
RAIRO Operations Research
RAIRO Oper. Res. 36 (2002) 1-19

DOI: 10.1051/ro:2002002

THE MAXIMUM CAPACITY SHORTEST PATH
PROBLEM: GENERATION

OF EFFICIENT SOLUTION SETS

T. Brian Boffey
1
, R.C. Williams

2
, B. Pelegŕin

3

and P. Fernandez
3

Abstract. Individual items of flow in a telecommunications or a trans-
portation network may need to be separated by a minimum distance
or time, called a “headway”. If link dependent, such restrictions in
general have the effect that the minimum time path for a “convoy” of
items to travel from a given origin to a given destination will depend
on the size of the convoy. The Quickest Path problem seeks a path to
minimise this convoy travel time. A closely related bicriterion prob-
lem is the Maximum Capacity Shortest Path problem. For this latter
problem, an effective implementation is devised for an algorithm to de-
termine desired sets of efficient solutions which in turn facilitates the
search for a “best” compromise solution. Numerical experience with
the algorithm is reported.

Keywords: Quickest path, shortest path, path capacity, efficient
solution.

Mathematics Subject Classification. 90B10, 90B18.

Introduction

Shortest path methods play a central role in many problems associated with
telecommunications and transportation networks. Sometimes, however, through-
put is restricted by “headway” requirements on the minimum separation in space

Received August, 1997.

1 University of Liverpool, Liverpool L69 7ZL, U.K.
2 University of Abertay, Dundee, U.K.
3 University of Murcia, Murcia, Spain.

c© EDP Sciences 2002

2 T.B. BOFFEY ET AL.

or time between successive items of flow. Thus, the (minimum) time for a convoy
of items to travel from a given origin O to a given destination D has a contribution
corresponding to inter-item headways. Consequently, if headway restrictions are
link dependent, the path(s) leading to minimal convoy travel time will, in general,
depend on convoy size. The determination of minimal convoy travel time paths
gives rise to the so-called Quickest Path problem [6, 22]. The Maximum Capacity
Shortest Path problem [1], a closely related bicriterion problem, is defined in the
next section.

The Quickest Path problem is relevant for situations in which convoy travel time
is critical, or at least very important. For transportation networks it is usually
the case that vehicles are travelling as “individuals”, though the armed forces do
make use of convoys for moving equipment and personnel quickly. For telecommu-
nications networks the situation is different. There, individual items are packets,
with “messages” (the convoys) often comprising very many packets. Frequently,
these messages are constrained to follow a single route determined by the system
and a time headway between packets is determined by the “speed” of each rel-
evant link. For time critical applications the identification of a minimal convoy
travel time path assumes importance. Perhaps more interesting is the potential
application to combined routing /congestion control in computer networks when
datagram routing is employed. A shortest path corresponds to one with shortest
delay (under “normal conditions”). A maximum capacity path would correspond
to one that could transport relatively many packets per unit time (possibly also
taking account of buffer occupancy en route). Since network conditions will be
varying, calculations should be short and it may be appropriate to calculate few
paths, perhaps merely a maximum capacity path and a minimum length path.
This could help to control congestion when a long “burst” of traffic is encountered
since routing could then be switched to a higher capacity path. The relevance
of this is that it has been found to be relatively common for network traffic to
exhibit self-similarity (e.g. [24, 27]) which implies that there will be “bursts of
all lengths”. This scheme is tentative as there are other complications, but it is
worthy of investigation.

Algorithms for the Quickest Path problem with good asymptotic behaviour have
been devised (e.g. [29]). Here we present an algorithm with the same complexity
but describe an improved implementation. The strategy, which is based on making
effective use of information gained early in the solution process to reduce the
amount of effort required subsequently, has been found to lead to substantial
computational savings for the Bicriterion Shortest Path (BSP) problem and it was
of interest to investigate whether similar savings could be achieved for the present
problem. The results in Section 3 demonstrate that considerable computational
savings can indeed be made, though they are less impressive than for BSP [3].

To be precise, the (time) headway, hα, of a link α is the minimum permissible
time difference between ti the (start of) arrival of the i-th item and ti+1 the (start
of) arrival of the immediately succeeding item. This corresponds to a variety
of different real situations as illustrated in Figure 1. In Figure 1a, items are of
negligible dimension and time of arrival is well defined – the headway is imposed to

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 3

-(a) Time

-(b) Time

-(c) Time

ti ti+1

-� headway

Figure 1. The time ti+1 − ti is the headway (minimal time be-
tween successive item arrivals). The rectangles on each line indi-
cate the “extent” of an item (that is, the time it takes an item to
arrive) and the remaining headway time represents the minimal
enforced gap between items.

keep items well separated. On the other hand, the time difference may be entirely
due to items being extensive (Fig. 1b) – this is a sustainable view of the situation
pertaining to digital signals over a telecommunications link. Finally, the situation
may be somewhere between these two extremes (Fig. 1c) as would be the case for
trains on a metro network.

Now consider a convoy of s identical items. For the whole convoy to pass along
a link α, the time tα taken will be at least

tα = lα + σhα (1)

where lα is the time taken for one unit to traverse α. The value of σ will vary
from s − 1 when arrival is instantaneous (Fig. 1a) up to s when the headway is
due solely to items being extensive. In any case, the optimal path will depend
on σ and we shall be interested in determining optimal paths as a function of σ
for a range of values (which might even be all σ in 0 < σ < ∞). Consequently,
the precise way in which σ relates to s will not be discussed further.

