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Abstract. The problem of minimizing the maximum edge conges-
tion in a multicast communication network generalizes the well-known
NP -hard multicommodity flow problem. We give the presently best
theoretical approximation results as well as efficient implementations.
In particular we show that for a network with m edges and k multicast
requests, an r(1 + ε)(rOPT + exp(1) ln m)-approximation can be com-
puted in O(kmε−2 ln k ln m) time, where β bounds the time for com-
puting an r-approximate minimum Steiner tree. Moreover, we present
a new fast heuristic that outperforms the primal-dual approaches with
respect to both running time and objective value.
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1. Introduction

A communication network can be modeled as an undirected graph G = (V, E),
where each node represents a computer that is able to receive, copy and send
packets of data. In multicast traffic, several nodes have a simultaneous demand to
receive a copy of a single packet. These nodes together with the packet’s source
specify a multicast request S ⊆ V . Meeting the request means to establish a
connection represented by a Steiner tree with terminal set S, i.e. a subtree of G
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that contains S and has no leaf in V \ S. Given G and a set of multicast requests
it is natural to ask about Steiner trees such that the maximum edge congestion,
i.e. the maximum number of trees sharing an edge is as small as possible. Solving
this minimization problem is NP -hard, since it contains as a special case the well-
known NP -hard standard routing problem of finding (unsplittable) paths with
minimum congestion. The MAX-SNP -hard minimum Steiner tree problem is
also closely related.

1.1. Previous work

Vempala and Vöcking [17] gave a randomized algorithm for approximating the
minimum multicast congestion problem within a factor of O(log n) by applying
randomized rounding to an integer linear program relaxation. The considered LP
contains an exponential number of constraints corresponding to the exponential
number of possible Steiner trees. Vempala and Vöcking handled this difficulty by
considering a multicommodity flow relaxation for which they could devise a poly-
nomial separation oracle. By rounding the fractional paths in an O(log n)-stage
process they proved an O(log n) approximation. Carr and Vempala [2] gave an
algorithm for approximating the minimum multicast congestion within a constant
factor plus O(log n). They showed that an r-approximate solution to an LP -
relaxation can be written as a convex combination of Steiner trees. Randomized
rounding yields a solution not exceeding a congestion of max{2 exp(1)·rOPT, 2(ε+
2) log n} with probability at least 1 − n−ε, where r is the approximation factor
of the network Steiner problem. Both algorithms use the ellipsoid method with
separation oracle and thus are of mere theoretical value. A closely related line
of research is concerned with combinatorial approximation algorithms for multi-
commodity flow and – more general – fractional packing and covering problems.
Matula and Shahrokhi [11] were the first to develop a combinatorial strongly poly-
nomial approximation algorithm for the uniform concurrent flow problem. Their
method was generalized and improved by Goldberg [4], Leighton et al. [10], Klein
et al. [9], Plotkin et al. [13], and Radzik [14]. A fast version that is particularly
simple to analyze is due to Garg and Könemann [3]. Independently, similar results
were given by Grigoriadis and Khachiyan [6]. In two recent papers Jansen and
Zhang [7, 8] extended the latter approach. In particular, they presented a ran-
domized algorithm for approximating the minimum multicast congestion within
(1 + ε)(rOPT + exp(1) lnm) in time O(m(ln m + ε−2 ln ε)(kβ + m ln ln(m/ε)),
where β is the running time of a minimum Steiner tree approximation. The online
version of the problem was considered by Aspnes et al. [1].

1.2. Our results

In Section 2 we present three algorithms which solve the fractional multicast
congestion problem up to a relative error of r(1 + ε). The fastest of these takes
time O(kβε−2 ln k ln m) (where β bounds the time for computing an r-approximate
minimum Steiner tree), and thus improves over the previously best running time
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bound of Jansen and Zhang. By means of randomized rounding we obtain a
(1 + ε)(rOPT + exp(1) lnm)-approximation to the integral multicast congestion
problem. With the tools of Srivastav and Stangier [16] the rounding procedure can
be derandomized (Sect. 2.3.2). The three algorithms are based on the approaches
of Plotkin, Shmoys and Tardos [13], Radzik [14], and Garg and Könemann [3] to
path-packing and general packing problems. In experiments it turned out that
straightforward implementations of the above (theoretically fast) combinatorial
algorithms are quite slow. However, simple modifications lead to a very fast new
algorithm with much better approximation results than hinted at by the worst case
bounds (Sect. 3). The central idea is to repeatedly improve badly served requests
via approximate minimum Steiner trees where the length function punishes highly
congested edges more heavily than proposed in the theory. A proof confirming the
experimental performance remains a challenging open problem.

1.3. Notations

By G = (V, E) we will denote the given undirected graph on n nodes and m
edges. We consider k multicast requests, S1, . . . , Sk ⊆ V . The set of all Steiner
trees with terminal nodes given by Si is denoted by Ti, while T̂i is the set of Steiner
trees for Si computed in the course of the considered algorithm. As to the (pos-
sibly fractional) congestion, we distinguish between ci(T ), the congestion caused
by tree T for request Si, ci(e) :=

∑
T∈Ti

e∈E(T )

ci(T ), the congestion of edge e ∈ E

due to request Si, c(e) :=
∑k

i=1 ci(e), the total congestion of edge e ∈ E and
cmax := maxe∈E c(e), the maximum edge congestion. We will define a nonnegative
length function l on the edges and abbreviate the sum of edge lengths of a sub-
graph U of G by l(U) :=

∑
e∈E(U) l(e). The time for computing an r-approximate

optimum Steiner tree will be denoted by β. Throughout, r ≥ 1.55 and ε ∈ (0, 1] will
be constant parameters describing the guaranteed ratio of our minimum Steiner
tree approximation [18] and determining the target approximation of the fractional
optimization problem, respectively. MSTl(Si) and M̃STl(Si) are used to denote
a minimum Steiner tree and an approximate minimum Steiner tree for Si with
respect to l (l is usually omitted); we assume l(M̃ST(Si)) ≤ r · l(MST(Si)). Gen-
erally, a variable indexed by a subscript i refers to the ith multicast request Si,
while a superscript (i) refers to the end of the ith iteration of a while- or for-loop
in an algorithm. The optimal fractional congestion is denoted by OPT.

2. Approximation algorithms

The subsequent analyses of algorithms are similar to analyses presented origi-
nally for the multicommodity problem with non-uniform commodity demands and
non-uniform edge weights. For ease of presentation we shall restrict us here to the
uniform multicast congestion problem. However a generalization to non-uniform
edge-capacities and requests having different weights should be straightforward.
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2.1. LP formulation

The minimum multicast congestion problem can be formulated as an integer
linear program. We study a natural LP relaxation and its dual:

(LP) min z
s. t.∑

T∈Ti
ci(T ) ≥ 1 for all i ∈ {1, . . . , k}

c(e) =
∑k

i=1

∑
T∈Ti

e∈E(T )

ci(T ) ≤ z for all e ∈ E

ci(T ) ≥ 0 for all i and all T ∈ Ti

(LP∗) max
∑k

i=1 Yi

s. t.∑
e∈E l(e) ≤ 1∑
e∈E(T ) l(e) ≥ Yi for all i and all T ∈ Ti

l(e) ≥ 0 for all e ∈ E
Yi ≥ 0 for all i ∈ {1, . . . , k}.

