
HAL Id: hal-00107129
https://hal.science/hal-00107129

Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum Convex-Cost Tension Problems on
Series-Parallel Graphs

Bruno Bachelet, Philippe Mahey

To cite this version:
Bruno Bachelet, Philippe Mahey. Minimum Convex-Cost Tension Problems on Series-Parallel Graphs.
RAIRO - Operations Research, 2003, 37 (4), pp.221-234. �10.1051/ro:2004202�. �hal-00107129�

https://hal.science/hal-00107129
https://hal.archives-ouvertes.fr


Minimum Convex-Cost Tension Problems on
Series-Parallel Graphs

Bruno Bachelet1 and Philippe Mahey2

LIMOS, UMR 6158-CNRS,
Université Blaise-Pascal, BP 10125, 63173 Aubière, France.

Research Report LIMOS/RR03-06

1bachelet@isima.fr - http://frog.isima.fr/bruno
2mahey@isima.fr



Abstract

We present briefly some results we obtained with known methods to solve minimum cost ten-
sion problems, comparing their performance on non-specificgraphs and on series-parallel graphs.
These graphs are shown to be of interest to approximate many tension problems, like synchro-
nization in hypermedia documents. We propose a newaggregationmethod to solve the minimum
convex piecewise linear cost tension problem on series-parallel graphs inO(m3) operations.

Keywords: minimum cost tension, convex piecewise linear costs, series-parallel graphs.

Résumé

Nous présentons brièvement quelques résultats que nous avons obtenus avec des méthodes con-
nues pour résoudre des problèmes de tension de coût minimum,comparant leurs performances
sur des graphes quelconques et sur des graphes série-parallèles. Il est montré que ces graphes
sont intéressants dans l’approximation de problèmes de tension, comme la synchronisation de
documents hypermédia. Nous proposons une nouvelle méthoded’agrégationpour résoudre le
problème de la tension minimum avec des coûts convexes linéaires par morceaux sur des graphes
série-parallèles enO(m3) opérations.

Mots clés : tension de coût minimum, coûts convexes linéaires par morceaux, graphes série-
parallèles.

Acknowledgements / Remerciements

This project was partially funded by France-Brazil cooperation project CAPES-COFECUB 398/02.



1

Abstract

We present briefly some results we obtained with known methods to solve minimum cost
tension problems, comparing their performance on non-specific graphs and on series-parallel
graphs. These graphs are shown to be of interest to approximate many tension problems,
like synchronization in hypermedia documents. We propose anew aggregationmethod to
solve the minimum convex piecewise linear cost tension problem on series-parallel graphs in
O(m3) operations.

Keywords: minimum cost tension, convex piecewise linear costs, series-parallel graphs.

Introduction

The exploding use of Internet and of hypermedia documents have turned crucial the necessity to
dispose of robust on-line algorithms to manage complexity and interactivity. One of the resulting
problems which has emerged recently is the synchronizationof hypermedia documents by con-
sidering that each object can be compressed or delayed like an elastic spring. The heterogeneity
of the objects that compose a hypermedia document turns their presentation in time and space a
hard problem. On the other hand, interactivity means that real-time updates of the schedule of the
document should be possible, increasing the need for fasterdecision-making algorithms.

cost

duration

cost

duration

cost

duration

ideal ideal

cost

duration

idealideal

(a) (b) (c) (d)

Figure 1: Examples of cost functions. a) Piecewise linear with a single ideal value. b) Non-linear, but convex and
derivable. c) Piecewise linear with several ideal values. d) Discrete values.

As explained in [9] and [17], such documents are composed of media objects (audio, video,
text, image...), which duration of presentation must be adjusted to satisfy a set of temporal con-
straints that express the progress of the animation as defined by the author. But for these constraints
to be satisfied, the author must accept some flexibility on theduration (that we callideal) of pre-
sentation of each object, pauses being totally forbidden ifnot explicitly wanted. To estimate the
quality of an adjustment, a cost function, usually convex (cf. figure 1), is introduced for each
object. To sum up, the problem we attempt to solve here is to find an adjustment of best quality,
i.e. which minimizes the sum of the costs of the media objects.

