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Abstract. In this paper, information theoretic methodology for sys-
tem modeling is applied to investigate the probability density function
of the busy period in M/G/1 vacation models operating under the N-,
T - and D-policies. The information about the density function is lim-
ited to a few mean value constraints (usually the first moments). By
using the maximum entropy methodology one obtains the least biased
probability density function satisfying the system’s constraints. The
analysis of the three controllable M/G/1 queueing models provides a
parallel numerical study of the solution obtained via the maximum en-
tropy approach versus “classical” solutions. The maximum entropy
analysis of a continuous system descriptor (like the busy period) en-
riches the current body of literature which, in most cases, reduces to
discrete queueing measures (such as the number of customers in the
system).

Keywords. Busy period analysis, maximum entropy methodology,
M/G/1 vacation models, numerical inversion.

1. Introduction

A significant part of the results of the “classical” queueing theory are obtained
by assuming that the random variability of the inter-arrivals periods and service
times can be modelled by probability distributions. The queueing literature shows
the existence of a rich variety of exact, approximate and asymptotic methods
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for solving the mathematical equations describing the system behavior. Some
“classical” and well-known techniques include the general framework of birth-and-
death processes and methods of solution for non-Markovian stochastic processes
(such as embedded Markov chains or the method of supplementary variables).
Nevertheless, it is clear that complex queueing systems arising in real computer
networks and teletraffic theory often do not match assumptions made by “classical”
queueing modeling. In this context, the use of information theoretic techniques
based on the principle of maximum entropy (PME) and the principle of minimum
cross-entropy (if a prior distribution is available) provides an elegant alternative
to the “classical” stochastic queueing models.

The queueing literature shows that during the last decades there has been an
increasing interest in the development of queueing models based on information
theoretic methods. We refer the reader to the papers by Shore [20] and El-Affendi
and Kouvatsos [7] who obtained information theoretic approximation of the most
basic queueing models, and to the survey paper by Kouvatsos [16]. Some recent
applications include the paper of Tadj and Hamdi [21] in the context of single
server queues with quorum, and Wang et al. [25] who present a maximum en-
tropy analysis for the number of customers in the M/G/1 queue with N -policy.
A novel reader having a first approach to the literature could feed the idea that
maximum entropy solutions only provide a reasonable approximation to the true
(but complex) queueing system modelled by “classical” techniques. Such interpre-
tation of the information theoretic techniques is poor and trivial. The aim of the
PME is to provide a self-contained method of inference for estimating uniquely
an unknown probability distribution [13, 16, 20]. The maximum entropy distribu-
tion gives the most random solution, i.e., it introduces the minimum additional
information beyond what is implied in the original available mean constraints.

It should be pointed out that information theoretic analysis neither pretends
to replace the “classical” queueing solutions nor to be an approximation to that
“classical” results. The idea is just to apply the maximum entropy formalism in
order to get the widest probability distribution subject to the known mean value
constraints. Hence, when along the paper we present “classical” queueing results
(given in terms of exact analytical formulas or numerical inversions) versus maxi-
mum entropy solutions, we only wish to display two alternative tools for analyzing
an unique real underlying queueing phenomenon. It is so far of our intention
to suggest a possible (philosophical or numerical) superiority of the “classical”
methodology over the maximum entropy approach or vice versa.

Although the general theory (i.e., mathematical properties, numerical tech-
niques) is common for both the discrete case (mass probability functions) and the
continuous case (density functions), the numerical effort to carry out the latter is
essentially superior. One standard method for maximizing the entropy is to intro-
duce Lagrangian multipliers and then employ numerical methods that reduce the
problem to find the solution of a non-linear system of equations or, alternatively,
to minimize a potential function (see [8] and the references therein). The con-
sideration of the Newton-Raphson method or the use of direct search algorithms
[5] provide the basis for a computer program that obtains the optimal Lagrangian
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multipliers and gives the maximum entropy solution given arbitrary expected value
constraints.

The numerical implementation in a discrete case (i.e., when the mass proba-
bility function takes values on {0, ..., n} or on Z+) is a simple task which can be
performed in a personal computer consuming a few seconds when running. In con-
trast, the continuous case implies to estimate a density function taking values over
the domain (0, +∞). It typically demands several hours of running time, and so
often the program stops without reaching the desired convergence to the optimal
Lagrange multipliers. In practice, to solve the entropy maximization in a continu-
ous framework one must make several trials (by using a variety of algorithms and
different initial guess multipliers) until arriving to the optimal multipliers.