Lemma 2.1. Let (Y ∗
1 , . . . , Y ∗

k , l∗ : E → R≥0) be a feasible solution to (LP∗).
(Y ∗

1 , . . . , Y ∗
k , l∗ : E → R≥0) is an optimal dual solution if and only if

∑k
i=1 Y ∗

i =
∑k

i=1 l∗(MST(Si)) = max
{∑k

i=1 l(MST(Si))

l(G) | l : E → R≥0, l �≡ 0
}
.

Proof. Let (Y ∗
1 , . . . , Y ∗

k , l∗ : E → R≥0) be an optimal dual solution. We may
assume that Y ∗

i = l∗(MST(Si)) for all i and l∗(G) = 1. The latter equality can be
obtained by enlarging some l∗(e); the former must hold, since otherwise we could
increase

∑k
i=1 Y ∗

i contradicting optimality. Hence,

k∑

i=1

Y ∗
i =

∑k
i=1 l∗(MST(Si))

l∗(G)
≤ max

{∑k
i=1 l(MST(Si))

l(G)
| l : E → R≥0, l �≡ 0

}

.

On the other hand, let l : E → R≥0 be a length function with maximum ratio
∑k

i=1 l(MST(Si))

l(G) . Defining l′ : E → R≥0 by e �→ l(e)
l(G) we have l′(G) = 1 and

l′(T ) = l(T )
l(G) ≥ l(MST(Si))

l(G) for all T ∈ Ti. Now, setting Y ′
i := l′(MST (Si)) for all

i ∈ {1, . . . , k} yields

k∑

i=1

Y ∗
i ≥

k∑

i=1

Y ′
i ≥ max

{∑k
i=1 l(MST(Si))

l(G)
| l : E → R≥0, l �≡ 0

}

. �

Corollary 2.2. OPT ≥
∑k

i=1 l(MST(Si))

l(G) for all l : E → R≥0.



APPROXIMATION OF MINIMUM MULTICAST CONGESTION 323

By complementary slackness, feasible solutions to (LP) and (LP∗) are optimal
if and only if

l(e)(c(e) − z) = 0 for all e ∈ E (1)
ci(T )(l(T ) − Yi) = 0 for all i ∈ {1, . . . , k} and all T ∈ Ti (2)

Yi

(
∑

T∈Ti

ci(T ) − 1

)

= 0 for all i ∈ {1, . . . , k}. (3)

To guarantee optimality, it is sufficient to replace (1), (2), and (3) by

l(e)(c(e) − cmax) = 0 for all e ∈ E, (1’)

ci(T )(l(T ) − l(MST(Si)) = 0 for all i ∈ {1, . . . , k}, and all T ∈ Ti, (2’)
∑

T∈Ti

ci(T ) = 1. (3’)

Summing (1′) over all edges and (2′) over all i ∈ {1, . . . , k} and all T ∈ Ti yields

∑

e∈E

c(e)l(e) = l(G)cmax (1”)

k∑

i=1

l(MST(Si)) =
k∑

i=1

∑

T∈Ti

ci(T )l(T ) =
∑

e∈E

c(e)l(e). (2”)

In the derivation of (2′′) we used (3′) and the fact that
∑k

i=1

∑
T∈Ti

ci(T )l(T ) =
∑

e∈E l(e)
∑k

i=1

∑∑
T∈Ti

e∈E(T )

ci(T ) which equals
∑

e∈E l(e)c(e) by definition of c(e).

Any approximately optimal solution to (LP ) that is found in polynomial time
determines for each multicast request Si a (polynomial) set of trees with frac-
tional congestion. The task of selecting one of these trees for each Si such that
the maximum congestion is minimized constitutes a vector selection problem.
Raghavan [15] bounds the quality of a solution by analyzing a randomized round-
ing procedure. For our problem his analysis gives the following result.

Theorem 2.3. There exists an O(kβε−2 ln k ln m)-time randomized algorithm for
computing a solution to the minimum multicast congestion problem with congestion
bounded by






(1 + ε)rOPT + (1 + ε)(exp(1) − 1)
√

rOPT · ln m if rOPT ≥ ln m

(1 + ε)rOPT +
(1 + ε) exp(1) lnm

1 + ln( ln m
rOPT )

otherwise.
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2.2. Approximating the fractional optimum

2.2.1. The Plotkin-Shmoys-Tardos approach

Plotkin, Shmoys and Tardos specify conditions that are sufficient to guarantee
relaxed optimality. Adapted to the multicast problem, these conditions are the
following relaxations of (1′′) and (2′′).

(1 − ε)cmaxl(G) ≤
∑

e∈E

c(e)l(e) (R1)

(1 − ε)
∑

e∈E

c(e)l(e) ≤
k∑

i=1

l(M̃ST(Si)) + εcmaxl(G). (R2)

Their idea is to choose l such that (R1) is automatically satisfied, and to gradually
satisfy (R2) by repeated calls to the following routine.

Algorithm 2.4 (ImproveCongestion1).
λ := cmax/2, α := 4 ln(2mε−1)

ε·cmax
, σ := 5ε/(9αk)

while (R2) is not satisfied and cmax > λ

for e ∈ E
l(e) := exp(α · c(e))

for i := 1 to k
Ti := M̃ST(Si)
for e ∈ E(Ti)

c(e) := c(e) + σ/(1 − σ)
for e ∈ E

c(e) := c(e) · (1 − σ)

Lemma 2.5.

a) Conditions (R1) and (R2) imply that cmax ≤ (1 + 6ε)r ·OPT for ε ≤ 1/6.
b) l(e) := exp(α · c(e)) for all e ∈ E and α ≥ 2 ln(2mε−1)

cmaxε imply (R1).

Proof. a) From (R1) and (R2) we conclude

r

k∑

i=1

l(MST(Si))
(R2)

≥ (1 − ε)
∑

e∈E

c(e)l(e) − εcmaxl(G)

(R1)

≥ (1 − ε)2cmaxl(G) − εcmaxl(G)
≥ (1 − 3ε)cmaxl(G).
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Hence, by the choice of ε,

cmax ≤ 1
1 − 3ε

· r
∑k

i=1 l(MST(Si))
l(G)

≤ rOPT
1 − 3ε

≤ (1 + 6ε)rOPT.

b) We show

(i) α ≥ 2 ln(2mε−1)
cmaxε implies

(
1 − ε

2

)
cmax ≤ c(e) or l(e) < ε

2m l(G) for all e ∈ E;
(ii) (i) implies (R1).

To prove (i), consider an arbitrary e ∈ E. If c(e) <
(
1 − ε

2

)
cmax we have

l(e) = exp(αc(e)) < exp
(
α
(
1 − ε

2

)
cmax

)
. Since l(G) ≥ exp(α · cmax), we see

that l(e)
l(G) < exp

(
− ε

2αcmax

)
≤ ε

2m , so l(e) < ε
2m l(G).

For (ii), let B := {e ∈ E | (1 − ε/2)cmax ≤ c(e)}. Now,

cmaxl(G) = cmax

∑

e∈B

l(e) + cmax

∑

e∈E\B

l(e)

≤ 1
1 − ε/2

∑

e∈B

c(e)l(e) + cmax

∑

e∈E\B

ε

2m
l(G)

≤ 1
1 − ε/2

∑

e∈E

c(e)l(e) + cmax
ε

2
l(G).

