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Abstract. We propose a variational model for one of the most im-
portant problems in traffic networks, namely, the network equilibrium
flow that is, traditionally in the context of operations research, charac-
terized by minimum cost flow. This model has the peculiarity of being
formulated by means of a suitable variational inequality (VI) and its
solution is called “equilibrium”. This model becomes a minimum cost
model when the cost function is separable or, more general, when the
Jacobian of the cost operator is symmetric; in such cases a functional
representing the total network utility exists. In fact in these cases
we can write the first order optimality conditions which turn out to
be a VI. In the other situations (i.e., when global utility functional
does not exist), which occur much more often in the real problems,
we can study the network by looking for equilibrium solutions instead
of minimum points. The Lagrangean approach to the study of the VI
allows us to introduce dual variables, associated to the constraints of
the feasible set, which may receive interesting interpretations in terms
of potentials associated to the arcs and the nodes of the network. This
interpretation is an extension and generalization of the classic Bellman
conditions. Finally, we deepen the analysis of the networks having
capacity constraints.
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1. INTRODUCTION

The high increase of the volume of traffic registered in the recent years asks for
effective mathematical models for the analysis of the road circulation especially in
the urban areas.

Traffic assignment problems, that have been widely studied in the context of
transportation network analysis, are characterized by several aspects among which
we mention the management and the design of the road network (streets to be
made one-way only, semaphorical waiting times, etc.), the knowledge of the traffic
demand between origin-destination nodes and the definition of the equilibrium
flows.

In this paper we study a variational model for the formulation of the equilibrium
in traffic problems that overcomes, in the sense illustrated in the abstract, the
minimal-cost approach.

In our analysis, we refer to a road traffic network, where each user aims to
minimize its cost of transfer from a certain origin to a given destination; however,
the considered models can be extended to other applications as economic or electric
networks.

Historically, optimal flows were defined as the extremizers of a suitable func-
tional. The natural criticism to this definition is based on the fact that there are
very few real situations in which it is possible to ensure the existence of such a
functional. Unlike the optimization models, the variational ones do not require
the existence of such a functional. Indeed, in the variational model we consider
as operator the variation of the cost with respect to the flow and we write the
variational inequality. In this way when this operator “variation of the flow” is
symmetric we have a functional to minimize (and our operator is the Jacobian of
this functional), if it is not symmetric as many times occur in real situations, we
study the VI but we do not have any functional to minimize.

We begin with a proposition that will be used in the sequel.

Let K :={z € R" : g(z) <0, h(z) = 0}. In the simplest form, a VI consists
in finding y € K such that

(M(y),z—y) 20, Vrek, VI(M, K)

where M : R" — R", g: R®" — R™ and h: R" — RR”.

Similarly to constrained extremum problem, we can associate to VI suitable
Lagrangian-type optimality conditions in order to obtain primal-dual formulations
of VI as stated by the following well-known result:

Proposition 1.1. Suppose that the following conditions hold:

i) ¢ is a conver and differentiable function and there exists & € R"™ such that
g(%) < 0;

it) h is affine.
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Then z* € R" is a solution of VI(M, K) if and only if there exist \* € RP,
w* € R™ such that (z*, u*, \*) is a solution of the system

M(z) + pVg(z) —AVh(z)= 0

(1,9(z)) = 0 (1)
10, g(z) <0, hiz) =0.

In Section 2 we will consider the equilibrium flow problem, formulated by means
of a VI where the operator M is the variation of the cost with respect to the flows on
the arcs of the network and it depends on the flow passing through. In Section 3, we
show that the multipliers A7, i =1,...,pand uj, j=1,...,m of Proposition 1.1,
can be interpreted in terms of potentials associated to the nodes of the network,
when VI represents the equilibrium condition of a traffic network problem and
we can obtain a generalization of the classic Bellman conditions. In Section 4 we
analyse the equivalence between a variational model with capacity constraints and
this model without capacities, but with a suitable penalized operator.

