
RAIRO Operations Research
RAIRO Oper. Res. 36 (2002) 21-36

DOI: 10.1051/ro:2002003

ON THE HARDNESS OF APPROXIMATING
THE UET-UCT SCHEDULING PROBLEM

WITH HIERARCHICAL COMMUNICATIONS

Evripidis Bampis
1
, R. Giroudeau

1
and J.-C. König

2

Communicated by Philippe Chrétienne

Abstract. We consider the unit execution time unit communication
time (UET-UCT) schedulingmodelwith hierarchical communications [1],
and we study the impact of the hierarchical communications hypothesis
on the hardness of approximation. We prove that there is no polyno-
mial time approximation algorithm with performance guarantee smaller
than 5/4 (unless P = NP). This result is an extension of the result
of Hoogeveen et al. [6] who proved that there is no polynomial time
ρ-approximation algorithm with ρ < 7/6 for the classical UET-UCT
scheduling problem with homogeneous communication delays and an
unrestricted number of identical machines.

Keywords: Scheduling, hierarchical communications, non-approxima-
bility.

Mathematics Subject Classification. 90B35.

1. Introduction

We consider an extension of the classical scheduling problem with communi-
cation delays [2] which takes into account hierarchical communications [1] (this

Received September, 1999.

1 Laboratoire de Méthodes Informatiques (LaMI), Université d’Évry-Val-d’Essonne,
UMR 8042 du CNRS, 523 place des Terrasses, Immeuble ÉVRY-II, 91000 Évry, France;
e-mail: bampis@lami.univ-evry.fr, giroudeau@lami.univ-evry.fr
2 LIRMM, Université de Montpellier II, UMR 5506 du CNRS, 161 rue Ada, 34392 Montpellier
Cedex 5, France; e-mail: konig@lirmm.fr

c© EDP Sciences 2002

22 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

extension is motivated by the advance of parallel architectures comprising several
identical multiprocessors). We are given m multiprocessors machines (or clusters)
that are used to process n precedence constrained tasks. Each machine (cluster)
comprises several identical parallel processors. A couple (cij , εij) of communica-
tion delays is associated to each arc (i, j) between two tasks in the precedence
graph. In what follows, cij (resp. εij) is called intercluster (resp. interprocessor)
communication, and we consider that cij ≥ εij . If tasks i and j are executed
on different machines, then j must be processed at least cij time units after the
completion of i. Similarly, if i and j are executed on the same machine but on dif-
ferent processors then the processing of j can only start εij units of time after the
completion of i. However, if i and j are executed on the same processor then j can
start immediately after the end of i. The communication overhead (intercluster
or interprocessor delay) does not interfere with the availability of the processors
and all processors may execute other tasks. Our goal is to find a feasible schedule
of the tasks minimizing the makespan, i.e. the time at which the last task of the
precedence graph finishes its execution.

Notice that the hierarchical model that we consider here is a generalization
of the classical scheduling model with communication delays [2, 3]. Consider for
instance that for every arc (i, j) of the precedence graph we have cij = εij . In
that case the hierarchical model is exactly the classical scheduling communica-
tion delays model. It is then clear that every negative (NP-hardness, or non-
approximability) result known for the scheduling problem with communication
delays is also valid for the more general hierarchical model. Hoogeveen et al. [6]
proved that, unless P = NP , the well known scheduling problem with commu-
nication delays P̄ |prec; cij = 1; pi = 1|Cmax does not possess a polynomial time
approximation algorithm with ratio less than 7/6. In our context, this problem
can be viewed as follows: there is an unrestricted number of monoprocessor ma-
chines, all tasks have unit execution times and every intercluster communication
costs one unit of time, i.e. cij = 1. Given that there is only one processor per
machine we have εij = 0.

In this paper we answer to the following natural question: What is the impact
of the hierarchical communication hypothesis on the non-approximability of the
related scheduling problem? In order to answer to this question, we consider here
the simplest extension of the problem studied by Hoogeveen et al. (P̄ |prec; cij =
1; pi = 1|Cmax) in which every machine comprises two identical processors and
εij = 0. We denote this extension as P̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax.
In [1], it has been proved that this problem is polynomial when task duplication
is allowed. Here, we prove that, unless P = NP , there is no ρ-approximation
algorithm with ρ < 5

4 for the hierarchical problem. The proof is based on a
reduction from a special case of SAT.

In Section 2, we give the definition of the considered variant of SAT and we
prove that it is an NP-complete problem. In Section 3, we present the non-
approximability result which is based on the well known Impossibility Theorem [4].
Finally in Section 4, we propose a polynomial time algorithm for the problem of

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 23

deciding whether a precedence graph can be executed within 3 units of time in the
hierarchical communication model.