This is equivalent to

cmaxl(G)(1 − ε/2)(1 − ε/2) ≤
∑

e∈E

c(e)l(e),

so (1 − ε)cmaxl(G) ≤
∑

e∈E c(e)l(e) as claimed. �

The following lemma serves to bound the number of iterations until (R2) is
satisfied.

Lemma 2.6. Let ε ≤ 1
6 and consider a feasible solution (ci(T ), cmax) to (LP), such

that for α ≥ 2 ln(2mε−1)
cmaxε and l(e) := exp(α·c(e)) (for all e ∈ E) (R2) is not satisfied.

Define σ := 5ε/(9αk) and let Ti := M̃ST(Si) be an approximate minimum Steiner

tree for i ∈ {1, . . . , k}. Then c̃i(T ) :=

{
(1 − σ)ci(T ), if T �= Ti

(1 − σ)ci(T ) + σ, if T = Ti,
and l̃(e) :=

exp(α · c̃(e)) := exp
(

α
∑k

i=1

∑
T∈Ti

e∈E(T )
c̃i(T )

)

satisfy

l(G) − l̃(G) ≥ 5ε2cmax

9k
l(G).
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Proof. For |δ| ≤ 5
9ε ≤ 5

54 we can use the Taylor expansion to estimate

exp(x + δ) < exp(x) + δ exp(x) + |δ|ε
3

exp(x).

By the choice of α, σ and ε, ασ

∣
∣
∣
∣

(
∑k

i=1
E(Ti)�e

1
)

− c(e)
∣
∣
∣
∣ ≤ ασk = 5

9ε ≤ 5
54 , for all

e ∈ E, so

l̃(e) = exp(αc̃(e)) = exp




α(1 − σ)c(e) + ασ

k∑

i=1
E(Ti)�e

1






= exp




αc(e) + ασ











k∑

i=1
E(Ti)�e

1




− c(e)











< l(e)




1 + ασ











k∑

i=1
E(Ti)�e

1




− c(e)




+

ασε

3











k∑

i=1
E(Ti)�e

1




+ c(e)









 . (4)

Note that

∑

e∈E

k∑

i=1
E(Ti)�e

l(e) =
k∑

i=1

l(Ti) =
k∑

i=1

l(M̃ST(Si)) (5)

≤ r

k∑

i=1

l(MST(Si)) < 2
k∑

i=1

l(MST(Si)), (6)

and due to feasibility,

k∑

i=1

l(MST(Si)) ≤
k∑

i=1

∑

T∈Ti

l(MST(Si))ci(T ) ≤
k∑

i=1

∑

T∈Ti

l(T )ci(T )

=
∑

e∈E

l(e)
k∑

i=1

∑

T∈Ti
e∈T

ci(T ) =
∑

e∈E

l(e)c(e). (7)
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Hence,

l(G) − l̃(G)
(4)
>

∑

e∈E

ασ









−

k∑

i=1
E(Ti)�e

l(e)




+ c(e)l(e)






−
∑

e∈E

ασε

3











k∑

i=1
E(Ti)�e

l(e)




+ c(e)l(e)






(5)
= ασ

(

−
k∑

i=1

l(M̃ST(Si)) +
∑

e∈E

c(e)l(e)

)

−ασε

3

[
k∑

i=1

l(M̃ST(Si)) +
∑

e∈E

l(e)c(e)

]

(6),(7)
> ασ

(

−
k∑

i=1

l(M̃ST(Si)) +
∑

e∈E

c(e)l(e) − ε
∑

e∈E

l(e)c(e)

)

.

Since (R2) is not satisfied,

l(G) − l̃(G) > ασ

(

−
k∑

i=1

l(M̃ST(Si)) +
k∑

i=1

l(M̃ST(Si)) + εcmaxl(G)

)

=
5ε2cmax

9k
l(G). �

We thus see that in one iteration of the while loop of ImproveCongestion1

l(G) decreases by a factor of at least (1 − 5ε2cmax/(9k)) ≤ exp(−5ε2cmax/(9k)).
The initial value of l(G) is at most m · exp(αcmax). Surely, r(1 + 6ε)-optimality
is achieved, if l(G) ≤ exp(r(1 + 6ε)αOPT)). We will use this criterion to bound
the required time complexity. Consider the following two phase process: in phase
one, the overall length is reduced to at most exp(2rOPT); phase two successively
reaches r(1 + 6ε)-optimality. Each phase consists of a number of subphases, cor-
responding to calls to ImproveCongestion1. During the whole of phase 1 –
i.e. for each subphase i – we fix ε(i) at 1/6. The congestion is halved in each
subphase; hence the number of subphases of phase 1 is O(ln cmax) = O(ln k),
and by Lemma 2.6, we can bound the number z of iterations the while-loop of
ImproveCongestion1 needs to terminate for the ith subphase of phase 1 by
O(k ln m/c

(i)
max). As cmax is halved in each subphase, the number of iterations

in the last subphase dominates the overall number. Consequently the running
time of phase 1 is O(k2β ln m) = Õ(k2m) for the Steiner tree approximation
by Mehlhorn[12]. (Remember, we assume cmax ≥ OPT ≥ 1.) The ith sub-
phase of phase 2 starts with c

(i−1)
max ≤ r(1 + 6ε(i))OPT and terminates when the

congestion is at most r(1 + 3ε(i))OPT. In order to reach r(1 + 6ε)-optimality
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we thus need O(ln ε−1) subphases. By Lemma 2.6, the ith subphase terminates
within z iterations, where z satisfies m exp(α(i)c

(i−1)
max )·exp(−z ·5c

(i−1)
max ε(i)2/(9k)) =

exp
(
α(i)c

(i−1)
max · 1+3ε(i)

1+6ε(i)

)
, i.e. z = O(kε(i)−2

ln(m/ε(i))). Hence the running time

of the ith subphase of phase 2 is O(k2ε(i)−2
ln(m/ε(i))β). Since ε(i+1) = ε(i)/2,

the running time of the last subphase again is dominating, resulting in an overall
estimate of O(k2ε−2 · ln(m/ε)β) = Õ(k2ε−2m) for the Steiner tree approximation
by Mehlhorn. This proves the following theorem.

Theorem 2.7. For ε ≤ 1
6 and assuming OPT ≥ 1, the fractional minimum

multicast congestion problem can be approximated within r(1 + 6ε)OPT in time
O(k2ε−2 ·ln(m/ε)β). Using the Steiner tree approximation by Mehlhorn, we obtain
a 2(1 + 6ε)-approximation in time Õ(k2ε−2m).

Here is a suggestion how to implement the described algorithm.

Algorithm 2.8 (ApproximateCongestion1).
Compute a start solution, initialize c(e), cmax, maxdual accordingly.
ε := 1/3, factor0 := 1, iteration := −1
while ε > ε0/6

ε := ε/2
while cmax > max{1, (1 + 6ε)maxdual}

α := 2 ln(2m/ε)
ε·cmax

, σ := 5ε
9αk

for e ∈ E
l(e) := exp(α(c(e) − cmax))

iteration := iteration + 1
for i := 1 to k

Ti := M̃ST(Si), c(Ti) := c(Ti) + σ
1−σ , index(Ti) :=

iteration
for e ∈ E(Ti)

c(e) := c(e) + σ
1−σ

maxdual := max{maxdual,
∑k

i=1
∑

e∈E(Ti)
l(e)

∑
e∈E l(e) }

cmax := 0
for e ∈ E

c(e) := c(e) · (1 − σ), if c(e) > cmax then cmax := c(e)
factoriteration := factoriteration−1 · (1 − σ)

for T ∈
⋃k

i=1 T̂i

c(T ) := c(T ) · factoriteration−index(Ti)

Instead of testing for (R2), it seems favorable to use maxdual :=
∑k

i=1
l(M̃ST(Si))

l(G)

as a lower bound on rOPT and terminate the while-loop as soon as cmax falls
below (1 + 6ε)·maxdual. Deviating slightly from our previous notations we use ε0

to denote the target approximation quality. For better efficiency, ci(T ) is updated
to hold the fractional congestion caused by tree T for request Si only in the end
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of the algorithm (in previous iterations it deviates from this by a factor called
factor). We scale the length function by exp(−cmax) in order to stay within the
computers floating point precision.