2. THE VARIATIONAL ARC-FLOW MODEL

In this section we consider a VI model formulated in terms of the flows on the
arcs. This kind of model is easier to handle in the applications than the one which
considers the flows on the paths, since the real data are very often related to the
arcs of the network, instead of the paths: an example is given by the capacities,
which, in the real applications, are, in general, given on the arcs.

In this section we will also consider the following further assumptions and no-
tations:

e f; is the flow on the arc A; := (r,5) and f := (f1,..., fn)? is the vector
of the flows on all arcs;

e we assume that each arc A; is associated with an upper bound d; on
its capacity, d := (di,...,d,). More general capacity constraints of the
form g(f) < 0 can be considered where g is a convex and continuously
differentiable function. These constraints can be related to links, nodes,
routes, O-D pairs or any combination of them;

e ¢;(f) is the cost-variation on the arc A; as function of the flows, Vi =
L,...,nand c(f) := (c1(f), ..., en(f)T; we assume that c(f) > 0;

e g; is the balance at the node j, j =1,...,p and ¢ := (q1,...,qp)";

I' = (75;) € R? x R" is the node-arc incidence matrix whose elements are

—1, if ¢ is the initial node of the arc A;,
vij = q +1, if i is the final node of the arc A;, (2)

0, otherwise.
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Definition 2.1. The feasible set of the arc-flow model is defined by:
Ky(d):={feR" : I'f =q, 0< f<d};
or by more general side constraints:

Ki(g):={feR" : Tf=gq, f>0, g(f) <0}

Consider now the following VI:
find f* € Ky st (e(f),f— )20, ¥fe Ky, (3)

where
Ky:={feR" : Tf=gq, f>0}.

Definition 2.2. A flow f is a variational pre-equilibrium flow for the capacitated
model if and only if f solves (3); moreover a variational pre-equilibrium flow is
called equilibrium flow if and only if g(f) < 0 (or, in particular, f <d ).

The problem (3) collapses to the minimal-cost network-flow problem when the
function ¢(f) is independent of f, namely, ¢(f) := (cij, (4,5) € A).

Example 2.1. Easy examples shows that, also in the separable case, a solution
of the variational model can substantially differ from that obtained using the
minimum cost flow model, which is classic in the context of operations research. We
solve (3) by means of the gap function approach solving the following constrained
extremum problem:

min g(f) .= sup {{c(f), [ —x) — o = f|*}-

JEKy €Ky
Let
-1 -1 0 0 0 0 0 0
1 0O -1 -1 0 0 0 0
r— 0 1 0 0O -1 -1 0 0
o 0 0 1 0 1 0O -1 0 ’
0 0 0 1 0 1 0 -1
0 0 0 0 0 0 1 1

¢=(-2,0,0,0,0,2)",  d=(21,1,1,1,1,2,2)".

The cost function is defined by ¢(f) := Cf where C is the diagonal matrix with
components on the diagonal given by the vector D := (5.5, 1,2, 3, 4,50,3.5,1.5).
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The solution of (3) and the potentials at the nodes are given by the vectors

1.000
1.000 9.464
0.158 3.964
.| 0842 .| 789
fr= 0.885 A= 3.649
0.115 1.437
1.042 0
0.958
Suppose, now, that the cost function is a constant ¢(f) := D. In this case (3)

collapses to the classic minimal-cost flow problem. The optimal solution and the
potentials at the nodes are given by the vectors:

fr=1(1,1,0,1,1,0,1,1)7,

10.495
4.995
8.382
3.500
1.500
0
Remark 2.1. The arc-flow model can be related to the path-flow model. Some
further notations are:
e m is the total number of the considered paths and F := (Fi,..., F,)7 is
the vector of the relative flows;
e we will suppose that, the nodes of the couple W; are connected by the
(oriented) paths, R;, i€ P; C{1,...,m}, Vi=1,...,¢
e p; is the traffic demand for Wj, j=1,....4, p:= (p1,...,pe)";
o & = (¢) € R’ x R™ is the couplets-paths incidence matrix whose ele-
ments are

1, if W; is connected by the path R;,
i = { y P J (4)

0, otherwise;
e let A = {4;s} be the Kronecker matrix, where

s _ [ L ifAER i=1..n
s 0, ifA4; ¢ R; s=1,...m

and assume that the cost Cs(F) can be expressed as the sum of the costs
on the arcs of Ry:

Cy(F) = Z(Sisci(f).
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In order to obtain an arc-flow formulation of the path-flow model it is necessary
to define the feasible set of the path-arc-flow model

Kip:={feR": f=AF,®F =p, F >0}

Proposition 2.1. VI(c, Ky) is equivalent to VI(C, K¢ ).