2. Preliminaries

In order to prove that P̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax = 4 is an
NP-complete problem, we use a reduction from a variant of the well known SAT
problem [4]. We will call this variant the One-in-(2, 3)SAT (2, 1̄) problem that we
will denote as Π1. Π1 is a restricted variant of SAT with clauses of length two
and three, where each variable x occurs three times: two of these occurrences are
unnegated (in the form of literal x) and one negated (in the form of literal x̄). One
of the unnegated occurrences is in a clause of length three and the other in a clause
of length two. The literal x̄ is necessarily in a clause of length two different from
the clause of size two in which the literal x occurs. Thus the clause (x∨ x̄) cannot
exist in any instance of Π1. Moreover, for every two literals x̄ and y, occurring
in a same clause of length two, the corresponding literals x and y must occur in
two different clauses of length three. We are interested in the existence or not of
a truth assignment in which every clause has exactly one true literal.

Formally, One-in-(2, 3)SAT (2, 1̄) can be stated as follows:

Instance of problem Π1:
• Let V = {x1, . . . , xn} be a set of variables and V̄ = {x̄1, . . . , x̄n} the set of

negated variables with xi ∈ V .
• Let C = {C1, . . . , Cj , Cj+1, . . . , Cq} be a set of clauses where ∀i, 1 ≤ i
≤ j, Ci ∈ (V × V̄) and ∀i, (j + 1) ≤ i ≤ q (with q = 4n

3), Ci ∈ (V)3, and
such that every variable xi ∈ V occurs two times unnegated and one time
negated: ∀xi ∈ V , ∃i1, i2, i3 such that

∀xi ∈ V ,

{
occur(xi; Ci1) = 1 and occur(xi; Ci2) = 1, 1 ≤ i1 ≤ j, j + 1 ≤ i2 ≤ q
occur(x̄i; Ci3) = 1 1 ≤ i3 ≤ j, i3 6= i1

where occur(xi; Cik
) is a function that gives the number of times where

variable xi occurs in the clause Cik
.

In addition, if (xi ∈ Ck and x̄i′ ∈ Ck, 1 ≤ k ≤ j) then (xi ∈ Cl) and (xi′

∈ Cr), for some l 6= r and (j + 1) ≤ l, r ≤ q.
Question. Is there a truth assignment for I : V → {0, 1} such that every clause
in C has exactly a true literal?

In order to illustrate Π1, we consider the following example:

Example 2.1. The following logic formula is a valid instance of Π1: (x0 ∨ x1 ∨
x2)∧(x3∨x4∨x5)∧(x̄0∨x3)∧(x̄3∨x0)∧(x̄4∨x2)∧(x̄1∨x4)∧(x̄5∨x1)∧(x̄2∨x5).

The answer to Π1 is yes. It is sufficient to choose x0 = 1, x3 = 1 and xi = 0
for i = {1, 2, 4, 5}. This gives a truth assignment satisfying the formula, and there
is exactly one true literal in every clause.

Theorem 2.2. Π1 is an NP-complete problem.

24 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

In order to prove the NP-completeness of Π1, we use a reduction from a re-
stricted version of a well-known NP-complete problem, the Monotone-one-in-
three-3SAT problem [4], that we call Monotone-one-in-three-3SAT ∗(≥ 2) and
we denote by Π2. First, we prove that Π2 is an NP-complete problem.

Let us, first recall the definition of Monotone-one-in-three-3SAT problem.

Instance of problem Monotone-one-in-three-3SAT :
• Let V = {x1, . . . , xn} be a set of n variables.
• Let C = {C1, . . . , Cm} be a collection of clauses over V such that every clause

has size three and contains only unnegated variables.
Question. Is there a truth assignment for V such that every clause in C has
exactly one true literal?

Π2 is defined in the same way as Monotone-one-in-three-3SAT , except that in
Π2 every variable occurs at least twice and there are no two occurrences of a same
variable in the same clause. The problem Π2 is an NP-complete problem: since
Monotone-one-in-three-3SAT is NP-complete, without loss of generality we can
suppose that each variable xi occurs at least twice otherwise it is sufficient to add
a copy of the clause in which it belongs. In addition, a literal xi cannot occur
twice in the same clause since then we can easily reduce the size of the instance:
a variable xi should have the value false and the third variable in the clause the
value true.

Theorem 2.3. Π1 is an NP-complete problem.

Proof. It is easy to see that Π1 ∈ NP .
Our proof is based on a reduction from Π2.
Given any instance π∗ of the problem Π2, we construct an instance π of Π1 in

the following way:
• If a variable xi occurs ki ≥ 2 times in π∗, then we rename the jth occur-

rence (1 ≤ j ≤ ki) of xi by introducing a new variable xi(j−1) . Let V ′

be the set of new variables obtained in this way. In every clause of π∗,
we rename the occurring variables in a greedy manner and we complete
the corresponding instance π by adding the following clauses of length two:
(xi(j−1) ∨ x̄i(jmodki)

), ∀i, ∀j, 1 ≤ j ≤ ki. Let C′ be the set of the obtained
clauses.
It is now easy to verify that every instance π of Π1 obtained by the above
construction respects the following two properties:

Property 1. Every variable of V ′ occurs three times in π. More precisely, every
variable occurs:

• two times unnegated, and more precisely one time in a clause of length three
and one time in a clause of length two;

• one time negated in a clause of length two different from the clause in which
its unnegated occurrence appears.