Goldberg, Oldham, Plotkin, and Stein [5] point out that the practical perfor-
mance of the described algorithm significantly depends on the choice of α and σ.
Instead of using the theoretical value for α, they suggest to choose α such that the

ratio (l(G)cmax/
∑

e∈E c(e)l(e))−1

(∑ e∈E c(e)l(e)/
∑

k
i=1 l(M̃ST(Si)))−1

remains balanced. For this, they increase

α by a factor of (
√

5 + 1)/2 as long as the ratio is larger than 0.5 and other-
wise decrease it by 2/(

√
5 + 1). Since our aim at choosing α is to satisfy (R1),

one could alternatively think of setting α := min
{
α ∈ R>0 | l(G)cmax∑

e∈E c(e)l(e) ≤ 1
1−ε

}
.

Moreover, they emphasize the necessity of choosing σ dynamically such as to max-
imize l(G) − l̃(G) in each iteration. Since l̃ is the sum of exponential functions,
we can easily compute dl̃(σ)

dσ =
∑

e∈E α(c0(e)− c(e)) exp(αc(e)+ασ(c0(e)− c(e))),
where c0(e) := |{T | ∃i ∈ {1, . . . , k} such that T = M̃ST(Si) and e ∈ E(T )}| ab-
breviates the congestion of edge e caused by choosing for each i an approximate
minimum Steiner tree. The second derivative is positive, so l̃ has a unique mini-
mum in [σtheor., 1]. Goldberg et al. suggest to determine this minimum with the
Newton-Raphson method. One could also try binary search.

2.2.2. The Radzik approach

Adapting the algorithm of Radzik [14] to our problem, yields a theoretical
speedup by a factor of k. The key idea is to update the length function after
each single approximate Steiner tree computation, if the length of the new tree is
sufficiently small. Radzik uses relaxed optimality conditions different from (R1)
and (R2).

Theorem 2.9. Let λ ≥ OPT and ε ≤ 1/3. If

cmax ≤ (1 + ε/3)λ and (8)
k∑

i=1

l(M̃ST(Si)) ≥ (1 − ε/2)λl(G) (9)

then cmax ≤ r(1 + ε)OPT.

Proof.

rOPT ≥ r

∑k
i=1 l(MST(Si))

l(G)
≥
∑k

i=1 l(M̃ST(Si))
l(G)

(9)

≥
(
1 − ε

2

)
λ

(8)

≥ 1 − ε/2
1 + ε/3

cmax.

Hence, cmax ≤ 1+ε/3
1−ε/2rOPT ≤ (1 + ε)rOPT, by the choice of ε. �
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The length function of Radzik is very similar to the one of Plotkin et al.

Definition 2.10. Given some fixed λ ≥ OPT we define

α :=
3(1 + ε) ln(mε−1)

λε
and l(e) := exp(α · c(e)) for all e ∈ E.

Lemma 2.11. Let m ≥ 3 and ε ≤ 1. If

(
1 − ε

3

)
λ ≤ cmax ≤

(
1 +

ε

3

)
λ (10)

then

(1 − ε)λl(G) ≤
∑

e∈E

c(e)l(e) ≤
(
1 +

ε

3

)
λl(G). (11)

Proof. Since c(e) ≤ cmax the second inequality of (11) is immediate from the
second inequality of (10). We will prove

l(e) ≤ l(e)
(1 + ε)c(e)

λ
+

ε2

m
l(G) for all e ∈ E. (12)

From (12), l(G) =
∑

e∈E l(e) ≤
∑

e∈E l(e) (1+ε)c(e)
λ + ε2l(G), thus l(G)λ(1 − ε2) ≤

(1 + ε)
∑

e∈E l(e)c(e), which is equivalent to (1 − ε)λl(G) ≤
∑

e∈E c(e)l(e).
To prove (12), note that the claim is trivial if c(e) ≥ λ

1+ε . On the other hand, if
c(e) < λ

1+ε , we have

l(e) = exp(αc(e)) < exp
(

αλ

1 + ε

)

=
(m

ε

)3/ε

=
(m

ε

)ε−2+ 3(1+ε)(1−ε/3)
ε

=
((m

ε

)ε

· 1
m

)
ε2

m
exp (αλ(1 − ε/3)) .

Since
(

a
x

)x ≤ a for 0 < x ≤ 1 and a ≥ exp(1), we conclude

l(e) ≤ ε2

m
exp

(
αλ

(
1 − ε

3

)) (10)

≤ ε2

m
exp(αcmax) ≤ ε2

m
l(G). �

Let us consider the development of l and cmax due to gradually transferring con-
gestion onto approximate minimum Steiner trees. We use l(i) and c

(i)
max to denote

the length function and the maximum edge congestion at stage i of this process.

Lemma 2.12. Let ε ≤ 1. If there are stages i, j (i < j), such that c
(i)
max = λ and

l(j)(G) ≤ l(i)(G), then c
(j)
max ≤

(
1 + ε

3

)
c
(i)
max.
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Proof. Suppose, c
(j)
max > λ

(
1 + ε

3

)
, then

l(j)(G) =
∑

e∈E

l(j)(e) > exp(α · c(j)
max) > exp

(
αλ

(
1 +

ε

3

))

=
(m

ε

)1+ε

exp(αλ) > m exp(αλ) ≥ l(i)(G). �

The following routine ImproveCongestion2 is the heart of Radzik’s algorithm.
As the input it takes sets of trees T̂ (0)

i with congestion c
(0)
i and a parameter ε

determining the approximation quality.

Algorithm 2.13 (ImproveCongestion2).
λ := cmax, α := 3(1+ε) ln(mε−1)

λε , σ := ε
4αλ

for e ∈ E

l(e) := exp(α·c(e))
do LG := l(G)

for i := 1 to k
Ti := M̃ST(Si)
Li neu := l(Ti), Li alt :=

∑
e∈E ci(e)l(e)

if Li alt− Li neu ≥ ε·Li alt then
for e ∈ E

cmax := 0
c(e) := c(e) − ci(e), ci(e) := ci(e) · (1 − σ)
c(e) := c(e) + ci(e), cmax := max{cmax, c(e)}
l(e) := exp(α·c(e))

for e ∈ E(Ti)
ci(e) := ci(e) + σ, c(e) := c(e) + σ, l(e) :=
exp(α·c(e))

T̂i := T̂i ∪ {Ti}, update cmax

while cmax >
(
1 − ε

3

)
λ and LG − l(G) > ε2

8 LG

Theorem 2.14. Let ε ≤ 1
24 . Algorithm ImproveCongestion2 terminates with

maximum congestion c
(q)
max ≤

(
1 − ε

3

)
c
(0)
max or c

(q)
max ≤ r(1 + 8ε)OPT.