To the authors’ knowledge, Moore [25] was first to consider routing of convoys
through networks as quickly as possible, and two algorithms were proposed but
these, however, were not tested other than on a very small illustrative example.
Recently there has been much interest in the problem in relation to telecommu-
nications networks. Chen and Chin [6], Hung and Chen [18], Rosen et al. [29]
and Kagaris [22] have considered the problem under the name “Quickest Path”
(QP) Problem. Related problems have been studied in [4, 5, 7, 8, 11, 17–21, 23].
Boffey [1] posed the Maximal Capacity Shortest Path (McSP) problem which is
very similar. (We use the abbreviation McSP with lowercase “c” to distinguish
the problem from the Maximal Covering Shortest Path problem [10].)

Various of the above cited papers contain Quickest Path algorithms and quoted
worst case complexity results. These results predict asymptotic behaviour but it is

4 T.B. BOFFEY ET AL.

also relevant to consider algorithm implementation for practical networks that may
contain no more than a few hundred nodes. This is particularly so if calculations
are required frequently to take account of changes in network conditions (e.g.
link failure or congestion in telecommunications networks). This paper considers
algorithm implementation in some detail and presents numerical experience.

The plan of the paper is as follows. The next section looks briefly at the
relationship between QP and McSP. Then in Section 2 an algorithm to calculate
all efficient solutions with path length not exceeding some specified maximum is
considered in some detail together with its efficient implementation. Numerical
experience with the implementation is reported in Section 3 and, finally, we present
our conclusions.

1. Efficient sets for problems McSP and BQP

Concepts relating to multicriteria problems will briefly be described, then some
theoretical results which underpin the subsequent algorithmic development are
established.

1.1. Multicriteria concepts

Consider the bicriterion minimisation problem
P: minimise Z1(x)

minimise Z2(x)
subject to x ∈ Ω.

In general, there will be no single solution which simultaneously minimises both
objectives and the concept of “optimality” is replaced by that of “efficiency”. More
precisely, let x, y ∈ Ω be two feasible solutions and suppose

Z1(x) < Z1(y) and Z2(x) ≤ Z2(y) or Z1(x) ≤ Z1(y) and Z2(x) < Z2(y).

When (at least) one of these two conditions holds then (Z1(x), Z2(x)) is said to
dominate (Z1(y), Z2(y)). A feasible solution x is efficient if (Z1(x), Z2(x)) is dom-
inated by no other (Z1(u), Z2(u)), where u is a feasible solution, and the set of
all efficient solutions of a problem P will be denoted by E(P). Each efficient solu-
tion x defines an equivalence class C(x) = {u | (Z1(u), Z2(u)) = (Z1(x), Z2(x))}.
We denote by RE(P) a subset of E(P) which contains precisely one represen-
tative element from each equivalence class. An efficient solution y is extreme if
(Z1(y), Z2(y)) is an extreme point of the set {(Z1(u), Z2(u)) | u ∈ Ω} in objective
function space and there exists no convex combination (1 − θ)(Z1(a), Z2(a)) +
θ(Z1(b), Z2(b)) which dominates (Z1(y), Z2(y)) where 0 < θ < 1 and a, b ∈ Ω.
EE(P) will denote the set of all extreme efficient solutions of problem P and
REE(P) will denote EE(P)∩RE(P). It should be noted that RE(P) and REE(P)
need not be unique.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 5

A technique sometimes used to approximate E(P) (or an RE(P)) is the Con-
straint Method. This involves solving the problem with one objective, say Z2, the
other being restricted. Thus

P(k): minimise Z2(x)
subject to Z1(x) ≤ k, x ∈ Ω

is solved for an “appropriate” set K of values of k (see Sect. 2.5). It is shown in
the next subsection that the method is well suited to the McSP and Bicriterion
Quickest Path (BQP defined below) problems.

For more information on multicriteria methods and vector optimization the
reader is referred to [9, 30].

1.2. McSP and the BQP problems

If the minimum time headway between items on link α is hα then cα = 1/hα

is just the capacity of α. Denoting by Λ the set of simple (loopless) paths from
origin O to destination D, then for any π ∈ Λ, the capacity c(π) of π is defined
by c(π) = minα∈πcα. Also if lα is the length of α then the length l(π) of π ∈ Λ is
l(π) = Σα∈πlα. The Maximal Capacity Shortest Path problem may now be stated
formally as

McSP: minimise −c(π)
minimise l(π)
subject to π ∈ Λ.

Referring back to the convoy problem mentioned in the introduction, the minimum
convoy travel time will be controlled by the least capacity link encountered. Thus
travel time T (π) on path π ∈ Λ will be T (π) = l(π)+σ/c(π) where σ is as described
earlier. The conventional Quickest Path problem is then [6]

QP(σ): minimise {l(π) + σ/c(π)}
subject to σ ∈ Λ.

Solving QP(σ) for 0 < σ <∞, amounts to an application of the Weighting Method
(see Cohon [9]) to the Bicriterion Quickest Path problem:

BQP: minimise 1/c(π)
minimise l(π)
subject to π ∈ Λ.

Proposition 1.1. Provided all cα > 0,
(i) E(BQP) = E(McSP);
(ii) EE(McSP) ⊆ EE(BQP).

Proof. (i) follows immediately by observing that the transformation x→ −1/x is
order preserving for −∞ < x < 0 and substituting x = −c(π).

(ii) Suppose G = E(BQP) – EE(BQP) is non-empty and let π ∈ G be a
non-extreme efficient solution of BQP. It is easily seen that there must exist ρ,

6 T.B. BOFFEY ET AL.

- l

6

1/c

u
u

uρ

t
t

t

t

t

t

t

t

t

t

t

t

t

t

u

eπ

uτ

u

6

MORE

SOLUTIONS

-
MORE

SOLUTIONS

Figure 2. If π is an efficient but not extreme solution of BQP,
there exist ρ, τ ∈ E(BQP) such that π “is between ρ and τ” (see
proof of proposition).