Property 2. The variables of V ′ occurring in a same clause of length two are
such that their unnegated occurrences belong to disjoint clauses of length three.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 25

• Suppose that there is a truth assignment I : V → {0, 1}, such that each
clause in C has exactly one true literal. In the following, we will prove that
there is a truth assignment I ′ : V ′ → {0, 1} such that each clause in C′ has
also exactly one true literal.
If we take I ′(xi(j−1)) = I(xi), ∀i, j, 1 ≤ j ≤ ki, we can see first that all clauses
of length three become true and each of them has exactly one true literal,
since all clauses of length three in C respect this property.
In addition, it is clear that every clause of length two is satisfied and only
one literal in each of them is true.
Consequently, if π∗ is satisfied then π is also satisfied.

• Conversely, assume that there is a truth assignment I ′ : V ′ → {0, 1} such
that each clause of C′ has exactly one true literal. In the following, we will
prove that there is a truth assignment I : V → {0, 1} such that each clause
in C has exactly one true literal. Because of the form of the clauses of length
two (xi(j−1) ∨ x̄i(jmodki)

), ∀i, ∀j, 1 ≤ j ≤ ki and given that I ′ is such that
there is exactly one true literal in every clause, we can conclude that all the
variables xik

, for every fixed i and any k, have the same assignment in I ′. In
order to find a truth assignment for C, it is sufficient to put I(xi) = I ′(xi0)
for every i. Clearly, this assignment respects the desired property of the
uniqueness of a true literal per clause.
Consequently, if π is satisfied then π∗ is also satisfied.

The above transformation can be computed in polynomial time and so Π1 is NP-
complete.

Remark 2.4. By a careful reading of the previous reduction one can see that an
instance in which there is a variable x for which the clause (x∨ x̄) appears in C is
not a valid instance of Π1. This remark is essential for the proof of Theorem 3.1.

3. The non-approximability result

Theorem 3.1. The problem of deciding whether an instance of P̄ (P2)| prec;
(cij , εij) = (1, 0); pi = 1|Cmax has a schedule of length at most four is NP-
complete.

Proof. It is easy to see that P̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax = 4 ∈ NP .
The rest of the proof is based on a reduction from Π1.

Let n be the number of variables in the logic formula. The clauses are labeled
from 1 to q.

Given an instance π∗ of Π1, we construct an instance π of the problem P̄ (P2)|
prec; (cij , εij) = (1, 0); pi = 1|Cmax = 4, in the following way:

• For each variable x ∈ V , we introduce five variable-tasks x̂, x, x′, x̄ and x̄′.
The precedence constraints between these tasks are the following:

x̂ → x, x̂ → x′, x̂ → x̄, x̂ → x̄′.

26 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

• For each variable x ∈ V , we introduce six neutral-tasks α1
x, β1

x, α2
x, β2

x, α3
x, α4

x.
The precedence constraints between these tasks are:

α1
x → α2

x, β1
x → β2

x, β1
x → α2

x, α1
x → β2

x, α2
x → α3

x, β2
x → α3

x, α3
x → α4

x.
We also add the constraints:

x̄ → α4
x, x′ → α4

x.
• For every clause Ci, we introduce one clause-task Ci such that for every

literal x occurring in Ci, we add the precedence constraint x → Ci.
• For every clause of length three (Ck, j + 1 ≤ k ≤ q), we introduce one

differential-task Dk such that for each literal x occurring in such a clause,
we add the precedence constraints x̄′ → Dk.

• For every clause of length two (Ck, 1 ≤ k ≤ j), we introduce one differential-
task Ek. We add the following precedence constraints: if x (resp. x̄) occurs
in Ck, then we add the constraint Ek → x (resp. Ek → x̄).

The above construction is illustrated in Figure 1. This transformation can be
clearly computed in polynomial time.

Notation. In what follows, whenever we write: “[y, z] is executed at time t on
the cluster M”, where y and z are tasks, then w.l.o.g. we will consider that these
two tasks are executed simultaneously on M , the task y on processor P1 and the
task z on processor P2 of M .

• Let us first assume that there is a truth assignment I : V → {0, 1} such that
each clause in C has exactly one true literal for the problem Π1. Then we
will prove that there is a schedule of length at most four.
Let us construct this schedule:

The variable-tasks x̂, for all x ∈ V , are executed at t = 0 on different
clusters.

– If the variable x is false, then [x, x′] is scheduled at t = 1 on the same
cluster as x̂ and the corresponding differential-task Ek, 1 ≤ k ≤ j. Oth-
erwise, x and x′ are scheduled at t = 2 on different clusters.
The clause-tasks are executed at t = 3 on the same cluster as the only
true literal.