These demanding computational requirements explain that almost all the ex-
isting studies only deal with discrete cases. As an exception, we mention de paper
by Wagner and Geyer [24], where the accuracy of the maximum entropy approach
is investigated for Gamma, lognormal and other continuous distributions. The ap-
plication of information theoretic methods to queueing problems is more involved
because the continuous measures under study (i.e., a busy period, a waiting time,
etc.) are determined by the interaction of several random mechanisms (arrival
flow, service times) and the rules governing the queueing model (service discipline,
number of channels, priorities, etc.). Hence, applications to queueing imply a ma-
jor degree of complexity in comparison with the work by Wagner and Geyer who
only pretend to estimate a prefixed probability density function belonging to a
certain family of probability distributions.

The main purpose of this paper is to contribute to the maximum entropy anal-
ysis of the continuous performance characteristics of queueing systems. To this
end, we will apply the PME to obtain the density function of the busy period in
controllable M/G/1 queueing models. The control of the service process of M/G/1
queues has been extensively studied in the literature. The surveys of Doshi [6] and
Teghem [23], and the monograph of Takagi [22] present a complete methodological
overview, describe applications of various vacation models and gave appropriate
bibliography on the topic. We will restrict our attention to the so-called exhaus-
tive service case (i.e., the system must be empty when the server starts a vacation
period). More specifically, we will obtain the maximum entropy density for the
busy period of an M/G/1 queue operating under the N -, T - and D-policies. The
busy period analysis [9] is an important feature from the server’s point of view
and it is also helpful in optimization problems leading to an efficient planning of
the system resources.

Gelenbe and Iasnogorodski [12] gave the first proof of a decomposition result
for a single server queue with general interarrival times and general service and
vacation times. The stochastic decomposition is an useful property which permits
the system to be analyzed by considering the waiting time for the GI/G/1 system
without vacations plus the additional contribution due to the vacations. In the
context of our paper we reduce to the busy period analysis; however, since the
waiting time is another significant performance measure of continuous type, it
could be the subject matter of any subsequent study.
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As a second open direction, we mention the application of the PME to contin-
uous characteristics of queueing networks. An interesting possibility could be the
investigation of the waiting time in G-networks operating under the presence of
an extra flow of negative customers, which imply the delation of work from the
system at the negative arrival epochs [2, 10, 11].

The rest of the paper is organized as follows. In Section 2, we summarize
mathematics of the maximum entropy formalism. In Section 3 we describe the
M/G/1 queue operating under the three controllable policies. For each of the
three policies, in Section 4 we obtain the ME density for the busy period given
that the available information consists in some mean value constraints (such as
the first moments or the value of the Laplace transform at a given point). A brief
summary for the “classical” busy period analysis of these vacation models is also
given. Numerical examples provide insight on the maximum entropy solutions and
the numerical inversion of “classical” results for several traffic intensity levels and
different choices of the system parameters N , T and D. Finally, some conclusions
are given in Section 5.

2. Mathematics of the principle of maximum entropy

In this section we summarize some mathematical questions relating to the cal-
culation of ME-density functions. In general, it is difficult or impossible to obtain
closed-form solutions. We therefore discuss numerical methods for computing the
Lagrangian multipliers.

Let f(x) be a density function associated to the queueing performance descrip-
tor under study. The density f(x) takes values in a continuous state space X .
Thus, we have the normalization condition∫

X
f(x)dx = 1. (1)

We assume that the information about f(x) takes the form of linear equality
constraints ∫

X
Fk(x)f(x)dx = Fk, 1 ≤ k ≤ m, (2)

for known functions Fk(.) and known numbers Fk. We note that the structural
form of the mean value constraints (2) covers important special cases such as:
(i) Fk(x) = xk (central moments of order k); (ii) Fk(x) = I(−∞,xk](x) (value of
the distribution function at the point xk); (iii) Fk(x) = e−skx (value of the Laplace
transform at the point sk).

The PME states that, of all the probability density functions satisfying the
mean value constraints (1)–(2), the minimal prejudiced density (i.e., the density
function that introduces the minimum extraneous information beyond what is
implied in the original problem) is the one that maximizes the Shannon’s entropy



ENTROPY MAXIMIZATION AND BUSY PERIOD 199

functional

H(f) = −
∫
X

f(x) ln f(x)dx. (3)

Suppose that a prior density g(x) is given as current estimate, then the principle
of minimum cross-entropy generalizes the PME by stating that, of all the densities
that satisfy the mean constraints, the minimum cross-entropy solution is chosen
by minimizing the functional

H(f, g) =
∫
X

f(x) ln
f(x)
g(x)

dx. (4)

In fact, the PME corresponds to the particular case when the prior density g(x)
in (4) is uniformly distributed on the state space X .