τ ∈ EE(BQP) such that l(ρ) < l(π) < l(τ) and 1/c(ρ) > 1/c(π) > 1/c(τ) (see
Fig. 2). If θ, 0 < θ < 1 , is the unique number satisfying

l(π) = (1 − θ)l(ρ) + θl(τ), (2)

then ρ and τ can be chosen so that 1/c(π) ≥ (1 − θ)(1/c(ρ)) + θ(1/c(τ)) since
otherwise π would be extreme for BQP. Also, c(ρ), c(τ) > 0 (cα > 0) and x→ 1/x
is a convex function for 0 < x < ∞, hence it follows that (1 − θ)(1/c(ρ)) +
θ(1/c(τ)) > 1/[(1 − θ)c(ρ) + θc(τ)]. These last two relations combine to give
c(π) < (1− θ)c(ρ) + θc(τ) and hence

−c(π) > (1− θ)(−c(ρ)) + θ(−c(τ)). (3)

Together, equations (2) and (3) imply that π ∈ E(McSP)−EE(McSP) and hence
that

E(BQP) − EE(BQP) ⊆ E(McSP) − EE(McSP).

The desired result follows immediately.

Example 1.2. Suppose ρ, π and τ are the only efficient solutions and that (see
Fig. 3)

l(ρ) = 2, l(π) = 5, l(τ) = 8, and c(ρ) = 0.2, c(π) = 0.4, c(τ) = 0.8.

(It is trivial to construct a network realising these values.) Then l(π) = 0.5l(ρ) +
0.5l(τ) that is, θ = 0.5. Clearly, π ∈ EE(BQP). However, π 6∈ EE(McSP) since
0.5(−c(ρ)) + 0.5(−c(τ)) = −0.5 < −0.4 = −c(π).

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 7

- l
2 4 6 8

6

1/c

2

4

6
vρ
Q

Q
Q

Q fπ
v

τ
PPPP

π ∈ EE(BQP)

- l
2 4 6 8

?−c

−0.2

−0.4

−0.6

−0.8

vρ

@
@

@
@

@
@

@
@@

f
π

v
τ

π /∈ EE(McSP)

Figure 3. Illustration that EE(McSP) may be a strict subset of EE(BQP).

The implication of Proposition 1.1 part (i) is that, as far as computing the set of
efficient solutions is concerned, an algorithm to solve BQP provides an algorithm
to solve McSP and vice versa. On the other hand, efficient solutions are more likely
to be extreme for BQP than for McSP. Viewed differently, an algorithm to find
extreme efficient solutions of BQP can be used to find both extreme and “mildly
non-extreme” efficient solutions of McSP.

2. Algorithms to compute efficient sets

Chen and Chin [6] and others have proposed an algorithm to find a quickest
O−D path for a single value of σ (see Eq. (1)) based on the observation that the
number of distinct path capacity values cannot exceed the number of links in the
network since the capacity of a path is equal to the capacity of one of its links.
This means that we can determine E(McSP) by using the Constraint Method with
(all) optimal solutions of

McSP(k): minimise l(π)
subject to −c(π) ≤ −k, π ∈ Λ

being found for all k ∈ K = {cα}. The requirement that −c(π) ≤ −k means that π
must not contain any link a with cα < k. This may be ensured without losing any
feasible solutions of McSP(k) by omitting constraint −c(π) ≤ −k, but working
with a modified network obtained by removing all links α with cα < k. With
this modification we are left with a conventional single origin single destination
shortest path problem for which very efficient algorithms exist.

At this point we need to make a distinction between computing E(McSP) and
an RE(McSP). The former would require finding all shortest paths for each k ∈ K
(and there may be many), whereas the latter merely requires a single shortest

8 T.B. BOFFEY ET AL.

path for each k. To simplify our discussion we shall henceforth be concerned with
finding an RE(McSP) (or an REE(McSP)) only – it will be clear that to compute
E(McSP) could be effected by replacing a shortest path algorithm by a k-shortest
path algorithm.

A prototype algorithm to compute an RE(McSP) now becomes apparent.

PROTOTYPE ALGORITHM

STEP 1. Form the set K = {k1, k2, . . ., kr} of distinct capacity values ordered so
that k1 < k2 < . . . < kr.

Repeat STEP 2 for i = 1, 2, . . ., r.

STEP 2. Find a shortest path π (if one exists) from O to D through the network
Ni, the original network with links of capacity cα < ki removed.

STEP 3. Remove the non-efficient solutions from the set {π}.
The calculation is clearly dominated by the applications of STEP 2. If use is
made of Dijkstra’s algorithm [14], and the priority list of temporary labels is
implemented as a Fibonacci heap, then each shortest path can be found in O(e +
n logn) time [15]. This gives a time complexity of O(re + rn log n), or O(e2 +
ne logn) since r may be O(e), for our prototype algorithm which is the same as
the time complexity quoted by Rosen et al. [29] to find a single quickest O − D
path.

While we have been able to quote a theoretical complexity there is much that
remains as regards a practical implementation of the prototype algorithm. Of
course, if a single network calculation is required and there is only a very small
number of different link capacity values then a straightforward implementation
will solve the problem very quickly. From now we shall assume that there are
several, or many, different values.

2.1. Implementing the shortest path calculations

Let πi denote a shortest path from O to D through the network Ni, i = 1, 2, . . .
Initially, a (full) shortest path calculation is performed to calculate π1 in N1 = N .
However, since N2 results from N1 by removing some of the links, it may be
expected that π2 will show significant similarities to π1. Similarly, π3 is likely
to be similar to π2, but less similar to π1 than π2 is to π1, and so on. That is,
the initial calculation to find π1 provides knowledge that is potentially useful for
guiding successive shortest path calculations. One means of incorporating such
knowledge is to use a “consistent function” to guide selection of the next node for
scanning.

