . . , n.

Define the bound function as

b(s, ui) = 0 i = 1, 2, . . . , n
b(ui, vi) = 0 i = 1, 2, . . . , n
b(ui, wi) = 0 i = 1, 2, . . . , n
b(vi, t) = a2i−1 i = 1, 2, . . . , n
b(wi, t) = a2i i = 1, 2, . . . , n.

Let S = {s} ∪ {ui|i = 1, 2, . . . , n} and T = {t}.
We claim that there is a feasible even-item partition if and only if there exists

a cut (W,W ) covering (S, T ) which is a minimum cut with respect to a modified
capacity function c∗ such that |c(e) − c∗(e)| ≤ b(e),∀e ∈ A and

∑
(u,v)∈A

|c(u, v)

−c∗(u, v)| ≤ B.
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Obviously, C+ = {(s, ui)|i = 1, 2, · · · , n} is a minimum cut with respect to c,
and the capacity of C+ with respect to c is

∑
(u,v)∈C+

c(u, v) = 2nB − 1
2B.

Suppose that there is a cut (W,W ) covering (S, T ) which becomes a mini-
mum cut with respect to a modified capacity function c∗ such that |c(e) − c∗(e)|
≤ b(e),∀e ∈ A and

∑
(u,v)∈A

|c(u, v)− c∗(u, v)| ≤ B.

First since b(u, v) = 0 for (u, v) ∈ C+, we have c∗(u, v) = c(u, v) for (u, v) ∈ C+,
and then

∑
(u,v)∈C+

c∗(u, v) = 2nB − 1
2B. Therefore we have further

∑
(u,v)∈(W,W )

c∗(u, v) ≤
∑

(u,v)∈C+

c(u, v) = 2nB − 1
2
B (5)

since (W,W ) is minimum with respect to c∗.
(W,W ) covers (S, T ), therefore the non-fixed vertices are {vi, wi|i = 1, 2, · · · , n}.

For each i, there are three cases:

Case 1. Both vi and wi belong to W . Then the corresponding cut arcs are (vi, t)
and (wi, t).

Case 2. Both vi and wi do not belong to W . Then the corresponding cut arcs
are (ui, vi) and (ui, wi).

Case 3. One of vi and wi belongs to W . Then the corresponding cut arcs are
{(ui, vi), (wi, t)} if wi ∈W, vi ∈W , or {(ui, wi), (vi, t)} if vi ∈W,wi ∈W .

From the bound constraints, only the capacities of arcs {(vi, t), (wi, t)|i
= 1, 2, . . . , n} can be reduced. Denote x2i−1 = c(vi, t) − c∗(vi, t), x2i = c(wi, t)
−c∗(wi, t).

Denote I = {2i− 1|vi ∈W} ∪ {2i|wi ∈W}.
We have

∑
(u,v)∈(W,W )

c∗(u, v) = 2nB + 1
2

∑
i∈I

ai −
∑
i∈I

xi.

From (5), we get

∑
i∈I

xi ≥
1
2

∑
i∈I

ai +
1
2
B. (6)

By bound constraints, we have∑
i∈I

xi ≤
∑
i∈I

ai. (7)

By the budget constraint, we have∑
i∈I

xi ≤ B. (8)
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Combining (6) and (7), we have
∑
i∈I

ai ≥ B. Combining (6) and (8), we have∑
i∈I

ai ≤ B. Therefore we obtain
∑
i∈I

ai = B, that is, I is a feasible even-item

partition set.
Conversely, if there is a feasible even-item partition set I, let us define a modified

weight function as

c∗(vi, t) = B − 1
2a2i−1 2i− 1 ∈ I

c∗(wi, t) = B − 1
2a2i 2i ∈ I

c∗(u, v) = c(u, v) all other arcs.

It is straightforward to verify that |c(e) − c∗(e)| ≤ b(e),∀e ∈ A,
∑

(u,v)∈A
|c(u, v)

−c∗(u, v)| = B.
Let W = S ∪ {vi|2i − 1 ∈ I} ∪ {wi|2i ∈ I}. We can easily calculate that∑

(u,v)∈(W,W )

c∗(u, v) = 2nB − 1
2B. It is trivial to show that (W,W ) is a minimum

cut with respect to c∗ which covers (S, T ). �

The author is grateful to the Editor and two anonymous referees for their helpful com-

ments which corrected some minor errors of early version of the paper.
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