Before proving Theorem 2.14 let us analyze the running time.

Theorem 2.15. Let ε ≤ 1. ImproveCongestion2 takes O(ε−2 ln n) iterations
of the while-loop to terminate.

Proof. Suppose, ImproveCongestion2 needs more than q := 24
ε2 ln

(
m
ε

)
itera-

tions to terminate. Let T̂ (q)
1 , . . . , T̂ (q)

k denote the sets of Steiner trees after q
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iterations. In every, but the last, iteration, l(G) is decreased by a factor ≥
(
1 − ε2

8

)
, so l(q)(G) <

(
1 − ε2

8

)24ε−2 ln(m/ε)

· l(0)(G) ≤ exp
(
−3 ln

(
m
ε

))
· l(0)(G) =

(
ε
m

)3 · l(0)(G).
The qth iteration is not the last one. Hence, c

(q)
max >

(
1 − ε

3

)
λ and

l(q)(G) > exp
(
αλ

(
1 − ε

3

))
= exp(−αελ/3) exp(αλ)

=
( ε

m

)1+ε

exp(αλ) ≥
( ε

m

)2

· 1
m

l(0)(G) ≥
( ε

m

)3

l(0)(G),

a contradiction. Consequently, ImproveCongestion2 must terminate within q

iterations. Assuming ε = Ω
(

1
poly(n)

)
implies q = O(ε−2 ln n). �

Using the ε-scaling technique described in the proof of Theorem 2.3 in the last
section the following corollary is straightforward. (We first set ε := 1/8 constant
and call the algorithm O(ln k) times to obtain 2r(= r(1+8ε))-optimality. When we
divide ε by 2, at most 24 calls result in r(1+4ε)-optimality. To see this, let z denote
the number of calls. Substituting ε by ε/2, we want r(1 + 16ε)OPTexp(−zε/3) =
r(1+8ε)OPT, which is equivalent to exp(zε/3) = 1+ 8ε

1+8ε ≤ 1+8ε. From this we
see z ≤ 2

ε ln(1 + 8ε) ≤ 24. Thus at most O(ln ε−1) additional calls are necessary.
Since the running time of the last call dominates, the term ln ε−1 can be omitted
from the estimate on the overall running time.)

Corollary 2.16. a) O
(
ln k + ln 1

ε

)
calls to ImproveCongestion2 suffice to pro-

duce an r(1 + ε)-optimal solution.
b) The overall running time required is O

(
ε−2 · k ln n lnk(m + β)

)
= Õ(kmε−2)

for the Steiner tree approximation by Mehlhorn.

It remains to prove Theorem 2.14. We split the proof into three lemmas.

Lemma 2.17. Let ε ≤ 1. Let the superscripts (i − 1) and (i) refer to values in
subsequent iterations of the for-loop in ImproveCongestion2. Then

l(i)(G) ≤ l(i−1)(G), (13)

c(i)
max ≤

(
1 +

ε

3

)
λ, (14)

and, if the congestion changes for Si,

λ
(
l(i−1)(G) − l(i)(G)

)
≥ ε

8

(
∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti)

)

. (15)
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(Note that ci changes only in the ith iteration of the for-loop; hence c
(j)
i = c

(0)
i for

all j ∈ {1, . . . , i − 1}. As before, we use Ti to represent the approximate Steiner
tree chosen in the ith iteration.)

Proof. The proof is by induction on the overall number of iterations of the for-
loop. Consider the jth iteration of the while-loop and within this the ith iteration
of the for-loop. By induction assumption, c

(i−1)
max ≤

(
1 + ε

3

)
λ. (The induction

start is trivial.) There is nothing to prove, if the congestion for Si is unchanged,
so suppose it does change. We have, for all e ∈ E(Ti),

l(i)(e) = exp(α · c(i)(e)) = exp(αc(i−1)(e) − ασc
(0)
i (e) + ασ)

= exp
(
αc(i−1)(e)

)
· exp

(
−ασ(c(0)

i (e) − 1)
)

.

For |δ| ≤ ε/3 ≤ 1 the estimate exp(−δ) ≤ 1 − δ + 3
4δ2 ≤ 1 − δ + ε

4 |δ| holds. Since
|ασ(c(0)

i (e) − 1)| ≤ ε
4λ max{c(i−1)

max , 1} ≤ ε
4λ

(
1 + ε

3

)
λ ≤ ε

3 , we can apply this esti-
mate to obtain l(i)(e) ≤ l(i−1)(e) ·(1−ασ(c(0)

i (e)−1)+ ε
4ασ|c(0)

i (e)−1|). Similarly,
for all e ∈ E\E(Ti), l(i)(e) ≤ l(i−1)(e)·(1−ασc

(0)
i (e)+ ε

4ασc
(0)
i (e)). Thus, l(i)(G) ≤

l(i−1)(G) − ασ(
∑

e∈E c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti)) + ε

4ασ(
∑

e∈E c
(0)
i (e)l(i−1)(e) +

l(i−1)(Ti)). Using the fact that

∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti) ≥ ε ·

∑

e∈E

c
(0)
i (e)l(i−1)(e), (16)

which implies

l(i−1)(Ti) ≤
∑

e∈E

c
(0)
i (e)l(i−1)(e), (17)

we conclude

l(i)(G)
(17)

≤ l(i−1)(G) − ασ

(
∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti)

−ε

2

∑

e∈E

c
(0)
i (e)l(i−1)(e)

)

(16)

≤ l(i−1)(G) − 1
2
ασ

(
∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti)

)

= l(i−1)(G) − ε

8λ

(
∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti)

)

,
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which is equivalent to (15). Together with (16), inequality (15) yields (13). Finally,
(14) follows from Lemma 2.12. �

Lemma 2.18. Let ε ≤ 1 and consider an arbitrary iteration of the while-loop.
For iterations i, j of the for-loop, where 0 ≤ i ≤ j ≤ k and for all e ∈ E we have

l(j)(e) ≥
(
1 − ε

3

)
l(i)(e).

Proof. Using c(j)(e) ≥ c(i)(e) − σc(i)(e), inequality (14) of Lemma 2.17 gives

l(j)(e) = exp(αc(j)(e)) ≥ exp(αc(i)(e) − ασc(i)(e))

= l(i)(e) exp
(
− ε

4λ
c(i)(e)

)
≥ l(i)(e) exp

(
− ε

4λ
c(i)
max

)

≥ l(i)(e) exp
(
−ε

4

(
1 +

ε

3

))
≥
(
1 − ε

4

(
1 +

ε

3

))
l(i)(e)

≥
(
1 − ε

3

)
l(i)(e). �

Lemma 2.19. Let ε ≤ 1. If in the end of an iteration of the while-loop we have
cmax >

(
1 − ε

3

)
λ and

l(0)(G) − l(k)(G) ≤ ε2

8
l(0)(G), (18)

where superscripts refer to iterations of the for-loop, then

k∑

i=1

l(k)(M̃ST(Si)) ≥ (1 − 4ε)λl(k)(G).