Definition 2.1. A function h : V → R, from the node set of network N to the
set of real numbers, is consistent if, for every link xy, h(x) ≤ axy +h(y) where axy

is the length of xy.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 9

In essence, a consistent function provides, for each node x, a lower bound from
that node to the destination D [2]. If a suitable consistent function is available
then Dijkstra’s method may be extended to the following algorithm [16,26].

Algorithm 2.2. Dijkstra(h)

STEP 1. (Setup)
Set dist(x) =∞, ∀x 6= O; dist(O) = 0; u = O; CAND= {u}.

While CAND 6= ∅ perform STEP 2.
STEP 2. (Iteration)

Remove u from CAND (i.e. CAND ← CAND \{u}).
if u = D
then terminate else for each link uv

if dist(u) + auv < dist(v)
then dist(v)← dist(u) + auv; CAND ← CAND ∪{u}.

Select u ∈CAND such that dist(u) + h(u) = minx∈CAND(dist(x) + h(x)).

This specialises to the usual Dijkstra algorithm if h is a constant (h(x) = h(D)
for all nodes x). (Note that, for brevity, we have omitted all pointer operations
for reconstructing a shortest path at the termination of the algorithm.)

Dijkstra (h) is only useful if an easily computed non-constant consistent func-
tion is available. Moreover, the benefits increase as the values h(x) − h(D) more
accurately “estimate” the actual distances from x to D. Then, since removal of
links cannot decrease distances, h, defined by h(x) = di(x, D) all nodes x, provides
a consistent function for McSP with respect to shortest distance calculations for
networks Ni+1, Ni+2, . . . where di(x, D) denotes the shortest distance from node
x to node D through network Ni. Advantage of this is taken by initially setting
i = 1 and specifying an integer m > 1, then replacing the iteration step of the
prototype algorithm by

While i ≤ r perform STEP 2.
STEP 2. (Iteration)

if i = pm + 1 for some integer p
then determine the set {di(x, D)} and set h(x) = di(x, D) all nodes x.

The shortest O −D path π is obtained as a by-product.
else use Dijkstra(h) to obtain π.
if di(O, D) =∞ (i.e. O not connected to D in Ni)
then set i← r + 1 (early termination)
else set i← i + 1.

Every m iterations the consistent function is updated by performing a (full) short-
est path calculation in the network with link directions reversed. This will be
termed the “p-th restart” for p = 0, 1, . . . If, as is likely to be the case, the network
is symmetric then this may be achieved merely by finding the shortest distances
from D to every other node. For m = 1 the algorithm essentially reverts to the
prototype algorithm with conventional shortest path algorithm. For m > r − 1,
only one consistent function (corresponding to i = 1) is used.

10 T.B. BOFFEY ET AL.

2.2. Using path capacity information

At the start of the p-th restart the shortest path πp(x) is found in Npm+1 from
each node x to node D. It is also straightforward to calculate the capacity gp(x)
of πp(x) at the p-th restart, as well as the length of πp(x).

Proposition 2.3. Suppose that Dijkstra(h) is being applied to Ni where pm+1 <
i ≤ (p + 1)m. If u is the node selected and gp(u) ≥ ki, then π, the shortest path
in Ni from O to u followed by πp(u) is a shortest path from O to D in Ni.

Proof. Since since i > pm + 1 the shortest path in Ni from u to D must be at
least as long as πp(u). However, since gp(u) ≥ ki every arc of πp(u) must lie in Ni

and so πp(u) is indeed the required shortest path from u to D.

Once a node u has been selected for which gp(u) ≥ ki, the search is over and πp(u)
may be used to complete the shortest path from O to D in Ni. Rough calculations
suggested, however, that the effort of calculating the gπ(x) would probably not
be offset by the reduction in number of nodes added to set CAND. Consequently,
this modification was not tested.

2.3. Extraction of efficient solutions

Step 3 of the prototype algorithm can be streamlined by not calculating un-
wanted paths (or repetitions) as the algorithm proceeds. A diagram will be used
to describe the general way in which this may be achieved.

An ordered list of paths L = {π1, π2, . . . } containing the current candidate
efficient solutions is maintained. Also, paths πi are assigned pointers parent(πi)
which are used to extract the extreme efficient solutions at termination. (Details
of the pointer calculation will not be given but see Fig. 4.)

Imagine now that lengths of shortest paths for each of the potential capacity
values are as shown in Figure 4. At the first iteration (i = 1) the shortest path
π from O to D may be either π1 = τa or π1 = τA. Suppose π1 = τA and
set L = {τA}. Our first (extreme) efficient solution has been obtained and i is
increased to 5 (nothing new being obtained by performing step 2 for i = 2, 3, 4).
On the other hand, if we set π1 = τa, then L = {τa} and i is increased to 4. At the
next iteration (i = 4) π4 = τA is obtained. Since l(τA) = l(τa) but c(τA) > c(τa),
τa has been found not to be efficient and so τa is removed from L and τA added
giving L = {τA}; i is increased to 5.

By whichever of the two routes, we have arrived at the same situation. At the
next iteration (i = 5) π5 = τB is obtained, L is updated to {τA, τB} and i increased
to 7. After three more iterations L = {τA, τB, τC , τD, τE} and i = 11. Now, no
further O −D paths remain and the algorithm terminates. It may be noted that
Kagaris et al. [22] have suggested such a strategy.