The maximization of H(f) can be carried out with the help of the method of
Lagrange’s multipliers. If there exists a density function that minimizes the en-
tropy (3) and satisfies the mean value constraints (1)-(2), then it has the following
form

f̂(x) = exp

{
−α0 −

m∑
k=1

Fk(x)αk

}
, x ∈ X , (5)

where αk are the Lagrangian multipliers. α0 is determined from the normalization
condition (1), so we obtain

exp {α0} =
∫
X

exp

{
−

m∑
k=1

Fk(x)αk

}
dx. (6)

The rest of Lagrangian multipliers satisfy the following relations

−∂α0

∂αk
= Fk, 1 ≤ k ≤ m. (7)

One can sometimes determine αk from the above equation (7). However, in general,
it is impossible to solve equations (7) for αk explicitly.

The special case where m = 1, X = (0, +∞) and F1(x) = x yields the explicit
ME density

f(x) =
1
F1

e−
x

F1 , x ∈ X . (8)

Suppose that we add the second moment as a new constraint, then it is impossible
to get a closed-form explicit solution for the pair (α1,α2). Therefore, numerical
methods of solution become important. By combining (2) and (5) we observe that
standard method for finding the optimal αk is to solve the following system [8]:

Fi (α1, ..., αm) =
∫
X

(Fi(x) − Fi) exp

{
−

m∑
k=1

(Fk(x) − Fk)αk

}
dx = 0, 1 ≤ i ≤ m.

(9)
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The above equations (9) for the Lagrange multipliers are implicit and non-linear.
To solve the system (9) is equivalent to minimizing the potential function

F (α1, ..., αm) = log
∫
X

exp

{
−

m∑
k=1

(Fk(x) − Fk)αk

}
dx, (10)

or, alternatively, the balanced function

G (α1, ..., αm) =
m∑

i=1

pi

(∫
X

(Fi(x) − Fi) exp

{
−

m∑
k=1

(Fk(x) − Fk)αk

}
dx

)2

,

(11)
where 0 < pi < 1 and

∑m
i=1 pi = 1.

The balanced equation G (α1, ..., αm) in (11) takes the value 0 at the optimal
solution (α∗

1, ..., α
∗
m) which provides a computational advantage over the potential

function (10). For computing the minimum in (11) we will employ Nelder and
Mead’s algorithm [18] which is a method of direct search and does not involve
derivatives, avoiding the problems arising when the Hessian of G (α1, ..., αm) is
algorithmically almost singular. The method remains valid for any arbitrary num-
ber of constraints but, the search mechanism requires an increasingly number of
evaluations on the function G and, obviously the algorithmic convergence to the
optimal multipliers may be really slow.

As a practical remark, we mention that the numerical computation of the in-
tegrals involved in (11) implies the consideration of a finite truncated domain
(usually of the form (0, b) where the upper limit b is determined with the help of
Tchebychev’s inequality) and the use of the NRS (Numerical Recipes Software)
subroutine MIDPNT [19].

3. Model description of the M/G/1 vacation models

under study

We consider single server queueing systems to which customers arrive according
to a Poisson stream of rate λ. The service times are mutually independent and
independent of the arrival process with common probability distribution function
B(x) (B(0) = 0), k-th moment βk, Laplace transform β(s) and traffic intensity
ρ = λβ1. The service facility consists in the queue and the server. The server is
turned off as soon as the service facility becomes empty, i.e., we consider only the
case of exhaustive vacations. We assume that ρ < 1 which implies that the system
is in the steady state.

We will consider the three following classical policies for switching on the server:
(a) N -policy [26]: the server is turned on when the queue length reaches the

number N.

(b) T -policy [14, 17]: the server checks the queue after T time units. If the
server finds a non empty queue then it automatically initiates service;
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otherwise, the server takes a second vacation period of length T . This
mechanism is repeated until the first time in which the server finds at
least one customer in the queue.

(c) D-policy [4]: the server is turned on when the cumulative service time of
all arrived customers reaches a prefixed threshold D.