The set of temporal constraints can be modeled as a directed graphG = (X;U) (cf. [6])
whereX is a set of nodes,U a set of arcs,m = |U | andn = |X|. The nodes represent events (the
start or the end of presentation of an object). The arcs express duration constraints between nodes.
With each arcu is associated a time interval[au; bu], an ideal durationou and a cost functioncu

defined on the interval. An arcu = (x; y) between two nodesx andy means the eventx precedes
y and they are separated by a durationθu betweenau andbu, the ideal value beingou. Figure 2
shows how to represent some of the main temporal relations used in hypermedia synchronization
(introduced by [3]).

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



2

B

A

A equals B

B

A t
A starts B

A t B

A meets B

A B

A before B

B

At1 t2

B

t A

A during B

A

B

A BA B

B

A

B

t

t

A finishes B

B

At

A

B

A
t1 t2

A

t1

t2

A overlaps B

t2

t1B

Figure 2:Graph representation of temporal constraints.

Let π : X 7→ R be a potential function which assigns a date to each event node of the graph.
Then the durationθu of an object associated with an arcu = (x; y) can be seen as the difference
of potentialsθu = πy −πx, in other words,θ = (θu)u∈U is a tension vector on the graph (e.g. [7]).
Denoting byA the incidence matrix of the graph, i.e. matrixA of dimension(m × n) with the
elementsaxu equal to−1 (if u leavesx), +1 (if u comes tox) or 0 (any other case), the problem
is simply formulated as following:















minimize
∑

u∈U

cu(θu)

with θ = AT π, a ≤ θ ≤ b

And let TG be the set of feasible tensions, i.e.TG = {θ ∈ R
m | θ = AT π, a ≤ θ ≤ b}. In

this article, we only consider convex two-piecewise linearcost functions as shown by figure 1a,
the adaptation to more pieces of the methods described here is straightforward. Hence, from now
on we consider the cost functionscu as following:

cu(θu) =

{

c1
u(ou − θu) , if θu < ou

c2
u(θu − ou) , if θu ≥ ou

In section 1, we present the results we obtained with known methods to solve the minimum
cost tension problem on graphs with non-specific structure.Then in section 2, we recall and
introduce some properties of the series-parallel graphs related to tension. Section 3 explains the
aggregationmethod. Numerical results of this method and comparisons with the previous methods
are presented and discussed in section 4. The last section ends this article with our first thoughts
on how to exploit this method on non series-parallel graphs.

1 Minimum Cost Tension Problem

With convex piecewise linear costs, it is possible to model the problem with linear programs. It
is a solution widely used in practice for the synchronization problem (e.g. [10], [17]). Another
way to solve the problem is theout-of-kilteralgorithm first introduced for the minimum cost flow

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



3

problem [14] and then for the minimum cost tension problem in[18]. We present an adaptation of
that method to piecewise linear costs in [5]. That algorithmis pseudo-polynomial,O(m2(A+B))
operations whereA = maxu∈U{au; bu} andB = maxu∈U{c

1
u; c2

u}. A polynomial method is
presented in [15] but is only really efficient in practice fora special class of graphs (Penelope’s
graphs). More recently, [1] presents an algorithm to solve amore generic problem called thecon-
vex cost integer dual network flow problem, the algorithm consists in transforming the minimum
cost tension problem into a minimum cost flow problem, solvedwith the well-knowncost-scaling
method (e.g. [2]). This algorithm is polynomial,O(mn2 log nA) operations, and proves to be
very efficient in practice.

Nodes Arcs CPLEX Kilter Cost-Scaling

50 200 0,44 0,12 0,1
50 400 0,83 0,3 0,19
100 400 0,93 0,47 0,28
100 800 2 1,3 0,54
500 2000 12,5 15,4 3,5
500 4000 37,7 49,1 6,8
1000 4000 57,2 76,5 11,6
1000 8000 193,7 239,9 20,4

Table 1:Numerical results on non-specific graphs.

Table 1 aims at a practical comparison of the methods, which is always tricky because of
all kinds of biases. But the goal here is to get an idea of how the methods behave on graphs
with non-specific structure. Later in this article, we show the performance of these very same
implementations on series-parallel graphs. Results are expressed in seconds, obtained on a RISC
6000 / 160 MHz processor with an AIX Unix operating system. Weuse GNU C++ 2.95 compiler
and its object-oriented features to implement the methods.For the linear programming, we use
the simplex method provided in CPLEX 6.0 software. These results are the means of series of 10
tests on randomly generated graphs. BothA andB are fixed to1000. The implementation of the
methods and the generation of the graphs are available in [4].