We note, but do not give details, that extreme solutions are determined as the
algorithm proceeds by means of pointers parent(πi) (see Fig. 4). (Essentially the
pointers are determined so that following them results in a path that “bends to

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 11

- l(π)

6

c(π)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

f
f

fτa

viτA

�
�

��

viτB

�
�

�
�

�
�

�
��=

����
v
τC

�����)

v
τD

f
vi τE

No more solutions

Figure 4. For each of the potential path capacity values, only
the “leftmost” (shortest) path, if any, is shown. Efficient solutions
τA, . . ., τE are indicated by filled circles; τA, τB and τE are also
extreme efficient solutions. The arrows indicate parent pointers.
(The values of c(π) are shown equally spaced but this need not
be the case.)

the left”.) The extreme efficient solutions for the hypothetical example of Figure 4
are: τE , τB = parent(τE) and τA = parent(parent(τE)).

Algorithm 2.4. (EFFSOL)
(To calculate RE(McSP))

STEP 1 (Setup)
Form the ordered set K = {k1, k2, . . ., kr}.
(Or subset of this set if minimal capacity specified – see Sect. 2.5)
Set i = 1, q = 1,L = ∅, δ = 0. Specify m.

While i ≤ r perform STEP 2.
STEP 2. (Iteration)

(2a) if q = pm + 1
then determine {di(x, D)} and π; set h(x) = di(x, D) all nodes x.
else use Dijkstra(h) to obtain π.

(2b) if l(π) > δ then δ ← l(π) and add π to L.
if δ =∞
then i← r + 1 (to terminate)
else i← j + 1 where c(π) = kj ; set q ← q + 1.

12 T.B. BOFFEY ET AL.

Note that since i increases irregularly we have chosen to restart every m shortest
path calculations actually performed (i.e. whenever q = pm + 1).

2.4. Data structures

At each iteration of a label-setting algorithm, such as Dijkstra(h), it is required
to select a candidate node (member of CAND) with minimal label (in this case
dist(u) + h(u)). That is, CAND is maintained as a priority queue which may be
implemented as a binary heap, a list of buckets [12], etc. We chose to represent
CAND by a singly linked circular list of buckets with nodes being inserted into
buckets so that the labels are in increasing size. It is easy to see that labels of
nodes in CAND cannot differ by more than twice the length of a longest arc which
enables determination of a suitable number of buckets with which to represent
CAND – more than 100 buckets were never necessary. Also to take advantage of
the fact that shortest paths are found through a sequence of networks on the same
node set, fast label initialization was used based on the device introduced in [28].

Networks were kept in forward star form and were already in this format at data
input. To form networks Ni explicitly would have required considerable overheads
and consequently we formed them implicitly by incorporating a test on arc capacity
cuv when scanning node u in step 2 of Dijkstra(h). Finally we note that all restart
shortest path calculations were performed using a label-correcting algorithm [13].

2.5. Finding a best compromise solution

It is likely that, in practice, the decision maker would be interested in choosing
the final solution from a very restricted range of solutions. We envisage, therefore,
that the algorithm might be used along the following lines:

(1) first the decision maker (DM) specifies some upper limit `max on path length
and a lower limit cmin on capacity. If the DM is uncertain regarding these
parameters then `max can be set to ∞ (in practice a very large number)
and / or cmin set to k1;

(2) next the algorithm described is run to find all efficient solutions with lengths
less than or equal to `max in the modified network with links of capacity less
than cmin removed;

(3) the DM then specifies a “target capacity” γ. The system replies with an
efficient solution whose capacity (in K) is as near as possible to γ together
with efficient solutions with next higher and next lower capacities (where
these exist);

(4) if the DM is satisfied with one of the solutions presented then stop, otherwise
return to (3).

It is clear that the above can easily be varied by, for example, displaying more than
three efficient solutions at a time; giving emphasis to extreme efficient solutions;
setting target length instead of target capacity. Other variants can be imagined.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 13

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

�

��
�

��

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

�
��

�
��

@
@@

@
@@

�
��

@
@@

�
��

�
��

�
��

@
@@

@
@@

@
@@

@
@@

�
��

@
@@

�
��

Figure 5. A 5×5 grid network shown by the heavy lines. When
the fine diagonal lines are added we have an example of a 5× 5
crossgrid. (Note each line actually represents a pair of oppositely
directed arcs.)

3. Numerical results

3.1. The data

In order to test the algorithm we used grid and crossgrid networks, which permit
controlled variation of parameters – two real networks were also used. An a × b
grid network consists of a rows each containing b nodes. Every node is linked by
an arc to each of its neighbours in the same row or same column (Fig. 5). The arc
lengths are generated by sampling an integer from a uniform discrete distribution
over the range (100, 1000) then dividing by 10. Nodes are numbered from “left
to right” in each row starting with the “top row and working down”. An a × b
grid can be turned into a crossgrid by adding “diagonal” arcs (see Fig. 5) the
orientation being chosen “NW-SE” or “NE-SW” randomly with probability 0.5.
To represent the likely longer lengths of diagonal arcs, their lengths are generated
as earlier and then multiplied by 1.4 (≈ √2) before dividing by 10.

For convenience we consider square grids (a = b) only. This is not seen as a
significant restriction since:

(a) various O−D pairs differently disposed relative to the grid, are considered;
(b) the results are not expected to differ markedly unless a/b (or b/a) is very

small.

When a is odd and at least 3, the specific O−D pairs considered are: A (opposite
corners); B (corner – mid opposite side); C (opposite mid sides); D (about centre,
two rows and two columns apart). Referring to the network of Figure 5, O −D
pairs of types A, B, C and D are (1, 25), (1, 23), (11, 15) and (7, 19) respectively

14 T.B. BOFFEY ET AL.

(see also Tab. 2). It should be noted that there is a fundamental difference between
the close O−D pairs (type D) and the boundary O−D pairs (types A, B and C)
in that for close pairs the origin and destination nodes are always at most 4 arcs
apart.