In what follows we will restrict ourselves to the above controllable policies. How-
ever, many variants and generalizations could be considered. For example, after
a vacation of length T finding an empty system one possibility is to take another
identical vacation but, a second option is to wait for the first arrival and then
to turn on the server. By combining the three simple policies we obtain dyadic
policies such as the Min(N, T )-policy or the Max(N, D)-policy.

The “classical” analysis of the three aforementioned policies forms an integral
part of the queueing literature. Recently, Wang et al. [25] use the PME to study
the M/G/1 queue with N -policy. However, an analysis based on information
theoretic techniques to obtain specific continuous performance characteristics of
queueing models is almost inexistent. The aim of this paper is to fill this gap
by applying the PME to the busy period analysis of the M/G/1 queue operating
under the N -, T - and D-policies.

To conclude this section we introduce some notation. In the context of queueing
systems with server vacations, a busy period L is defined as the length of time
elapsed from the epoch when the server returns to the system to provide service
until the first departure epoch leaving an empty system behind. Let LC , LN , LT

and LD be random variables denoting the busy period of the “classical” M/G/1
queue and the controllable M/G/1 queue with N -, T - and D- policies, respectively.

4. Classical and maximum entropy solutions for the busy

period of controllable M/G/1 queues

4.1. The M/G/1 queue operating under the N-policy

In this policy introduced by Yadin and Naor [26] the server returns to service
when there are N customers present for the first time after its removal. Thus, LN

is the sum of N independent and identically distributed busy periods of a standard
M/G/1 queueing system. Hence, its Laplace transform βLN (s) is given by

βLN (s) = (βLC (s))N , (12)

where βLC (s) is the Laplace transform of the standard queue, i.e., βLC (s) =
β (s + λ − λβLC (s)).
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From (12) and the expressions for the moments of the busy period in the stan-
dard M/G/1 queue [15], we find that

E[LN ] =
Nβ1

1 − ρ
, (13)

E[L2
N ] =

N(N − 1)β2
1

(1 − ρ)2
+

Nβ2

(1 − ρ)3
, (14)

E[L3
N ] =

N(N − 1)(N − 2)β3
1

(1 − ρ)3
+

N(3(N − 1)β1β2 + β3)
(1 − ρ)4

+
3Nλβ2

2

(1 − ρ)5
· (15)

The “classical” approach does not provide an explicit expression for the density of
the busy period. In the particular case where the service times are exponentially
distributed with rate ν, the expression (12) can be inverted and the corresponding
density function has the following form

fLN (x) =
e−(λ+ν)xNIN

(
2x

√
λν
)

xρN/2
, x > 0, (16)

where IN (.) denotes the modified Bessel function of order N, i.e., IN (z) =∑∞
i=0

1
i!(i+N)!

(
z
2

)N+2i
.

We next illustrate numerically the use of the PME to estimate the density func-
tion of the busy period in M/G/1 queues operating under the N -policy. Firstly,
we will assume that the available information consists in the first and second
moments of LN . For simplicity, we assume that such moments are given by the
“classical” expressions (13) and (14). Alternatively, the use of empirical data to
construct constraints based on sample moments provides another choice consis-
tent with the philosophical principles of the maximum entropy approach. Once
the mean constraints are fixed, the entropy formalism is independent of the service
time distribution. Thus, the choice of B(x) is not an important matter here.

We now consider service times hyperexponentially distributed having mean
value β1 = 0.25 and coefficient of variation CB =

(
β2 − β2

1

)1/2
/

β1 = 1.25. Then,
we choose the arrival rate to fix the traffic at levels ρ = 0.25 and 0.75. The number
of customers required to turn on the server is fixed at levels N = 2, 10 and 50.
By combining ρ and N , we have six different scenarios. In all cases, the ME den-
sity f̂2

LN
(x) is numerically computed with the help of the methodology described

in Section 2. Note that the ME density satisfies the given constraints, so the first
two moments of f̂2

LN
(x) and fLN (x) are coincident. Thus, we next compare the

“classical” and the ME solutions with the help of the following two measures:

DN
3 =

∣∣∣∣∣1 − E[L̂3
N ]

E[L3
N ]

∣∣∣∣∣ , (17)

DN (s) =
∣∣∣∣1 − βL̂N

(s)
βLN (s)

∣∣∣∣ · (18)
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Table 1. M/H2/1 queues with N -policy: comparing the 3rd moment.

N = 2 N = 10 N = 50
E[L3

N ] 2.594 70.007 5331.520
ρ = 0.25 E[L̂3

N ] 2.453 65.164 5300.938
DN

3 0.054 0.069 0.005
E[L3

N ] 630.374 6331.874 207159.3
ρ = 0.75 E[L̂3

N ] 745.301 5366.929 196052.5
DN

3 0.182 0.152 0.053

Table 2. Comparing the Laplace transforms: the case M/H2/1
with N = 10.