Proof. We are going to show

k∑

i=1

l(k)(M̃ST(Si)) ≥
(
1 − ε

3

) k∑

i=1

l(i−1)(Ti), (19)

k∑

i=1

l(i−1)(Ti) ≥ (1 − ε)
k∑

i=1

∑

e∈E

c
(i−1)
i (e)l(0)(e) − 4

3
ελl(k)(G), (20)

k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) ≥

(

1 − 4
3
ε

)

λl(k)(G). (21)
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Conditional on these inequalities being true, we can estimate

k∑

i=1

l(k)(M̃ST(Si))
(19)

≥
(
1 − ε

3

) k∑

i=1

l(i−1)(Ti)

(20)

≥
(
1 − ε

3

)
(1 − ε)

k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) − 4

3
ελl(k)(G)

(21)

≥
(
1 − ε

3

)
(1 − ε)

(

1 − 4
3
ε

)

λl(k)(G) − 4
3
ελk(k)(G)

=
(

1 − ε − ε

3
+

ε2

3

)(

1 − 4
3
ε

)

λl(k)(G) − 4
3
ελl(k)(G)

=
(

1 − 4
3
ε +

ε2

3
− 4

3
ε +

16
9

ε2 − 4
9
ε3 − 4

3
ε

)

λl(k)(G)

≥ (1 − 4ε)λl(k)(G).

To prove (19), let T̃i be an approximate minimum Steiner tree for l(k) (remember,
we assume Ti to be the minimum Steiner approximation computed for l(i−1)). By
Lemma 2.18,

k∑

i=1

l(k)(M̃ST(Si)) =
k∑

i=1

l(k)(T̃i) ≥
k∑

i=1

(
1 − ε

3

)
l(i−1)(T̃i) ≥

k∑

i=1

(
1 − ε

3

)
l(i−1)(Ti).

For (20), note that if the congestion does not change for Si, then

∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti) < ε ·

∑

e∈E

c
(0)
i (e)l(i−1)(e),

otherwise Lemma 2.17 yields

∑

e∈E

c
(0)
i (e)l(i−1)(e) − l(i−1)(Ti) ≤

8
ε
λ(l(i−1)(G) − l(i)(G)).
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Altogether,

k∑

i=1

l(i−1)(Ti) ≥
k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) − ε

k∑

i=1

∑

e∈E

c
(0)
i (e)

−
k∑

i=1

8
ε
λ
(
l(i−1)(G) − l(i)(G)

)

= (1 − ε)
k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) − 8

ε
λ
(
l(0)(G) − l(k)(G)

)

(18)

≥ (1 − ε)
k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) − ελl(0)(G)

≥ (1 − ε)
k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) − 4

3
ελl(k)(G),

where the last inequality follows from (18) and the fact that ε ≤ 1, i.e.

l(0)(G) ≤ l(k)(G) ·
(

1 − ε2

8

)−1

and
(

1 − ε2

8

)−1

=
8

8 − ε2
≤ 8

7
≤ 4

3
·

To prove (21) we use Lemma 2.18 for estimating

k∑

i=1

∑

e∈E

c
(0)
i (e)l(i−1)(e) ≥

(
1 − ε

3

) k∑

i=1

∑

e∈E

c
(0)
i (e)l(0)(e)

=
(
1 − ε

3

)∑

e∈E

c(0)(e)l(0)(e).

By Lemma 2.11,

(
1 − ε

3

)∑

e∈E

c(0)(e)l(0)(e) ≥
(
1 − ε

3

)
(1 − ε)λl(0)(G) ≥

(

1 − 4
3
ε

)

λl(0)(G).

Since inequality (13) of Lemma 2.17 implies l(0)(G) ≥ l(k)(G), the claim of (21) is
proven. �

Proof of Theorem 2.14. Suppose, that ImproveCongestion2 terminates with
c
(q)
max >

(
1 − ε

3

)
c
(0)
max. Then,

∑k
i=1 l(k)(M̃ST(Si)) ≥ (1 − 4ε)λl(k)(G), by

Lemma 2.19, and because of Lemma 2.17 we may apply Theorem 2.9 to conclude
that c

(q)
max ≤ r(1 + 8ε)OPT. �
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2.2.3. The Garg-Könemann approach

The algorithm of Garg and Könemann [3] differs from the previous algorithms in
the fact that there is no transfer of congestion from M̃ST(Si)(j) to M̃ST(Si)(j+1).
Instead, the functions describing the congestion are built up from scratch. A
feasible solution is obtained by scaling the computed quantities in the very end.

Algorithm 2.20 (ImproveCongestion3).
for e ∈ E

l(e) := δ

while
∑

e∈E l(e) < ξ

for i := 1 to k
T := M̃ST(Si), ci(T ) := ci(T ) + 1
for e ∈ T

l(e) := l(e) ·
(
1 + ε

u

)

scale c̄i(T ) := ci(T )/#iterations

Lemma 2.21. Suppose that l(e) is initialized to some constant δ for all e ∈ E.
Let q be the number of iterations of the while-loop ImproveCongestion3 needs
to terminate. Then c̄

(q)
max < u·ln(ξ/δ)

(q−1)·ln(1+ε) and q ≤
⌈

u
OPT · ln(ξ/δ)

ln(1+ε)

⌉
·

Proof. Whenever c(e) increases by u, l(e) grows by a factor of at least (1 + ε).
Let z count the number of times this happens. Since l(q−1)(e) < ξ, we have
δ(1 + ε)z < ξ, so z < ln(ξ/δ)

ln(1+ε) . After q − 1 iterations,
∑

T∈T̂i
ci(T ) = q − 1 for all

i ∈ {1, . . . , k}. Thus (c̄max, (c̄i(T )i∈{1,...,k}
T∈Ti

) :=
(

cmax
q−1 ,

(
ci(T )
q−1

)
i∈{1,...,k}

T∈Ti

)

is a feasible

solution satisfying c̄max ≤ u·z
q−1 < u·ln(ξ/δ)

(q−1) ln(1+ε) . The second estimate follows since

1 ≤ c̄max
OPT < u ln(ξ/δ)

(q−1) ln(1+ε)OPT · �

To achieve an r(1 + ε)OPT-approximation, we must fix the free parameters δ, ξ
and u appropriately.

Lemma 2.22. Let ε ≤ 1
36 . For u < 2OPT and ξ := δ ·

(
m

1−2εr

) 1+ε
ε

the algorithm
terminates with c̄max < r(1 + 6ε)OPT.

Proof. The way the length function is updated together with Corollary 2.2 lets
us estimate l(q)(G) ≤ l(q−1)(G) + ε

ur
∑k

i=1 l(q)(MST(Si)) ≤ l(q−1)(G) + ε
urOPT ·

l(q)(G). Hence, l(q)(G) ≤ l(q−1)(G)
1− ε

u rOPT ≤ mδ

(1− ε
u r·OPT)q , as we initialized l(0)(e) := δ

for all e ∈ E. By the choice of u and since 1 + x ≤ exp(x) for all x, we have,

l(q)(G) ≤ mδ

1 − ε
ur · OPT

(
u

u − εr · OPT

)q−1

≤ mδ

1 − 2εr

(

1 +
εrOPT

u − εr · OPT

)q−1

≤ mδ

1 − 2εr
exp

(
εr · OPT(q − 1)

u − εrOPT

)

≤ mδ

1 − 2εr
exp

(
q − 1

u
· εrOPT
1 − 2εr

)

·
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Since l(q)(G) ≥ ξ, ξ ≤ mδ
1−2εr exp

(
q−1

u · εrOPT
1−2εr

)
, and thus q−1

u ≥ ln
(

ξ(1−2εr)
mδ

)
·

1−2εr
εrOPT · Now, using Lemma 2.21,

c̄max ≤ u ln(ξ/δ)
(q − 1) ln(1 + ε)