The capacities are sampled from a uniform distribution over the range (0.5, r +
0.5) and then rounded to the nearest integer. That is, there are potentially up to r
different capacities available. An a×a grid with r different arc capacities permitted
will be denoted by Ga(r); the crossgrid with the corresponding parameters will be
denoted by Ca(r).

The two “real” networks (Net140 with 140 nodes and 406 arcs, and Net254 with
254 nodes and 760 arcs) relate to portions of the road network of Lancashire in
Northern England. These represent rural areas and it is seen that both networks
are sparse (in fact sparser than grid networks of comparable sizes). In both cases,
arc lengths are based on real distance but capacities were not available and so
were generated as for Ga(r) with r = 15.

3.2. Numerical experiments

The effectiveness of the proposed algorithm EFFSOL, will clearly depend on
the number of efficient (and extreme efficient) solutions there are, which in turn will
depend on the number of possible arc capacities, r, and the disposition of the O−D
pairs with respect to the network. Section 3.2.1 looks at this dependence and the
following subsection tests the use of Dijkstra(h) without restarts (m =∞) against
a straightforward version of EFFSOL which uses label-correcting throughout.

Having obtained these results we turn to the main purpose of the paper which
is testing the performance of EFFSOL in terms of network size and restart fre-
quency.

3.2.1. Dependence of efficient set size on r

If there are few possible arc lengths (i.e. r is small) then |RE| and |REE| will
be small and algorithm EFFSOL will require few iterations. Indeed, for r = 1,
only one shortest path calculation is required. Consequently, the first experiment
investigates the values of |RE| and |REE| for three values of r which may be
regarded as being “small” (r = 5), “intermediate” (r = 15) and “large” (r = 50).
This is done for the four O −D types A, . . . , D.

Results reported in Table 1 are for “medium-sized” (625 node) grid and crossgrid
networks (but see Tab. 3 for some results for networks of other sizes). Each data
set contains 5 problems and the numbers reported are averages.

As expected, |RE| and |REE| increase with r but it may be noted that the
rate of increase is less than that of r. It follows that, for small r, determining
sets of efficient solutions is easy. On the other hand, r = 50 is likely to be higher
than would be required in practice (at least for telecommunications applications).
Correspondingly, we restrict r to the single value r = 15 from now on unless
otherwise stated.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 15

Table 1. Dependence of efficient set size on r.

Data set
A(48)∗ B(36)∗ C(24)∗ D(4)∗

|RE| |REE| |RE| |REE| |RE| |REE| |RE| |REE|
G25(5) 2.2 2.2 2.6 2.6 2.6 2.6 2.6 2.6
G25(15) 6.2 4.0 6.8 4.0 6.6 4.2 3.2 2.4
G25(50) 15.6 5.8 13.2 6.0 8.6 4.2 2.0 2.0
C25(5) 2.2 2.0 3.0 2.8 3.4 3.4 3.2 2.8
C25(15) 7.4 4.8 8.4 5.4 9.0 6.0 4.4 3.4
C25(50) 18.6 7.0 18.4 6.4 16.6 5.6 5.6 3.2

∗ For each O − D pair, the number in parentheses is the least number of arcs in any path

from O to D for grid networks. The corresponding numbers for crossgrid networks would not

be greater.

Table 2. Results for a simple implementation of EFFSOL.

Data set–OD pair νc tc νh th δν% δt%
G25(15)–A(1,625) 4389 2.12 2312 1.88 47.3 11.7
G25(15)–B(1,613) 4857 2.32 1868 1.47 61.5 36.6
G25(15)–C(301,325) 4497 2.18 1829 1.42 59.3 34.9
G25(15)–D(287,339) 1881 0.92 755 0.43 59.9 53.7
C25(15)–A(1,625) 5625 3.58 2730 2.90 51.5 18.9
C25(15)–B(1,613) 6119 3.85 2449 2.60 60.0 32.3
C25(15)–C(301,325) 6374 4.02 2261 2.37 64.5 41.1
C25(15)–D(287,339) 2629 1.81 874 0.69 69.1 61.8

It is also seen that for the close (type D) O −D pairs there are, as expected,
very few efficient solutions for all three values of r. To see why this is so, note that
for grid networks, O and D are only four arcs apart and so most of the network is
largely irrevelevant with only a few paths from O to D being relevant. For other
O−D pairs there is not a clear pattern as far as the effect of closeness is concerned.

3.3. Testing a simple implementation of EFFSOL
We now compare a simple Dijkstra(h) and a label-correcting version of algo-

rithm EFFSOL. Results are shown in Table 2: νc and νh are the average total
numbers of nodes scanned using the label-correcting and Dijkstra(h) algorithms
respectively, and tc and th are the corresponding times (here and elsewhere in sec-
onds, the programs being written in Ada and run on a Sun 3). δν and δt are the
percentage reductions in numbers of nodes scanned and times taken respectively,
obtained by using Dijkstra(h) as compared to label-correcting throughout. It was
found that performance is fairly insensitive to size of bucket chosen and for all
results in Tables 2 and 3 the bucket size was taken to be 3.0.

16 T.B. BOFFEY ET AL.

Table 3. Variation of computational effort with network size.