N = 10
ρ 0.25 0.75
s βLN (s) βL̂N

(s) DN (s) βLN (s) βL̂N
(s) DN (s)

0.001 0.996673 0.996673 0.000000 0.990095 0.990095 0.000000
0.01 0.967344 0.967345 0.000000 0.908684 0.908804 0.000132
0.05 0.849224 0.849304 0.000094 0.657855 0.663731 0.008932
0.1 0.725539 0.726056 0.000713 0.475406 0.494942 0.041093
0.3 0.406262 0.412535 0.015440 0.185914 0.244190 0.313459
0.5 0.242017 0.256333 0.059152 0.093260 0.161867 0.735655
0.7 0.151015 0.171883 0.138183 0.052686 0.121026 1.29709
0.9 0.097726 0.122779 0.256361 0.032040 0.096635 2.01607
1.2 0.053692 0.081393 0.515903 0.016665 0.074199 3.45217
1.5 0.031057 0.058719 0.890670 0.009370 0.060216 5.42650
2.0 0.013615 0.038725 1.84419 0.004041 0.045823 10.3391

Formula (17) for DN
3 gives idea of a relative distance between the third order

moments of the maximum entropy and the “classical” distributions. The quan-
tity DN (s) in (18) compares both solutions in terms of the Laplace transforms at
a given point s.

Table 1 shows that E[L3
N ] and E[L̂3

N ] are increasing functions of N and ρ. For
each fixed value of N , the relative distance DN

3 increases as function of the traffic
intensity ρ.

In Table 2 we compare the “classical” and ME densities for the case N =
10. To this end, we vary the auxiliary parameter s and compute βLN (s), βL̂N

(s)
and DN (s). It can be observed that DN (s) is an increasing function of s and ρ,
i.e., “classical” and ME solutions are closer when the traffic intensity decreases.
The increment of DN (s) for increasing values of s is an expected result because
the ME density f̂2

LN
(x) is based only on the constraints E[LN ] and E[L2

N ], which
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Table 3. M/M/1 queues with N -policy: skewness, shape,
absolute distance.

N = 2 N = 10 N = 50
2.40 1.55 1.08 0.13 0.48 −4.7×10−5

ρ = 0.25 BS D BS BS BS BS
0.218060 0.262078 0.121546

3.58 4.84 1.58 0.41 0.71 1.5×10−3

ρ = 0.5 BS D BS BS BS BS
0.184811 0.348290 0.179111

5.57 7.05 2.49 1.26 1.11 8.2×10−2

ρ = 0.75 BS D BS D BS BS
0.329070 0.363570 0.279231

——— fLN (x)
+ + + + f̂2

LN
(x)

◦ ◦ ◦ ◦ ◦ f̂3
LN

(x)

Figure 1. M/M/1 queue with N = 17: “classical” and ME densities.

are determined by the derivatives of the Laplace transform of LN at the origin
s = 0. Later on we will show how to improve the maximum entropy estimation by
adding more constraints.

In a second set of numerical results (see Tab. 3 and Fig. 1) we turn our attention
to the pure Markovian queue with N -policy. We reduce to this special case to
have the explicit expression (16) for the “classical” density fLN (x). In Table 3,
we consider that β1 = 0.25 and λ varies to fix the traffic intensity at values
ρ = 0.25, 0.5 and 0.75. Each cell in the table contains five entries. The two
numbers in the first row of the cell correspond to the skewness coefficient defined
by E

[
(LN − E[LN ])3

]/
(Var(LN ))3/2 associated to the “classical” density fLN (x)

and the ME density f̂2
LN

(x) (written in bold). The second row indicates the shape
of the density. The notations D and BS mean “decreasing” and “bell-shape”,
respectively. Bold characters again correspond to the ME density. The number
in the last row of each cell is the global absolute distance between both densities
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defined by

D
(
fLN , f̂LN

2
)

=
∫ ∞

0

∣∣∣fLN (x) − f̂LN

2(x)
∣∣∣ dx. (19)

This quantity provides another useful global measure of proximity between fLN (x)
and f̂2

LN
(x). We note that the asymmetry of both densities decreases for large

values of N and increases with ρ. Looking at the queues with bell-shape ME
densities, we observe that queues with lesser skewness coefficients yield to smaller
absolute distances.