– If the variable x̄ is false, then [x̄, x̄′] is scheduled at t = 1 on the same
cluster as x̂ and the corresponding differential-task Ek, 1 ≤ k ≤ j. Oth-
erwise, x̄ and x̄′ are scheduled at t = 2 on two different clusters in the
following way:

- x̄ is executed on the same cluster as its corresponding neutral-task
α3

x and the associated clause-task Ck which is scheduled at t = 3;
- x̄′ is executed on a different cluster on which we also schedule at

t = 3 the differential-task Dk. We can notice that at t = 2, two
of the three predecessors of Dk finish their execution. This is al-
ways possible since we know that each clause contains only one true
literal.

The chain of neutral-tasks α1
x, β1

x, α2
x, β2

x, α3
x, α4

x are scheduled on the
same cluster as the variable-task x′.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 27

0 1 2 3 4
π0

0

π0
1

π1
0

π1
1

π2
0

π2
1

π3
0

π3
1

π4
0

π4
1

x̄

x̄

x̄′

x̄′

The variable x̄
is valued to “true”

x̂

x̂

x′

x′

x

x

C1

C1

Ci

Ci

Ck

Ck

Cq

Ei

Ei

Dk

Dk

Ew

Ew

α1
x

α1
x

α2
x

α2
x

α3
x

α3
x

α4
x

α4
x

β2
x

β2
x

β1
x

β1
x

1 ≤ i ≤ j

j + 1 ≤ k ≤ q

1 ≤ w ≤ j

w 6= i

Differential-tasks

Neutral-tasks

Clause-tasks

Variables-tasks

The variable-tasks x
is valued to “false”

Figure 1. The precedence graph corresponding to polyno-
mial transformation Π1 ∝ P̄ (P2)|prec; (cij , εij) = (1, 0); pi =
1|Cmax = 4.

28 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

For a clause of length three (x ∨ y ∨ z), since this clause gets a truth
assignment, we execute at t = 1 (resp. at t = 2) the two variables (resp.
an unique variable) which are valued as false (resp. true).
W.l.o.g., we suppose that the variable x is valued as true and the vari-
ables y and z are valued as false. We execute the tasks (resp. the task)
ȳ and z̄ (resp. x̄) at t = 2 (resp. at t = 1) on different clusters as ŷ and
ẑ (resp. on the same cluster as x̂). Moreover, the differential-task Ek,
where the variable x̄ occurs, is executed at t = 0 on the same cluster
as x̂.
In the same way, the two differential-tasks Ek′ and Ek′′ , where the vari-
able y and z occur, are executed on the same cluster as ŷ and ẑ.
The tasks y′ and z′ are scheduled at t = 1 (resp. x′ at t = 2) on the
same cluster as ŷ and ẑ (resp. on a different cluster as x̂). The tasks ȳ′

and z̄′ are executed at t = 2 on the same cluster as the differential-task
Dk associated to the clause (x ∨ y ∨ z) and the task x̄′ is scheduled at
t = 1 on the same cluster as x.
For the clause of length two, the schedule is constructed in the simi-
lar way.
The above way of scheduling the tasks preserves the precedence con-
straints and the communication delays and gives a schedule of length
four, whenever there is a truth assignment with exactly one true literal
per clause.

• Conversely, suppose now that there is a schedule of length at most four. We
will prove that there is an assignment I : V → {0, 1} such that every clause
has exactly one true literal.

We start by making four essential observations.
We notice that in every feasible schedule of length at most four:

1. The neutral-tasks for all x ∈ V start their execution the earliest possible
and have to be executed on the same cluster.

2. In order to get a feasible schedule of length four, the variable-task x̂
associated to the variable x (it is true for all variables) are scheduled at
t = 0. Indeed, we suppose that x̂ is executed at t = 1. The successors of
the variable-task x̂, x, x′, x̄ and x̄′ must be executed on the same cluster
between [2, 4], and so the successors of these tasks have a starting time
at t = 4, impossible. Moreover, the clause-tasks Ci, 1 ≤ i ≤ q are
executed at t = 3. Indeed, the clause-tasks Ci, j + 1 ≤ i ≤ q, associated
to the clauses of length three, admit three predecessors whose cannot
have starting time before t = 1. Therefore, theses clause-tasks must be
executed at t = 3.
The two predecessors of the clause-tasks Ci, 1 ≤ i ≤ j, associated to
the clauses of length two, admit three predecessors, and one of these
two predecessors of the clause-tasks Ci must be executed at least t = 2.
Thus, the clause-tasks Ci, 1 ≤ i ≤ j must be executed at t = 3.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 29

3. The differential-task Dk corresponding to the clause-task Ck, j + 1
≤ k ≤ q, must be executed at t = 3. Indeed, each differential-task
Dk admits three predecessors whose starting time is at least t = 1.

4. If the differential-task Ek, associated to the clause Ck, 1 ≤ k ≤ j is
executed at t = 1, the starting time of a clause-task or a differential-
task Dk′ will be at t = 4.