2 Series-Parallel Graphs

A common definition of series-parallel graphs is based on a recursive construction of the graphs
(e.g. [12], [13], [22]) that is very intuitive and close to the way synchronization constraints are
built in a hypermedia document.

A graph isseries-parallel, also calledSP-graph, if it is obtained from a graph with only two
nodes linked by an arc, applying recursively the two following operations:

• Theseries composition, applied upon an arcu = (x; y), creates a new nodez and replaces
u by two arcsu1 = (x; z) andu2 = (z; y) (cf. figure 3a). We callseriesthe relation that
bindsu1 andu2 and note itu1 + u2.

• Theparallel composition, applied upon an arcu = (x; y), duplicatesu by creating a new
onev = (x; y) (cf. figure 3b). We callparallel the relation that bindsu andv and note it
u//v.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



4

x y
u

x z y

(a)

x y
u

x y

u

v

(b)

u1 u2

Figure 3:Series and parallel compositions.

We regroup the series and parallel relations under the termSP-relation. During the construc-
tion process, a SP-relation that binds two arcs can become a relation between two series-parallel
subgraphs. Hence, we introduce the termsingle SP-relationto identify a SP-relation between two
arcs. From the recursive definition of a SP-graph, it is easy to verify that a SP-graph has always a
single SP-relation (the SP-relation created from the last composition). Hence, it is easy to check
if a graph is series-parallel: find a single SP-relation in the graph, apply a reduction reverse to the
composition that produces the SP-relation and go on again until only one arc remains in the graph.
This linear-time method is explained in [22] and [20]. Another efficient approach to recognize
a SP-graph is proposed in [13], based on the fact that paths inSP-graphs are organized a certain
way.

//

u y

//

+

w x

u

w x
y

Figure 4:Example of SP-tree.

The SP-relations are binary operations, so we can representa SP-graph by a binary tree called
decomposition binary treeor SP-tree(cf. [22], [11]). Figure 4 shows a SP-tree of an SP-graph.
All the algorithms cited earlier to recognize a SP-graph canbe adapted, without any complexity
loss, to build a SP-tree during their process. Hence we will use this representation to present our
aggregationmethod.

From the definition of a SP-graph, it is obvious that a SP-graph has only onesourcenode (i.e.
without any predecessor) and only onetargetnode (i.e. without any successor). Hence we define
themain tensionθ of a graph as the tension between its sources and targett, i.e. θ = πt − πs.

3 Aggregation Method

We present here theaggregationmethod to solve the minimum cost tension problem with convex
piecewise linear cost functions (cf. figure 1a) on an SP-graph G. Note that the resolution of an
optimization problem on this kind of graphs is usually easier than on non-specific graphs (e.g.
[11], [8], [21]).

The aggregation method works on an SP-treeT of the SP-graphG. The method is recursive:
considering an SP-relation inT , it supposes that the optimal tensions of the two subgraphs implied
in the relation are known, and from them it is possible to quickly build the optimal tension of the
whole SP-relation. Hence, starting from the leaves ofT , the optimal tension of each SP-relation
is built to finally reach the root of the treeT .

To get an efficient algorithm, we need what we call theminimum cost functionCG of a SP-
graphG. This function represents the cost of the optimal tension where the main tension is forced
to a given value.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



5

CG(x) = min{
∑

u∈U

cu(θu) | θ ∈ TG, θ̄ = x}

As each functioncu is convex, the minimum cost function is indeed convex (assuming that
CG(x) = +∞ if no feasible tension exists such that the main tension is forced tox).

G1

G2

+

G2G1

//

G2G1

G2

G1

(b)(a)

Figure 5:SP-relations between subgraphs.

We consider two series-parallel subgraphsG1 andG2, and suppose that their minimum cost
functionsCG1

andCG2
are known. If we look at the SP-relationG1 + G2 (cf. figure 5a),G1

andG2 only share one node, hence there is no tension constraints between them. But if we add
the constraint that the main tension ofG1 + G2 must be equal tox, it imposes tox1 andx2, the
main tensions ofG1 andG2, thatx = x1 + x2. Hence, the minimum cost functionCG1+G2

of the
SP-relationG1 + G2 is:

CG1+G2
(x) = min

x=x1+x2

CG1
(x1) + CG2

(x2)

It meansCG1+G2
is the inf-convolutionCG1

� CG2
. It is well-known that this operation main-

tains convexity (e.g. [19]).