Data set |RE| |REE| νc tc νh th δt% λ

G15(15) 6.0 4.2 1506 0.74 672 0.54 27.8 2.38
G25(15) 6.8 4.0 4857 2.32 1868 1.50 35.5 2.39
G35(15) 6.2 4.4 9204 4.48 3413 2.62 41.5 2.14
C15(15) 7.0 3.6 1832 1.12 730 0.77 31.2 4.89
C25(15) 8.4 5.4 6119 3.84 2449 2.58 32.8 4.91
C35(15) 8.0 5.4 11669 7.52 4355 4.58 39.1 4.67
Net140 4.8 3.2 772 0.31 314 0.23 25.8 1.6
Net254 4.2 2.4 932 0.44 439 0.28 36.7 1.1

It is seen that the percentage reduction in nodes scanned, δν, is considerable
being 47% or more (on average) in all cases. However, the % reduction in com-
puting time is always less since scanning generally takes longer with Dijkstra(h).
Nevertheless, the average reduction in time is mostly over 30% and never less
than 11%, and so even without restarts Dijkstra(h) leads to less computation.

The percentage improvement is greatest for the close O−D pairs and this might
be expected to be even more pronounced for larger networks. The reason for this
is that the use of Perko’s device [28] leads to much less initialisation cost since
labels are initialised “globally” by a single statement. As regards the boundary
O − D pairs, there seems to be a tendency for the improvement to be less the
further apart O and D are. From now on we consider grid and crossgrid networks
with O − D pairs of type B only – this provides a relatively stern test for our
algorithm since in this case the origin and destination are far apart (though not
quite as far apart as for type A).

3.3.1. Variation with network size

The next experiment was directed at finding how the computational effort varies
with network size. In all cases, r was taken to be 15 and a bucket size of 3.0 em-
ployed.

Table 3 gives some results for grid and crossgrid networks of three sizes (15×
15 = 225 nodes, 25 × 25 = 625 nodes and 35 × 35 = 1225 nodes) and with
O−D pairs of type B. Results are also given for the two real networks Net140 and
Net254, in this case averages being taken over five different sets of O −D pairs.
The definitions of νc, νh, tc, th and δt are as earlier and λ = 1000th/n where n
is the number of nodes in the network. On the basis of the λ-values we conclude
that, for networks of the same type, computing time grows roughly linearly with
network size. However, the rate of increase is larger for crossgrids than the sparser
grid networks. Also, λ is lowest for Net140 and Net254 which are even sparser.
That is, the indication is that improvement is greater for nearer O −D pairs and
for more highly connected networks.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 17

Table 4. Effect of restart frequency.

G25(15) C25(15) G35(50) C35(50)
m

th(m) S(m) th(m) S(m) th(m) S(m) th(m) S(m)

1 2.400 100 3.824 100 11.948 100 16.200 100
2 1.656 69.0 2.564 67.1 7.344 61.5 10.072 62.2
3 1.496 62.3 2.356 61.6 6.148 51.5 8.560 52.8
4 1.472 61.3 2.312 60.5 5.858 49.0 7.688 47.3
5 1.520 63.3 2.284 59.7 5.456 45.7 7.622 47.0
6 1.480 61.7 2.464 64.4 5.356 44.8 7.856 48.5
7 1.460 60.8 2.612 68.3 5.472 45.8 7.840 48.4
8 1.460 60.8 2.568 67.2 5.740 48.0 7.732 47.7
∞ 1.472 61.3 2.588 67.7 7.232 60.5 10.294 63.5

3.3.2. Effect of restart frequency

Recall that, so far, EFFSOL has been employed with label-correcting being
used: either all the time by taking m = 1, or at the first iteration only by taking
m = ∞ (in practice any integer greater than r − 1 will do). It is natural to
ask whether some intermediate value of m might give better results and the last
experiment investigates this briefly. Again the O−D pairs were of type B but the
bucket size was changed to 3.5 as now fewer nodes tend to be labeled. Table 4 shows
results for the sets of medium sized networks G25(15) and C25(15). To illustrate
the effects of m the computation time S(m) for restart period m is expressed as
the percentage S(m) = 100th(m)/th(1) where th(j) is the computation time when
m = j.

For G25(15) no value of m was significantly better than for m = ∞. This,
though disappointing, is perhaps not too surprising since there are few efficient so-
lutions (|RE| = 6.8, |REE| = 4.0 on average). For the crossgrid networks C25(15)
there is some improvement becoming evident for 1 ≤ m ≤ 6 even though there are
not many more efficient solutions (|RE| = 8.4, |REE| = 5.4 on average) than for
G25(15).

Since the scope for improvement is greater when more capacities are permitted
and may be expected to be greater for larger networks, two further sets of results
were obtained for data sets G35(50) and C35(50). The right hand columns of
Table 4 show that there is appreciable improvement for the range 4 ≤ m ≤ 8.
Again results are better for crossgrids (with improvement for C35(50) and m = 5
being 26% better than without restarts).

4. Conclusions

The Quickest Path problem has been related to the problem McSP of finding
a maximal capacity shortest path. For a given data set, the two problems are

18 T.B. BOFFEY ET AL.

equivalent in that they have the same set of efficient solution paths. However, for
McSP, fewer of these may be extreme solutions.

A method, based on the strategy of Chen and Chin [6], was described for
obtaining an RE (or an REE) set for McSP. Then, the paper discussed ways in
which this algorithm can be implemented effectively by making use of knowledge
gained earlier in the calculations (as embodied in the consistent function h). This
was followed by a short discussion of ways in which a decision maker might use
the algorithm to obtain a best compromise solution. Finally, numerical experience
of applying the algorithm was presented for grid, crossgrid and two real networks.