Lemma 3.2. In any valid schedule of length at most four the tasks x̄ and
x′ (resp. x̄′ and x) cannot be scheduled at the same time.

Proof.
1. Let us assume that the tasks x̄ and x′ are scheduled at the same time:

(a) The tasks x̄ and x′ are both predecessors of α4
x which must be

scheduled at t = 3. But, this is not possible since α4
x is also preceded

by α3
x which must also start at t = 2 and we have only two processors

per cluster. Thus, x̄ and x′ cannot start simultaneously at t = 2.
(b) The tasks x̄ and x′ cannot start at t = 1 (see 2(b)i).

2. Let us now assume that x and x̄′ are scheduled at the same time. If they
start at:
(a) t = 1, then x̄ and x′ must be executed at t = 2. This is not possible,

see 1a.
(b) t = 2, then x and x̄′ must be executed on different clusters. We

have to examine the following two cases:
(i) If x′ is executed at t = 1. W.l.o.g. we may assume that x is

an element of a clause of the form (x∨ y ∨ z). Then, the tasks
y and z are executed at t = 1.
Now, if the tasks ȳ′ and x̄′ are executed simultaneously on the
same cluster at t = 2, then the beginning of execution of z̄′

must be at t = 1 on the same cluster as z. But in this case,
z̄ and z′ are necessarily scheduled at t = 2, impossible from
1a. Using the same arguments x̄′ and z̄′ cannot be executed
at t = 2 on the same cluster.
It now remains to examine the case where the tasks ȳ′ and z̄′

are executed at t = 1 on the same cluster as y and z. In this
case, ȳ, y′ and z̄, z′ are scheduled at t = 2, impossible from 1a.

(ii) If x̄ is executed at t = 1 and the tasks x, x′ and x̄′ at t = 2,
then with the same type of arguments as in 2(b)i, it is easy to
see that the schedule is not feasible.

In conclusion, the tasks x̄ and x′ (resp. x̄′ and x) cannot be scheduled
simultaneously.

Lemma 3.3. In any valid schedule of length at most four the tasks x̄ and x
cannot be executed simultaneously.

Proof.
1. We suppose that the tasks x and x̄ are executed at t = 1. We know that

the clause (x ∨ x̄) cannot exist in any instance of Π1 (see the definition

30 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

of the problem). Hence, x̄ and x have always three predecessors: two
differential-tasks Ei and Ej , with i 6= j, and the corresponding variable-
task x̂. Given that there is only two processors per cluster, the tasks x
and x̄ cannot be scheduled at t = 1.

2. We suppose that x and x̄ are executed at t = 2. Two cases have to be
examined:
(a) Let us consider that x and x̄ are executed at t = 2 on the same

cluster.
The chain of neutral-tasks associated to the variable x must be
executed consecutively on the same cluster. Given that x̄ is a pre-
decessor of α4

x and x̄ is processed at t = 2, we get that x̄ must be
executed on the same cluster as α4

x. Thus, we have three tasks x, α3
x

and x̄ that should be processed at t = 2. Hence, the tasks x and x̄
cannot be executed at t = 2 on the same cluster.

(b) Let us now assume that the two tasks are executed at t = 2 on dif-
ferent clusters. In this case, it is clear that x′ is necessarily executed
at t = 1 (see Lem. 3.2):
In order to clarify the presentation, we rename the variables of the
logic formula in the following way: given that every variable occurs
exactly once in a clause of length three, we rewrite the clauses of
length three in the following form (x0∨x1∨x2)∧(x3∨x4∨x5)∧. . .∧
(xn−3∨xn−2∨xn−1) with xi 6= xj for all i, j ∈ {0, ..., n−1}. W.l.o.g.
we assume in the following that x = x0 and x̄ = x̄0. In order to
prove that we cannot assign x0 and x̄0 at t = 2, we will show first,
that the assignment of x0 and x̄0 at t = 2, implies a unique assign-
ment for “some” literals, that we will call critical literals, (below we
precise the way of identifying these literals) appearing to the set of
clauses of length two and that this assignment implies a schedule of
length greater than four, contradicting in this way the assumption.
Before explaining the assignment of the literals, we introduce a
method for the enumeration of the literals appearing in the set of
clauses of length two.
For every instance of Π1, we consider the variable x0. We know by
the definition of Π1 that the variable x0 occurs two times in the set
of clauses of length two: one time unnegated (in the form of literal
x0) and one time negated (in the form of literal x̄0). Now, we will
explain a method to enumerate the critical literals:
We consider the variable x0. Let (x0 ∨ x̄k1) be the clause of length
two where the literal x0 appears, and (xk2 ∨ x̄0) the clause where
the literal x̄0 appears.
There are two cases to be considered:

(i) if k1 = k2, then x0, x̄k1 , xk1 , x̄0 are the critical literals.
(ii) if k1 6= k2, ki ∈ {1, n − 1}, i = {1, 2}, then we continue. The

literal x̄k2 occurs also in a clause of length two denoted by
(xk3 ∨ x̄k2) such that k2 6= k3, ki ∈ {1, n− 1}, i = {2, 3}.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 31

In the same way, we know that the literal xk1 occurs in a clause
of length two denoted by (xk1 ∨ x̄k4) such that k1

6= k4, ki ∈ {1, n − 1}, i = {1, 3}. Up to now the critical lit-
erals are x0, x̄0, xk1 , x̄k1 , xk2 , x̄k2 , xk3 and x̄k4 . We continue in
this way until finding the first clause not containing a “new”
variable. The following claim shows that there is always such
a clause. The set of critical literals will contain all the literals
encountered using the above described procedure.