≤ rOPT



 ε

(1 − 2εr) ln(1 + ε)
· ln(ξ/δ)

ln
(

ξ(1−2εr)
mδ

)



 ·

If we take ξ such that
ln(ξ/δ)

ln
(

ξ(1−2εr)
mδ

) ≤ 1 + ε, (22)

and bound ln(1 + ε) by its second order Taylor expansion, we obtain

c̄max ≤ rOPT

(
ε(1 + ε)

(1 − 2εr)
(
ε − ε2

2

)

)

=
1 + ε

1 − ε
2 − 2εr + ε2r

rOPT

= 1 +
3
2ε + 2εr − ε2r

1 − ε
2 − 2εr + ε2r

rOPT ≤ 1 +
3
2ε + 4ε

1 − ε
2 − 4ε

rOPT for r ≤ 2

= 1 +
11ε

2 − 9ε
rOPT ≤ 1 + 6εrOPT,

by the choice of ε. Note that (22) holds for our choice of ξ. �

Theorem 2.23. An r(1+6ε)OPT-approximate solution to the fractional minimum
multicast problem can be obtained in time O(βε−2k · ln k ln m) = Õ(ε−2km) using
the Steiner tree approximation by Mehlhorn.

Proof. We repeatedly call ImproveCongestion3 in the following u-scaling pro-
cess. Throughout the process we maintain the condition u < 2OPT to make
sure that the algorithm terminates with the claimed guarantee. So all we have to
worry about is the number of iterations. The first call is performed with u := k

2 ·
By Lemma 2.22, if u ≤ OPT, the algorithm terminates within

⌈
ln(ξ/δ)
ln(1+ε)

⌉
iterations.

Otherwise, we know that OPT < k
2 and restart the algorithm with u := k

4 · Again,

ImproveCongestion3 either terminates in
⌈

ln(ξ/δ)
ln(1+ε)

⌉
iterations or we may con-

clude that OPT < k
4 and restart the algorithm with u := k

8 · Repeating this at
most O(ln k) times yields the claim, since ln(ξ/δ)

ln(1+ε) = O(ε−2 ln m) and because one
iteration takes O(k(m + β))-time. �

Unfortunately, the above u-scaling process is not practically efficient, since the
number of iterations in each scaling phase is considerably large (note that we
need ε ≤ 1

36 to guarantee the approximation quality, so even for moderate values
of m, say m := 500, we may have to await over 8000 iterations before we can
decide whether or not OPT < u). However, without u-scaling the running time
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increases by a factor of k/ lnk. Again, we may (practically) improve the running
time by using c̄max < (1 + 6ε)

∑k
i=1 l(M̃ST(Si))/l(G) instead of l(G) ≥ ξ as the

termination criterion. It is an open question whether or not ε-scaling as described
in the previous sections can be advantageously applied. (Our experiments strongly
indicate that ε-scaling substantially decreases the running time, but an analysis
is still missing.) The following implementation takes care of the fact that due to
limited precision it may be necessary to rescale the edge lengths.

Algorithm 2.24 (ApproximateCongestion3).
maxdual := 0, minprimal := k, cmax := 0, iteration := 0, LG := m
for e ∈ E

c(e) := 0, l(e) := 1
do LM := 0

for i := 1 to k
Ti := M̃ST(Si), c(Ti) := c(Ti) + 1
for e ∈ E(Ti)

LG := LG − l(e)
l(e) := l(e) ·

(
1 + ε

k

)
, c(e) := c(e) + 1

cmax := max{cmax, c(e)}
LG := LG + l(e), LM := LM + l(e)

iteration := iteration + 1, dual := LM
LG

minprimal := min{minprimal, cmax
iteration}

maxdual := max{maxdual, dual}
if LG > 100000

LG := LG
100000

for e ∈ E

l(e) := l(e)
100000

while minprimal ≥ (1 + 6ε)maxdual

cmax := cmax
iteration ,

for T ∈ T̂i

c(T ) := c(T )

|T̂i|

2.3. Approximating the integral optimum

2.3.1. Pure combinatorial approach

Klein et al. [9] describe an approximation algorithm for the unit capacity con-
current flow problem that can be modified to approximate an integral solution to
our problem without the necessity to round. The algorithm is similar to the one
presented in Section 2.2.1. However, instead of updating all trees in one iteration
of the while loop, only one “bad” tree per iteration is modified.
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Definition 2.25. A tree T ∈ Ti is r-bad for Si if (1 − ε′)l(T ) > rl(MST(Si)) +
ε′ · cmax·l(G)

k ·

This allows us to choose σ by a factor of k larger than in the algorithms described
previously, and it can be shown that consequently σ never needs to be reduced
below 1, if OPT = Ω(log n).

Theorem 2.26. An integral solution to the minimum multicast congestion prob-
lem with congestion OPT·O(

√
OPT · log n) can be found in time O(k2(m+β) log k).

Aspes et al. [1] give an online algorithm for approximating our problem within a
factor of O(log n). Since they explicitly consider the multicast congestion problem,
we do not restate their algorithm but instead analyze a simpler online algorithm for
which the same approximation bound applies, if the value of an optimal solution
is known in advance.

Algorithm 2.27 (OnlineCongestion).
for e ∈ E

l(e) := 1, c(e) := 0
for i = 1 to k

Ti := M̃ST(Si)
for e ∈ E(Ti)

l(e) := l(e) · A, c(e) := c(e) + 1
return T1, . . . , Tk, cmax

Theorem 2.28. For A := 1+ 1
2rOPT , the above algorithm terminates with maximal

congestion O(rOPT · log(n)).

Proof. Let l(j) denote the length function at the end of the jth iteration of the for-
loop. From l(j)(G) = l(j−1)(G) + (A − 1)l(j−1)(M̃STl(j−1) (Si−1)) we get l(k)(G) =
m + (A− 1) ·

∑k
i=1 l(i−1)(M̃STl(i−1)(Si)) ≤ m + (A− 1) ·

∑k
i=1 l(k)(M̃STl(k)(Si)) ≤

m + (A − 1) · rOPTl(k)(G) by Corollary 1. Since l(k)(G) ≥ Acmax−1, the claim
follows by the choice of A. �

2.3.2. Derandomization

A deterministic approximation satisfying the bounds of Theorem 2.3 can be
proved with the tools of Srivastav and Stangier [16]. The proof given in [16] has
to be slightly modified, as we have to replace the Angluin-Valiant inequality by
Raghavan’s stronger bound on the deviation of the sum of Bernoulli trials from its
expected value [15]. The crucial difference is that in computing the pessimistic esti-

mators we require an approximate solution to the equality 1
m =

(
exp(δ)

(1+δ)(1+δ)

)OPT

,

i.e. we want to determine δ such that
(

exp(δ)
(1+δ)(1+δ)

)OPT

∈
[

1
2m , 1

m

]
or equiva-

lently 0 ≤ f(δ) := ln(2m) + OPT(δ − (1 + δ) ln(1 + δ)) ≤ ln 2. Note that f is
a monotone function of δ with f(0) = ln 2 + lnm > ln 2 and f(6 + ln 2m) ≤
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ln(2m) + (6 + ln(2m) − (7 + ln(2m)) · 2) ≤ −8. Hence, an approximate solution
can be found in time O(ln lnm) by binary search.

3. A new and practically efficient implementation

In practical experiments the following algorithm was superior to all theoretically
efficient approximation algorithms.