Proof. By the Kronecker matrix the flows on the arcs can be expressed in terms
of the flows on the paths f; = > .-, §;sFs. Therefore f = AF and C(F) =
ATc(f). The previous relations lead to the following equalities:

(CH),F —H)=c"(f)AF — H) = {c(f*). f = f*),

where we have put f* := AH. The transformation of Ky in Ky p is obtained
using standard arguments (see, for example, [8]). O

An advantage of the path-arc-flow model lies, for example, in the possibility of
adding capacity constraints on the arcs in the feasible set K , even though the
traffic demand is related to the couples O-D. We remark that in order to adopt the
arc-flow model in the standard form (3), it is necessary that the traffic demand is
related only to the nodes of the network.

3. POTENTIALS AND DUAL VARIABLES

We can apply Proposition 1.1 in order to obtain a primal-dual formulation of
the VI(c, K¢(d)).

Proposition 3.1. f* is a solution of the VI(c, K;(d)) if and only if there exists
(A%, 1*) € RP*™ such that (f*,\*, u*) is a solution of the system

cf)y + A0 + >0
<f - da N> =0
0<f<d I'f=¢q, p=0.
We remark that, in order to follow the notation used in the theory of potentials,
with no loss of generality, we have changed in (5) the sign of the multiplier A (w.r.t.
the statement of Prop. 1.1). Now we analyse the system (5).

The case without capacity constraints
Suppose, at first, that there are no capacity constraints on the arcs so that
d;j = +o0, V(i,j) € A. Then (5) becomes

cf) + X' > 0
{c(f)+ AL, f) =0 (6)
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The question that now arises is to establish whether or not it is possible to find
an equivalent formulation of (6) in terms of an equilibrium principle. It is easy to
see that f* fulfills (6) if and only if there exists A* € R such that, V(i,j) € A:

fi; > 0= c;;(f*) =N =] (7)

fij = 0= ci5(f7) 2 X7 = Aj. (8)

L=
We observe that the dual variables corresponding to the flow conservation con-

straints can be interpreted in terms of potentials at the nodes of the network.
Actually, from (7) we deduce that

fi;>0= X\ =)} >0, 9)

that is, a necessary condition for the arc (i,j) to have a positive flow is that the
difference of potential between the nodes i and j is positive. Vice versa, from (9)
we deduce that

NN <0 = f7 =0, (10)

that is, the negativity of the difference of potentials between nodes ¢ and j is a
sufficient condition in order to have f;; = 0.

The case of capacity constraints

A straightforward extension of the relations (7) and (8) can be obtained in the
presence of capacity constraints applying directly Proposition 3.1. We can state
the following equilibrium principle, which is of immediate proof.

Theorem 3.1. f* is a solution of the VI (8) if and only if there exist \* € RP
and p* € R such that, V(i,j) € A:

0< f <dij = ci;(f*) =N\ = A}, ni; =0, (11)
fi*ij:>cij(f*)2)\j—)\;, pi; =0, (12)
[ = dig = cij (f*) = A\ = A} — i (13)

We observe that the relations (9) and (10) are still valid and that (11)—(13)
collapse to (7) and (8) when d;; = 400, ¥(i,j) € A.

Example 3.1. Consider the problem introduced in the Example 2.1. Note that
the existence of a positive flow between the nodes ¢ and j implies that A\; > Aj,
according to (9).