Claim 3.4. During the procedure of enumeration of critical literals
given above, we will always find a clause (xkj ∨ x̄kj′) with kj 6= kj′

such that the variables xkj and xkj′ have been already enumerated.

Proof. Let n be the number of variables in the logic formula. Thus,
there are n clauses of length two and 2n literals.
Let us assume that the (n − 1) first clauses of length two that we
examine by applying the procedure of enumeration do not verify
the assumption of the claim. In this case, we have (2n − 2) critical
literals. It remains only 2 literals to enumerate. We know that a
clause of the form (xm ∨ x̄m) cannot exist in any instance of Π1 and
consequently we can conclude that the remaining clause contains two
literals that correspond to two variables already encountered.

Now, we will prove that the assumption about the assignment of the
tasks x0 and x̄0 at t = 2 is false. For this, we show that the existence
of a schedule of length at most four implies a unique way for the
assignment of the tasks that correspond to the critical literals.
Two cases have to be taken into account:

(i) ∃k\(x0∨x̄k)∧(xk∨x̄0). We suppose first that x̄k is executed at
t = 2. In the precedence graph for each variable x, there exists
a chain of neutral-tasks of length four: α1

x → α2
x → α3

x → α4
x.

In any schedule of length four, these tasks must be processed
consecutively on the same cluster.
Given that x̄k is a predecessor of α4

xk
and x̄k is processed at

t = 2, then x̄k must be executed on the same cluster as α4
xk

.
moreover, by construction, we know that the tasks x0 and x̄k

are both predecessors of the clause-task where the variables
associated to the variable-tasks occurred, and the clause-task
must be executed at t = 3 on the same cluster as the variable-
task α4

xk
. So, three tasks, the tasks x0, α

3
xk

and x̄k must be
processed on the same cluster at t = 2 in order to respect
the schedule of length four. But, our model considers two
processors per clause and so the schedule is not feasible.
Let us now show that xk cannot be executed at t = 2. For the
same reasons as before x̄0 must be executed (by the assumption
at t = 2) on the same cluster as the neutral-tasks α1

x0
→ α2

x0

32 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

→ α3
x0

→ α4
x0

. But xk and x̄0 are both predecessors of the
clause-task that corresponds to the clause (xk ∨ x̄0) and so,
they must be executed on the same cluster. Again three tasks,
the tasks xk, x̄0 and α3

x0
must be executed at t = 2 on the same

cluster, a contradiction to the feasibility of schedule.
(ii) We consider the partial logic formula composed only by the

clauses of length two containing the critical literals: (x0 ∨ x̄k1)
∧(xk2∨x̄0)∧(xk1∨x̄k3)∧(x̄k2∨xk4)∧. . .∧(xki∨x̄kj)∧. . .∧(xkj′ ∨
x̄ki′) ∨ . . . ∨ (xkj ∨ x̄kj′), with ki 6= ki′ and ki 6= kj , ki′ 6= kj′ .
For the same reason as previously, i.e. because of the existence
of the neutral-tasks, in any feasible schedule of length at most
four, the tasks x0 and x̄0 cannot be executed on the same
cluster at t = 2.
It remains now to prove that x0 and x̄0 cannot be executed at
t = 2 on different clusters. Consider the literal x0. We know
by the definition of the problem Π1 that x0 occurs one time in
the clause (x0 ∨ x̄k1), with k1 ∈ {1, 2, . . . , n − 1}.
Then, we must executed at t = 3 on the same cluster as the two
clause-tasks where the literal x0 occurs. Thus, the variable-
task x̄k1 cannot be scheduled at t = 2, because x̄k1 have two
successors, the variable-task α1

k1
and the clause-tasks where the

literal associated to the variable-task x0 occurs. Therefore, the
variable-task x̄k1 must executed at t = 1.
The variable-task xk1 cannot be executed at t = 1, since in
the one hand the clause (xk1 ∨ x̄k1) cannot be existed and
the other hand the variable-task xk1 admits three predecessors
(the variable-task x̂k1 and the two differential-tasks E where
the literal xk1 and x̄k1 occur).
Moreover, the task x̄0 occurs one time in the clause (x̄0 ∨ xk2)
with k2 ∈ {1, 2, . . . , n − 1} and k1 6= k2. The literal xk2 (resp.
x̄k2) must be executed at t = 1 (resp. at t = 2).
We repeat the assignment for every critical literal xki ,
ki ∈ {1, 2, . . . , n − 1}.
By the claim, we know that the clause (xkj∨x̄kj′), with kj 6= kj′

there exists always. In any feasible schedule of length at most
four, the variable-tasks xkj , x̄kj , xkj′ and x̄kj′ are necessarily
allocated using the above described procedure. It is easy to
see that the variable-tasks x̄kj′ and xkj are executed at t = 2.
Given that x̄kj′ , must be executed on the same cluster as its
corresponding neutral-tasks, we obtain that the corresponding
clause-task cannot start before t = 4, a contradiction.