Algorithm 3.1 (PracticalCongestion).
λ := 1, c(e) := 0 for all e ∈ E
for i := 1 to k

for e ∈ E

l(e) := n
c(e)

λ −1

Ti := M̃ST(Si)
for e ∈ E(Ti)

c(e) := c(e) + 1, λ = max{λ, c(e)}
iteration := 1
while (iteration ≤ 100)

for i := 1 to k
A := |E(Ti)|
for e ∈ E

l(e) := Ac(e)−cmax

for e ∈ E(Ti)
l(e) := l(e)/A

T ′
i := M̃ST(Si)

for e ∈ E(Ti)
l(e) := l(e) · A

if l(Ti) > l(T ′
i ) then Ti := T ′

i

update c(e)
iteration := iteration + 1

The algorithm uses different length functions for determining a start set of Steiner
trees and for updating trees. The first length function is similar to the one in
Aspnes et al.’s online algorithm, but uses a base of n instead of a base ∈ (1, 1.5].
In fact, we found that the quality of the solutions increases substantially as the
base grows. To improve near optimal solutions it turned out to be of advantage
to replace the exponent c(e)/cmax in the length function by c(e) − cmax, thereby
increasing the impact of highly congested edges. On the other hand, the exponen-
tial base must be neither too small nor too large to “correctly” take into account
edges with lower congestion. Here, the size of the current best tree (experimen-
tally) proved to be a good choice.
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Figure 1. The four test instances.

4. Experimental results

We tested our new algorithm against Aspnes et al.’s online algorithm and a ver-
sion of ApproximateCongestion3, which is (together with ApproximateCon-

gestion2) theoretically fastest. As discussed in Section 2, we did not implement
u-scaling for reasons of performance. Instead, we provided ApproximateCon-

gestion3 with the (near) optimal value of u computed by our new algorithm. ε
was set to its theoretically maximum value of 1/36. The number of iterations was
restricted to 100. We ran the online algorithm with various values of A ∈ (1, 1.5]
and listed the best outcome (which – except for three cases – occurred for A = 1.5.
In fact, choosing A larger than theoretically allowed always decreased cmax dra-
matically). The values for ApproximateCongestion3 refer to the fractional
relaxation.

Our test instances were grid graphs with rectangular holes (see Fig. 1). Such
grid graphs typically arise in the design of VLSI logic chips where the holes repre-
sent big arrays on the chip. They are considered as hard instances for path- as well
as for tree-packing problems. Multicast requests of size 50 to 1000 were chosen by
a random generator1. Columns 3–5 show the computed congestion and in brackets
the minimum number of iterations that gave the tabulated congestion. D̃ual ap-
proximates max{

∑k
i=1 l(M̃ST(Si)/l(G) | l : E → R≥0}, where M̃ST is computed

by Mehlhorn’s algorithm (i.e. D̃ual ≤ 2 · OPT). The superior performance of our
heuristic algorithm is evident.

Acknowledgement. We would like to thank the referees for their detailed comments.

1Interested readers can download our test examples and the source codes of our algorithms
from http://www.numerik.uni-kiel.de/~asrdfg9/multicast/
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Table 1. Experimental comparison of the algorithms.

grid
#requests/
#terminals

Online
Approximate

Cong.3 (#it.)
New Alg. (# it.) D̃ual ≥

1 50 / 4 11 12 (1), 2.5 (100) 2 (1) 1.04

1 100 / 4 16 17 (1), 4.4 (100) 3 (1) 2.01

1 150 / 4 29 29 (1), 6.1 (100) 5 (1), 4 (2) 2.86

1 200 / 4 43 44 (1), 8.0 (100) 7 (1), 5 (2) 3.85

1 300 /4 55 57 (1), 11.5 (100) 9 (1), 7 (3) 5.77

1 500 / 4 78 79 (1), 19.9 (100) 16 (1), 12 (2) 10.00

1 1000 / 4 156 161 (1), 36.5 (100) 29 (1), 21 (69) 20.00

1 2000 / 4 373 383 (1), 76.1 (100) 60 (1), 44 (2) 41.00

1 500 / 2–100 178 178 (1), 69.1 (100) 41 (1), 32 (9) 31.00

1 1000 / 2–100 326 326 (1), 100.5 (100) 79 (1), 65 (3) 64.00

2 50 / 5–10 15 16 (1), 7.2 (100) 7 (1), 5 (2) 4.01

2 50 / 10–20 16 18 (1), 8.6 (100) 7 (1), 6 (2) 4.58

2 100 / 5–15 32 33 (1), 15.2 (100) 12 (1), 9 (3) 8.08

2 100 / 10–20 37 38 (1), 17.6 (100) 4 (1), 11 (4) 9.94

2 150 / 10–20 57 57 (1), 24.7 (100) 22 (1), 15 (4) 13.37

2 150 / 30–50 55 55 (1), 29.2 (100) 27 (1), 21 (4) 19.33

2 200 / 10–20 64 69 (1), 36.7 (100) 34 (1), 29 (6) 27.87

2 200 / 30–50 65 65 (1), 38.6 (100) 34 (1), 27 (9) 25.78

2 300 / 10–20 115 115 (1), 48.58 (100) 41 (1), 29 (4) 27.03

2 300 / 30–50 116 116 (1), 59.94 (100) 51 (1), 40 (15) 38.69

4 50 / 5–10 13 14 (1), 3.5 (100) 3 (1) 1.85

4 50 / 20–100 13 13 (1), 7.4 (100) 7 (1), 6 (2) 4.54

4 100 / 5–10 19 20 (1), 7.0 (100) 6 (1), 5 (2) 3.44

4 100 / 20–100 28 28 (1), 13.5 (100) 13 (1), 10 (8) 9.03

4 200 / 5–10 35 35 (1), 12.0 (100) 10 (1), 8 (6) 6.66

4 200 / 20–100 46 46 (1), 28.0 (100) 24 (1), 19 (42) 18.01

4 300 / 5–10 66 71 (1), 20.0 (100) 17 (1), 12 (2) 10.05

4 300 / 20–100 67 67 (1), 41.0 (100) 35 (1), 28 (10) 26.23

4 500 / 5–10 83 86 (1), 31.5 (100) 26 (1), 19 (2) 16.15

4 500 / 20–100 114 115 (1), 67.6 (100) 59 (1), 46 (23) 44.46

3 50 / 5–10 11 11 (1), 2.8 (100) 2 (1) 1.01

3 50 / 20–100 12 12 (1), 4.3 (100) 4 (1), 3 (20) 2.40

3 100 / 5–10 15 14 (1), 2.4 (100) 4 (1), 3 (2) 2.02

3 100 / 20–100 23 25 (1), 9.0 (100) 7 (1), 6 (3) 4.94

3 200 / 5–10 28 29 (1), 7.9 (100) 6 (1), 5 (2) 3.77

3 200 / 20–100 44 44 (1), 16.9 (100) 15 (1), 11 (3) 9.34

3 300 / 5–10 41 41 (1), 11.5 (100) 8 (1), 7 (2) 5.43

3 300 / 20–100 56 57 (1), 24.8 (100) 21 (1), 16 (4) 14.10

3 500 / 5–10 72 76 (1), 18.5 (100) 15 (1), 11 (4) 9.06

3 500 / 20–100 98 97 (1), 41.6 (100) 33 (1), 26 (4) 23.56
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