Up to this point we have used the third moment only to give a measure of
proximity between the “classical” and the ME distributions (see DN

3 in Tab. 1).
Next we show how the use of E[L3

N ] as an extra constraint leads to ME densi-
ties f̂3

LN
(x) closer to the “classical” density fLN (x). To this end, we now consider

an M/M/1 queue with traffic intensity ρ = 0.125 and N = 17. Figure 1 displays
the “classical” density fLN (x) and the ME solutions f̂2

LN
(x) and f̂3

LN
(x) based

on the first two and three moments, respectively. The global absolute distances
D
(
fLN , f̂2

LN

)
= 0.1663 and D

(
fLN , f̂3

LN

)
= 0.0934 quantify that f̂3

LN
(x) is con-

siderably closer to fLN (x) than f̂2
LN

(x).
We now come back to the M/H2/1 queue with parameters β1 = 0.25, CB = 1.25

and N = 10. The objective is to improve the ME solution but this time we consider
that the new constraint is the value of the Laplace transform at any point s0. In this
way, we combine information about βLN (s) at the origin s = 0 (given by the first
two moments) and information at another different point s0. The ME formalism
described in Section 2 can be adapted leading to the ME density

f̂2,1
LN

(x) = exp
{−α0 − α1x − α2x

2 − γe−s0x
}

, x > 0. (20)

An explicit expression for the “classical” density fLN (x) of the model M/H2/1
with N -policy is unknown. However, we can carry out the numerical inversion
of βLN (s) in (12) using the algorithm POST-WIDDER described in Abate and
Whitt [1]. In Figure 2, we consider the case ρ = 0.25 and display three curves
which correspond to the numerical inversion denoted by f̃LN (x) and the ME densi-
ties f̂2

LN
(x) and f̂2,1

LN
(x). The latter was obtained by taking as extra constraint the

value of βLN (s) at s0 = 0.7. The curves indicate that f̂2,1
LN

(x) is considerable closer
to f̃LN (x) than f̂2

LN
(x). The same conclusion is obtained in Figure 3, for a traffic

intensity ρ = 0.75 where the point s0 is chosen as 1.5. In fact, in this example we
observe that f̂2

LN
(x) is a decreasing function but this shape is changed when we

add the constraint βLN (s0), in agreement with the shape of the “classical” inverted
density f̃LN (x).

4.2. The M/G/1 queue operating under the T-policy

The T -policy [14, 17] consists of turning the server on after T time units have
elapsed from the epoch of server removal, if there is at least one customer present
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——— f̃LN (x)
+ + + + f̂2

LN
(x)

� � � � � f̂2,1
LN

(x)

Figure 2. M/H2/1 queue with N = 10, ρ = 0.25: “classical”
and ME densities.

——— f̃LN (x)
+ + + + f̂2

LN
(x)

� � � � � f̂2,1
LN

(x)

Figure 3. M/H2/1 queue with N = 10, ρ = 0.75: “classical”
and ME densities.

in the waiting line. The server remains on until the queue becomes empty again.
If after T time units there are no customers in the system to initiate service, the
server takes another T time units vacation period, and so on, until at least one
customer is present.

The relation between the Laplace transforms of LT and LC is

βLT (s) =
e−λT

(
eλTβLC

(s) − 1
)

1 − e−λT
· (21)
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Table 4. M/H2/1 queues with T -policy: comparing the 3rd moment.

T = 2.5 T = 5.0 T = 25.0
E[L3

T ] 5.714 18.834 838.908
ρ = 0.25 E[L̂3

T ] 5.805 17.394 818.219
DT

3 0.016 0.076 0.024
E[L3

T ] 4287.214 14560.32 616176.5
ρ = 0.75 E[L̂3

T ] 4253.440 12644.20 596482.5
DT

3 0.007 0.131 0.031

Differentiating (21), we obtain

E[LT ] =
Tρ

(1 − ρ) (1 − e−λT )
, (22)

E[L2
T ] =

1
1 − e−λT

(
T 2ρ2

(1 − ρ)2
+

Tλβ2

(1 − ρ)3

)
, (23)

E[L3
T ] =

λT

1 − e−λT

(
T 2ρ2β1

(1 − ρ)3
+

3Tρβ2 + β3

(1 − ρ)4
+

3λβ2
2

(1 − ρ)5

)
· (24)