We also remark that the multipliers u;; that appear in (13) can be interpreted as
an additional cost to be added to ¢;;(f*) in order to achieve the equivalence with
the difference of potentials A7 — A7. This aspect of the analysis will be developed
in the next section.
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4. ABOUT THE EQUIVALENCE BETWEEN A MODEL
WITH CAPACITIES AND ONE WITHOUT CAPACITIES

In this section we will deepen the analysis of the model with capacity con-
straints. When the feasible set contains capacity constraints on the arcs, a research
direction is given by the reformulation of the model with capacities by means of
a model without capacities, but with a different operator (see, for example, [3]).
We will show that a variational pre-equilibrium flow is a variational equilibrium
flow if we make a perturbation of the cost-operator and we will show that such
a perturbation can be defined through the potentials (dual variables) in a way
generalizing the results existing in literature.

In other words, under suitable assumptions, we will show that f* is a solution
of the VI(e, Kf(g)) if and only if it is a solution of the following:

(c(f*) = Wlos f*, f), f = ") 20, VfeKy, Vla(c, Ky)

where ¥ : R¥ x R x R — R is a function depending on the parameter a € R*
and \I/’f denotes the gradient of ¥, w.r.t. its third component.
Let us begin with a first result.

Proposition 4.1. Assume that ¥ : R* x R" x R® — R fulfill the following
assumptions, Yo € RE:

(i) U(ai f.f) =0, VfeKy;

(it) ¥(a; f,-) is a differentiable concave function on K¢, Vf € Kjy.

Then f* is a solution of VIn(c,Kf(g)) if and only if it is a solution of the VI

(e(f*), f =1 —¥(a; /", f) 20, VfeKy (14)

Proof. Taking into account assumption (i), f* is a solution of (14) if and only if
f* is an optimal solution of the problem

min [(c(f*), f = f*) = ¥(a; /7, )] (15)

feK;

By (i), we have that (15) is a convex problem, so that VI, (c, K¢(g)) is a necessary
and sufficient optimality condition for (15), which completes the proof. O
We now have:

Theorem 4.1. Suppose that U(o; f*, f) = Yo/, ai(g:(f*) — 9i(f)), where g :
R" — R" is convezr, a; >0, i =1,...,v and 3f € R" such that g(f) < 0. Then
J* is a solution of Vi, (c, K¢(g)) if and only if there exists o € RY such that f*
is a solution of V1 (c, Ky) with >y, c;gi(f*) = 0.

Proof. First of all, we observe that ¥ fulfill the assumptions (%), () of the Propo-
sition 4.1. Assume that f* be a solution of VI, (c, Ky) for a suitable o € R, with

Zle aigi(f*) =0.
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By Proposition 4.1 we have that
() f=1) = W [", f), VfeKlg),

taking into account that K;(g) C Ky. Since, in our hypotheses,
\Il(a;f*a f) = Zazgz(f)a
i=1

we obtain that U(a; f*, f) > 0, Vf € K(g), so that f* is a solution of VI(c, Kf(g)).
Let f* be a solution of VI(c, K¢(g)).
By Proposition 1.1, it is known that f* is a solution of VI(c, K¢(g)) if and only
if there exists (u*, \*,s*) € R"*P*"™ such that (f*,u*, \*, s*) is a solution of the
system

of) = AT 4+ uVg(f) —s =0

<N79( )> = (57f>:0 (16)
g(f) <0, Tf=gq, f>0

w>0,5>0

((f*) +u"Vg(f*), f =) 20, VfeKy.

Still by Proposition 1.1, we have that f* is a solution of VI, (¢, K¢) if and only if
there exists (Y, s%) € RP*™ such that (f*,\°, s%) is a solution of the system

c(f) +uVg(f) —AI'=s=0
(s, f)=0 (17)
If=gq, f>0,s>0.

Therefore, if (f*, u*, A*, s*) is a solution of (16) then (f*, \*, s*) is also a solution
of (17) and f* solves VI, (¢, K¢). O

Remark 4.1. By the proof of Theorem 4.1, it follows that the parameter a;, which
ensures the equivalence between the capacitated VI and the incapacitated VI, can
be chosen as the multiplier u*, associated to the constraint g(f) < 0.
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