Consequently, the tasks x̄ and x cannot be scheduled at time t = 2.

In conclusion, tasks x̄ and x cannot be scheduled at the same time.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 33

From these two lemmas, we obtain the following corollary:

Corollary 3.5. In any feasible schedule of length at most four, the tasks x̄
and x̄′ (resp. x and x′) must be executed simultaneously.

Proof. From the precedence constraints, we have that the tasks x, x′, x̄, x̄′

must be scheduled at t = 1 or t = 2. From Lemmata 3.2 and 3.3 tx 6= tx′ and
tx̄ 6= tx′ , so tx = tx̄ (tx is the starting time of x). With the same argument
we have tx′ = tx̄′ .

We can give now, the Lemma 3.6 which states that there are two possibil-
ities for the execution of x̄ and x̄′ (resp. x and x′): either they are executed
on the same cluster at t = 1 or on different clusters at t = 2.

Lemma 3.6. In any feasible schedule of length at most four, the tasks x̄ and
x̄′ (resp. x and x′) are executed on the same cluster at t = 1, otherwise on
different clusters at t = 2.

Proof. If tx = tx′ = 1, from the precedence constraints x̂ → x′ and x̂ → x we
deduce that x and x′ are scheduled by the same cluster as x̂. If tx = tx′ = 2,
from the precedence constraint x′ → α4

x, x′ is scheduled by the same cluster
as α4

x, and thus x is scheduled by some other cluster. The same arguments
hold for x̄ and x̄′.

There exist two possibilities for scheduling [x̄, x̄′] and [x, x′]: at t = 1 on
the same cluster as the variable-task x̂, or at t = 2 on different clusters (see
Lem. 3.6).

– Define a literal x as “true” (resp. “false”) if the corresponding variable-
task x is processed at time t = 2 (resp. at t = 1).

– Define a literal x̄ as “true” (resp. “false”) if the corresponding variable-
task x̄ is processed at time t = 2 (resp. at t = 1).

Lemma 3.7. If an instance π of the problem P̄ (P2)|prec; (cij , εij) = (1, 0);
pi = 1|Cmax has a schedule of length at most four, then the corresponding
instance π∗ of Π1 has a truth assignment satisfying the logic formula and
such that at each clause there is exactly one true literal.

Proof. We suppose that there exists a schedule of length four. We will show
that for each clause there exists exactly one literal which is processed at
t = 2 and the other literal(s) at t = 1.
1. We consider a clause C of length two denoted w.l.o.g. by (x̄ ∨ y).

(a) Assume that the tasks x̄ and y are executed at t = 2 on the same
cluster. Task x̄ has α4

x for successor and thus it is processed by the
same cluster as α4

x. Hence, α3
x, x̄, y are scheduled at t = 2 by the

same cluster, a contradiction.
(b) We suppose now that x̄ and y are executed at t = 1 on the same

cluster. For every clause (x̄∨y) of length two, there is a differential-
task E and the following precedence constraints: E → x̄ and E → y.
The task x̄ (resp. y) has also a predecessor x̂ (resp. ŷ). Given the

34 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

precedence constraints, the task x̂ (resp. ŷ) must be processed at
t = 0 on the same cluster as x̄ (resp. y). So, at t = 0, we have three
tasks, x̂, ŷ and a differential-task E, and only two processors in the
same cluster. Consequently, the tasks x̄ and y cannot be executed
on the same cluster at t = 1. Notice also that x̄ and y cannot be
executed at t = 1 on different clusters, because they have a common
predecessor, the differential-task E. So, only one of the tasks x̄ and
y can be executed at t = 1.

In conclusion, if we execute x̄ (resp. y) at t = 1, then according to
Lemma 3.6, x̄′ (resp. y′) must be executed on the same cluster as x̄
(resp. as y).
From the definitions given above, x̄ (resp. y) is defined as “false” (resp.
as “true”) because the corresponding variable-task x̄ (resp. y) is pro-
cessed at t = 1 (resp. at t = 2). So we have exactly one true literal.