If we look now at the SP-relationG1//G2 (cf. figure 5b),G1 andG2 share their source and
target nodes, hence the only tension constraint between them is that their main tensionsx1 and
x2 must be equal. If we add the constraint that the main tension of G1//G2 must bex, then it
imposesx = x1 = x2. Hence, the minimum cost functionCG1//G2

of the SP-relationG1//G2 is:

CG1//G2
(x) = CG1

(x) + CG2
(x)

It meansCG1//G2
is simply the sumCG1

+ CG2
, which is convex ifCG1

andCG2
are convex.

From our analysis of the two SP-relations, it is easy to writean algorithm that builds the minimum
cost functionCG of a SP-graphG. But what interests us is to find the minimum cost tension ofG.
We propose now a specific way to represent the minimum cost functions so we know not only the
cost of the optimal tension of a SP-relation, but also how to build it.

For this purpose, we define thet-centered minimum cost functionCt
G of G as following:

Ct
G(x) = CG(x + t) − CG(t)

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



6

That meansCt
G(0) = 0 and the function represents the minimum cost to increase or decrease

the main tension from the valuet.

5105 5 7

−3

−3/5 2/5
2/5

2

CG
t ( x )

0
x

Figure 6:Example oft-centered minimum cost function.

We choose to represent this piecewise function with two setssht
G andsttG, sht

G representsCt
G

on the interval]−∞; 0[ andsttG representsCt
G on the interval]0;+∞[. These sets simply contain

the definition of each piece of the function on the interval they represent. They contain triplets of
the form(c; e; l) wherec represents the slope of the curve,e the length of the interval on which the
piece is defined andl is a set of the arcs that must be increased or decreased to adapt the tension
on this piece. For efficiency reasons, the triplets are sorted from the smallest slope to the highest.
Here are the setssttG andsht

G of the example of figure 6:

sht
G = {(−2/5; 5; {a; b}); (3/5; 10; {c}); (3; 5; {d; e})}

sttG = {(2/5; 5; {a; b}); (2; 7; {c; e})}

For instance, if we want to decrease the main tension of1 unit, we need to decrease of1 unit
the tension of the arcsa andb and we will gain2/5 units.

Let us noteθ∗G the minimum cost tension of a graphG andC∗G = C
θ∗
G

G . We explain here
how to findθ∗G and build theC∗G function. First theC∗u function of an arcu is represented by
sh∗u = {(c1

u; ou − au; {u})} andst∗u = {(c2
u; bu − ou; {u})} with the optimal tensionθ∗u = ou.

Now consider the graphG = G1 + G2 and suppose that we know the optimal tensionsθ∗1 and
θ∗2 and the minimum cost functionsC∗1 andC∗2 of the subgraphsG1 andG2. The tensionθ∗G of
G made of the two tensionsθ∗1 andθ∗2 is optimal, because there is no constraint between the two
subgraphs after the series composition. To increaseθ∗G we can choose to increaseθ∗1 or θ∗2. If we
look atp1 = (c1; e1; l1) andp2 = (c2; e2; l2), the first pieces ofst∗1 andst∗2, we decide to increase
θ∗1 if c1 < c2 or elseθ∗2. The same reasoning can be made to decreaseθ∗G.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



7

sh1
* = { (1 ; 10; { a ;b} ) }

stG
* = { (1 /2 ; 4 ; { b ;d } ) ; (1 ; 5; { e ; g} ) ; ( 4/ 3; 6; { a} ) ; ( 2; 5 ; { f } ) }

CG
*

C1
* C2

*

st1
* = { (1 /2 ; 4 ; { b ;d } ) ; ( 4 /3 ; 6 ; { a } ) }

sh2
* = { (1 /3 ; 6 ; { e} ) ; ( 5/4 ; 4 ; { f ;g } ) }

st2
* = { (1 ; 5 ; { e ;g} ) ; ( 2; 5; { f } ) }

shG
* = { (1 /3 ; 6 ; { e} ) ; (1 ; 10; { a ;b} ) ; ( 5/ 4 ; 4 ;{ f ; g } ) }

Figure 7:Example of minimum cost function of a series composition.