Again a “classical” closed-form formula for the density of the busy period LT does
not exist. In the particular case of exponential service times the expression (21) can
be inverted and the density of LT has the form (minor correction of formula (50)
in [9]):

fLT (x) =
e−(λ+ν)xe−λT T

√
λνI1

(
2
√

λνx(x + T )
)

(1 − e−λT )
√

x(x + T )
, x > 0. (25)

In Tables 4 and 5 we deal with the M/H2/1 queue with T -policy. We again assume
that β1 = 0.25 and CB = 1.25. The parameter T takes values 2.5, 5.0 and 25.0. In
Table 4 we present E[L3

T ], E[L̂3
T ] and DT

3 . Similar comments to those presented
for N - policy remain valid here. Laplace transforms given in Table 5 for the case
T = 5.0 show that measure DT (s) is smaller when the traffic intensity decreases.

Following a parallel study to that performed for the N -policy, in Table 6 and
Figure 4 we consider the case of exponential service times. In Table 6, we assume
that β1 = 0.25 and arrival intensities are fixed to obtain ρ = 0.25, 0.5 and 0.75.
The table provides information about the skewness and the shape of fLT (x) (given
by expression (25)) and f̂2

LT
(x). Similarly to formula (19), we define the global

absolute distance D
(
fLT , f̂2

LT

)
which is given in the last entry of each cell.

Figure 4 shows the gain obtained by using the third moment E[L3
T ] (see (24)) as

a known constraint. To this end, we choose λ = 1.0, ν = 8.0, T = 15.0 and display
the “classical” density fLT (x) versus f̂2

LT
(x) and f̂3

LT
(x). The improvement can
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Table 5. Comparing the Laplace transforms: the case M/H2/1
with T = 5.0.

T = 5.0
ρ 0.25 0.75
s βLT (s) βL̂T

(s) DT (s) βLT (s) βL̂T
(s) DT (s)

0.001 0.998324 0.998324 0.000000 0.985187 0.985187 0.000000
0.01 0.983453 0.983453 0.000000 0.866796 0.867024 0.000263
0.05 0.921618 0.921643 0.000027 0.540541 0.549978 0.017458
0.1 0.852967 0.853134 0.000196 0.341325 0.368070 0.078356
0.3 0.647687 0.650080 0.003696 0.097996 0.153057 0.561869
0.5 0.512872 0.519267 0.012469 0.042090 0.095855 1.27738
0.7 0.418728 0.429541 0.025822 0.021826 0.069690 2.19298
0.9 0.349965 0.364877 0.042609 0.012690 0.054727 3.31261
1.2 0.276568 0.296503 0.072080 0.006476 0.041386 5.39067
1.5 0.225487 0.249060 0.104589 0.003709 0.033271 7.97034
2.0 0.168812 0.196082 0.161540 0.001737 0.025074 13.4352

Table 6. M/M/1 queues with T -policy: skewness, shape,
absolute distance.

T = 2.5 T = 5.0 T = 25.0
1.93 1.72 1.38 0.89 0.61 3.3×10−2

ρ = 0.25 BS D BS BS BS BS
0.044726 0.150433 0.154493

2.01 1.46 1.42 0.63 0.63 9.0×10−3

ρ = 0.5 BS D BS BS BS BS
0.145215 0.247946 0.161318

2.71 2.17 1.91 0.91 0.85 3.3×10−2

ρ = 0.75 BS D BS BS BS BS
0.163159 0.303207 0.216466

be measured in terms of the global absolute distances D
(
fLT , f̂2

LT

)
= 0.1596 and

D
(
fLT , f̂3

LT

)
= 0.0944.

Finally, in Figures 5 and 6, we improve the maximum entropy estimation of LT

by using as a given information the value of βLT (s) (see formula (21)) at the
point s0. Figures 5 and 6 deal with the M/H2/1 queue with T = 5.0 and ρ = 0.25
and 0.75, respectively. In the case ρ = 0.75 we illustrate the dependence of f̂2,1

LT
(x)

on the point s0. To this end, we display f̃LT (x), f̂2
LT

(x) and three more curves
corresponding to f̂2,1

LT
(x) for different choices of s0. In Figure 5, s0 has been

chosen as 1.2.
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——— fLT (x)
+ + + + f̂2

LT
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Figure 4. M/M/1 queue with T = 15: “classical” and ME densities.

——— f̃LT (x)
+ + + + f̂2

LT
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Figure 5. M/H2/1 queue with T = 5, ρ = 0.25: “classical” and
ME densities.