We now comment on the data structures used. It was found that the use of a
bucketing system can lead to better performance than using a heap. Such gain
would be offset if the algorithm needed much tuning as regards the value of the best
bucket size. (While the results could undoubtably be improved by tailoring bucket
size to data set, this would counter the aim of developing a robust algorithm.)
However, it was found that performance was fairly insensitive to bucket size and
so the use of buckets seems fully justified.

As regards the overall performance, the greatest gain is in only performing
|RE|+ 1 shortest path calculations rather than r, the number of capacities avail-
able. (The number is |RE| + 1 since there will generally be a final calculation
in which it is found that O and D are not connected. Exceptionally, additional
calculations will be needed – see the discussion relating to solutions τa and τA of
Fig. 4.) It appears that using restarts can also be advantageous for more highly
connected networks with many arc capacity values. Such networks, however, seem
to be less likely to occur in practice.

The results of Tables 2, 3 and 4 demonstrate the improvements obtained by
using our algorithm. These were substantial, though not as good as those ob-
tained for the Bicriterion Shortest Path problem for which the improvement was
impressive [3].

In conclusion, we note that the techniques discussed here are potentially useful
for implementations of algorithms for related problems such as the k-quickest path
or the all pairs quickest path problems.

References

[1] T.B. Boffey, Multiobjective routing problems. TOP 3 (1995) 167-220.
[2] T.B. Boffey, Distributed Computing: associated combinatorial problems. McGraw-Hill

(1992).
[3] T.B. Boffey, Efficient solution generation for the Bicriterion Routing problem. Belg. J. Oper.

Res. Statist. Comput. Sci. 39 (2000) 3-20.
[4] G.-H. Chen and Y.-C. Hung, On the quickest path problem. Inform. Process. Lett. 46 (1993)

125-128.
[5] G.-H. Chen and Y.-C. Hung, Algorithms for the constrained quickest path problem and the

enumeration of quickest paths. Comput. Oper. Res. 21 (1994) 113-118.
[6] Y.L. Chen and Y.H. Chin, The quickest path problem. Comput. Oper. Res. 17 (1990) 179-

188.
[7] Y.L. Chen, An algorithm for finding the k quickest paths in a network. Comput. Oper. Res.

20 (1993) 59-65.

THE MAXIMUM CAPACITY SHORTEST PATH PROBLEM 19

[8] Y.L. Chen, Finding the k quickest simple paths in a network. Inform. Process. Lett. 50
(1994) 89-92.

[9] J.L. Cohon, Multiobjective Programming and Planning. Academic Press (1978).
[10] J.R. Current, C.S. ReVelle and J.L. Cohon, The maximum covering/shortest path problem:

A multiobjective network design and routing problem. EJOR 21 (1985) 189-199.
[11] J.S. Dai, S.N. Wang and X.Y. Yang, The multichannel quickest path problem. Int. J. Sys-

tems Sci. 25 (1994) 2047-2056.
[12] E.V. Denardo and B.L. Fox, Shortest-route methods: 1. Reaching, pruning, and buckets.

Oper. Res. 27 (1979) 161-186.
[13] R. Dial, F. Glover, D. Karney and D. Klingman, A computational analysis of alternative

algorithms and labelling techniques for finding shortest path trees. Networks 9 (1974) 215-
248.

[14] E.W. Dijkstra, A note on two problems in connection with graphs. Numer. Maths 1 (1959)
269-271.

[15] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM 34 (1987) 596-615.

[16] P. Hart, N. Nilsson and B. Raphael, A formal basis for the heuristic determination of minimal
cost paths. IEEE Trans Syst. Man. Cybernet. 4 (1968) 100-107.

[17] Y.-C. Hung, Distributed algorithms for the constrained routing problem in computer net-
works. Computer Communications 21 (1998) 1476-1485.

[18] Y.-C. Hung and G.-H. Chen, On the quickest path problem. Springer, Lecture Notes in
Comput. Sci. 46 (1991).

[19] Y.-C. Hung and G.-H. Chen, Distributed algorithms for the quickest path problem. Parallel
Comput. 18 (1992) 823-834.

[20] Y.-C. Hung and G.-H. Chen, Algorithms for the constrained quickest path problem and the
enumeration of quickest paths. Comput. Oper. Res. 21 (1994) 113-118.

[21] Y.-C. Hung and G.-H. Chen, The quickest path problem in distributed computing systems.
Springer, Lecture Notes in Comput. Sci. 579 (1992).

[22] D. Kagaris, G.E. Pantziou, S. Tragoudis and C.D. Zaroliagis, On the computation of fast
data transmission in networks with capacities and delays. Springer, New York, Lecture Notes
in Comput. Sci. 955 (1995) 291-302.

[23] D. Lee and E. Papadopolou, The all-pairs quickest path problem. Inform. Process. Lett. 45
(1993) 261-267.

[24] W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wilson, On the self-similar nature of
Ethernet traffic. IEEE/ACM Trans. Networking 2 (1994) 1-15.

[25] M.H. Moore, On the fastest route for convoy-type traffic in flowrate-constrained networks.
Transportation Sci. 10 (1976) 113-124.

[26] G.L. Nemhauser, A generalized permanent label setting algorithm for the shortest path
between specified nodes. J. Math. Anal. Appl. 38 (1972) 328-334.

[27] V. Paxson and S. Floyd, Wide-area traffic: The failure of Poisson modelling. Proc. ACM
Sigcomm ’94 (1995) 149-160.

[28] A. Perko, Implementation of algorithms for k shortest loopless paths. Networks 16 (1987)
149-160.

[29] J.B. Rosen, S.-Z. Sun and G.-L. Xue, Algorithms for the quickest path problem and the
enumeration of quickest paths. Comput. Oper. Res. 18 (1991) 579-584.

[30] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications. Wiley
(1986).

to access this journal online:
www.edpsciences.org