2. We consider now, a clause Ck of length three, with j+1 ≤ k ≤ q denoted
by (x ∨ y ∨ z). Clearly, the variable-tasks x, y, z cannot be scheduled at
t = 0 (resp. t = 2) because of the precedence constraints. We suppose
that the three variable-tasks x, y and z are scheduled at t = 1. They can
be executed only on different clusters. From Lemma 3.2, the variable-
tasks x and x̄ cannot be executed at the same time. Therefore, the
variable-task x̄′, ȳ′ and z̄′ must be executed at least at t = 2. But,
these variable-tasks have a common successor, the differential-task Dk,
associated to the clause Ck, whose starting time is t = 4, impossible.

For all the clauses in the logic formula, there is exactly one true literal.

This concludes the proof of Theorem 3.1

Corollary 3.8. There is no polynomial-time algorithm for the problem P̄ (P2)|prec;
(cij , εij) = (1, 0); pi = 1|Cmax with performance bound smaller than 5

4 unless
P = NP.

Proof. The proof of Corollary 3.8 is an immediate consequence of the Impossibility
Theorem (see [3, 4]).

4. A polynomial time algorithm for Cmax = 3

Theorem 4.1. The problem of deciding whether an instance of P̄ (P2)|prec;
pi = 1; (cij , εij) = (1, 0)|Cmax has a schedule of length at most three is solvable
in polynomial time.

Proof. Given an arbitrary instance of the problem P̄ (P2)|prec; (cij , εij) = (1, 0);
pi = 1|Cmax = 3, we first check whether some obviously necessary conditions hold.
First, we check that the graph does not contain any path of length more than four.

We denote by δ−(x) (resp. δ+(x)) the number of predecessors (resp. of succes-
sors) of x in the graph G.

ON THE HARDNESS OF APPROXIMATING THE UET-UCT SCHEDULING 35

Let G = (V, E) be the initial graph.
We divide the set of vertices V into four classes:
1. S = {v ∈ V \δ−(v) = 0 and δ+(v) 6= 0};
2. Z = {v ∈ V \δ+(v) = 0 and δ−(v) 6= 0};
3. I = {v ∈ V \δ−(v) = δ+(v) = 0};
4. X = V − (S ⋃Z ⋃ I).

For every task xi ∈ X , we define a set Ki = Γ−(xi)
⋃{xi}

⋃
Γ+(xi) where Γ−(xi)

(resp. Γ+(xi)) denotes the set of predecessors (resp. successors) of the task xi.
Now we consider R ⊆ V ×V such that (xi, xj) ∈ R if and only if xi ∈ Ki, xj ∈ Kj

and Ki

⋂
Kj 6= ∅, and let R∗ be its transitive closure. R∗ is an equivalence

relation on
⋃

Kj = W . An equivalence class of R∗ will be called group of tasks in
the sequel. The tasks which are not elements of one of the equivalence classes Wi,
are elements of one the sets S, Z or I. Given that the tasks of S and I (resp. Z)
do not belong to a path of length 3, we can execute them at time 0 (resp. at time
2).

Each group of tasks constitutes a set of tasks that have to be executed by the
same cluster in order to yield a schedule within three time units. This is a direct
implication of the fact that each task in X has to be executed at t = 1 and on the
same cluster with its predecessors and its successors. Consequently the following
condition hold: there is no feasible schedule within three time units, if there is a
group of tasks Wi such that |Wi

⋂S| > 2, or |Wi

⋂Z| > 2, or |Wi

⋂X| > 2.

5. Conclusions and future work

In this paper, we first proved that the problem of deciding whether an in-
stance of P̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax has a schedule of length
at most four is NP-complete. This result is to be compared with the result
of [6], which states that P̄ |prec; cij = 1; pi = 1|Cmax = 6 is NP-complete. Our
result implies that there is no ρ−approximation algorithm with ρ < 5

4 , unless
P = NP . We also established that the problem of deciding whether an instance
of P̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax has a schedule of length at most
three is solvable in polynomial time. An interesting question for further research
is to find an approximation algorithm with performance guarantee better than the
trivial bound of two.

References

[1] E. Bampis, R. Giroudeau and J.C. König, Using duplication for multiprocessor scheduling
problem with hierarchical communications. Parallel Process. Lett. 10 (2000) 133-140.

36 E. BAMPIS, R. GIROUDEAU AND J.-C. KÖNIG

[2] B. Chen, C.N. Potts and G.J. Woeginger, A review of machine scheduling: Complexity,
algorithms and approximability, Technical Report Woe-29. TU Graz (1998).

[3] Ph. Chrétienne, E.J. Coffman Jr., J.K. Lenstra and Z. Liu, Scheduling Theory and its Appli-
cations. Wiley (1995).

[4] M.R. Garey and D.S. Johnson, Computers and Intractability, a Guide to the Theory of NP-
Completeness. Freeman (1979).

[5] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and ap-
proximation in deterministics sequencing and scheduling theory: A survey. Ann. Discrete
Math. 5 (1979) 287-326.

[6] J.A. Hoogeveen, J.K. Lenstra and B. Veltman. Three, four, Five, six, or the complexity of
scheduling with communication delays. Oper. Res. Lett. 16 (1994) 129-137.

to access this journal online:
www.edpsciences.org