——— f̃LT (x)
+ + + + f̂2

LT
(x)

� � � � f̂2,1
LT

(x), s0 = 1.5
◦ ◦ ◦ ◦ ◦ f̂2,1

LT
(x), s0 = 0.9

� � � � � f̂2,1
LT

(x), s0 = 0.25

Figure 6. M/H2/1 queue with T = 5, ρ = 0.75: “classical” and
ME densities.
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4.3. The M/G/1 queue operating under the D-policy

The D-policy is a more sophisticated policy that takes into account the service
times of the waiting customers to switch on the server. To this end, the server
is able to know each customer’s workload. The removed server is turned on as
soon as the total workload for all customers in the waiting line firstly exceeds the
threshold D.

Following formula (6.5) in Artalejo [3] we observe that

βLT (s) = βZ(s + λ − λβLC (s)), (26)

where βZ(s) denotes the Laplace transform of the total work accumulated just at
the epoch when the server is switched on. The corresponding distribution function
is given by

FZ(x) = B(x) −
∫ D

0

(1 − B(x − y))dm(y), x > D, (27)

and m(x) =
∑∞

k=1 Bk(x) is the renewal function associated with the renewal pro-
cess formed by a sequence of service times, so Bk(x) is the k -fold self-convolution
of B(x).

The two first moments of LD are given by

E[LD] =
(1 + m(D))β1

1 − ρ
, (28)

E[L2
D] =

(1 + m(D))β2

(1 − ρ)3
+

2β1

(1 − ρ)2

∫ D

0

xdm(x). (29)

Gakis et al. give a complicate expression (see formula (28) in [9]) for the density
function of LD in terms of convolutions of the density of a busy period in the
standard M/G/1 queue. The next expression for the case of exponential service
times corrects a minor mistake in formula (53) of [9]:

fLD(x) = νeνDe−(λ+ν)x

(
1 +

∫ x

D

λy

x − y

√
x − y

ρx
I1

(
2
√

λνx(x − y)
)

dy

)
, x > D.

(30)
In the exponential case m(x) = νx. Thus, expressions (28) and (29) reduce to the
following

E[LD] =
1 + νD

ν(1 − ρ)
, (31)

E[L2
D] =

2(1 + νD)
ν2(1 − ρ)3

+
D2

(1 − ρ)2
· (32)

Note that the density function of LD takes values on the interval (D, +∞). This
remark should be token into account when we deal with the maximum entropy
approach. Accordingly, the integrals arising in the numerical calculation of the
Lagrangian multipliers are defined over (D, +∞).
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——— fLD(x)
+ + + + f̂2

LD
(x)

Figure 7. M/M/1 queue with D = 1: “classical” and ME densities.

——— fLD(x)
+ + + + f̂2

LD
(x)

� � � � � f̂2,1
LD
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Figure 8. M/M/1 queue with D = 4: “classical” and ME densities.

We now present some numerical results. The “classical” density fLD(x) is
available in explicit form only for the case of exponential service times (see for-
mula (30)). Furthermore, the numerical inversion of the Laplace transform βLD (s)
has need of knowledge of the renewal function but it is well-known that m(x) has
an explicit expression only for a few particular cases. Due to these reasons, we
next restrict to the model M/M/1 with D-policy.

In Figure 7, we consider a light traffic system with parameters λ = 1.0, ν =
8.0 and D = 1.0. Then, we display the “classical” density fLD(x) and the ME
density f̂2

LD
(x) based on the first two moments given by formulas (31) and (32).

At the light of the decreasing shape of both densities and the global absolute
distance D

(
fLD , f̂2

LD

)
= 0.0482, we conclude that both solutions are enough

close.
In a second numerical example, we increase ρ and the threshold D. Concretely,

we consider the parameters λ = 2.0, ν = 5.0 and D = 4.0. Figure 8 shows that it
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could be convenient to improve the ME density f̂2
LD

(x). It is done by considering
the value of βLD(s) at the point s0 = 1.0. The gain measured in terms of absolute
distances yield to the values D

(
fLD , f̂2

LD

)
= 0.2447 and D

(
fLD , f̂2,1

LD

)
= 0.0396.

5. Conclusions

In this paper we have shown how the maximum entropy formalism provides
an elegant method for the investigation of continuous performance measures of
queueing models with vacations. Our numerical results show that the use of the
first two moments of the busy period and the value of the Laplace transform at
a given point is, in general, sufficient to obtain accurate estimations. This study
is complementary to the existing literature which in most cases reduces the use of
information theoretic methods to the discrete case.
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