We can conclude that to build the functionC∗G = C∗1 � C∗2 , we need to createsh∗G = sh∗1∪sh∗2
andst∗G = st∗1 ∪ st∗2 sorted from the smallest slope to the highest. Figure 7 showsan example.
If we notep1 andp2 the numbers of pieces ofC∗1 andC∗2 , thenC∗G hasp = p1 + p2 pieces, and
the process of finding the optimal tension of a series composition needsO(pm) operations (O(p)
operations to go through thep pieces andO(m) to copy a set of at mostm arcs for each piece).

We consider now the graphG = G1//G2 and suppose that we know the optimal tensionsθ∗1
andθ∗2 and the minimum cost functionsC∗1 andC∗2 of the subgraphsG1 andG2. The parallel
composition is possible only ifθ∗1 = θ∗2 (if we want to get a valid tension). As we need to find the
optimal tensionθ∗G of the graphG, we need a method to equalizeθ∗1 andθ∗2 optimally, i.e. such
that the tensionθ∗G made ofθ∗1 andθ∗2 is optimal. Suppose thatθ∗1 < θ∗2, to equalizeθ∗1 andθ∗2 we
can increaseθ∗1 and/or decreaseθ∗2, so we look atp1 = (c1; e1; l1) andp2 = (c2; e2; l2), the first
pieces ofst∗1 andsh∗2. We decide then to increaseθ∗1 if c1 < c2 or else to decreaseθ∗2. This process
is repeated untilθ∗1 = θ∗2 (cf. algorithm 8 and figure 9).

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



8

while θ∗
1

< θ∗
2
do

if st∗
1

= ∅ and sh∗
2

= ∅ then /* no feasible tension */;

let p1 = (c1; e1; l1) be the first piece of st∗
1
if st∗

1
6= ∅;

let p2 = (c2; e2; l2) be the first piece of sh∗
2
if sh∗

2
6= ∅;

if sh∗
2

= ∅ or c1 < c2 then /* tension increase */

λ ← min{e1; θ∗
2
− θ∗

1
};

for each u ∈ l1 do θ∗
1u
← θ∗

1u
+ λ;

st∗
1
← st∗

1
− {p1};

if λ < e1 then st∗
1
← st∗

1
∪ {(c1; e1 − λ; l1)};

sh∗
1
← sh∗

1
∪ {(−c1;λ; l1)};

else /* tension decrease */

λ ← min{e2; θ∗
2
− θ∗

1
};

for each u ∈ l2 do θ∗
2u
← θ∗

2u
− λ;

sh∗
2
← sh∗

2
− {p2};

if λ < e2 then sh∗
2
← sh∗

2
∪ {(c2; e2 − λ; l2)};

st∗
2
← st∗

2
∪ {(−c2;λ; l2)};

end if;

end while;

Figure 8:Algorithm to equalize parallel tensions.

C1
* C2

*

st1
* = { (1 /2 ; 4 ; { b; d} ) ; ( 4/ 3; 6; { a} ) }

sh1
* = { ( 1 ;10 ; { a ; b} ) } sh2

* = { ( 1 / 3; 6 ;{ e} ) ; ( 5/ 4 ; 4 ; { f ; g } ) }

st2
* = { ( 1 ; 5 ;{ e ;g} ) ; ( 2 ; 5; { f } )}

�θ2
* − �θ1

* = 8

C1
* C2

*�θ2
* − �θ1

* = 2

sh2
* = { ( 5 /4 ; 4 ; { f ; g } ) }

st2
* = { ( −1/3 ; 6 ; { e} ) ; (1 ; 5 ; { e ; g} ) ; ( 2; 5 ;{ f } ) }st1

* = { (1 /2 ; 4 ; { b; d} ) ; ( 4/ 3; 6; { a} ) }

sh1
* = { ( 1 ;10 ; { a ; b} ) }

C2
*C1

* �θ2
* − �θ1

* = 0

sh2
* = { ( 5 /4 ; 4 ; { f ; g } ) }

st2
* = { ( −1/3 ; 6 ; { e} ) ; (1 ; 5 ; { e ; g} ) ; ( 2; 5 ;{ f } ) }st1

* = { ( 1 / 2; 2; { b; d} ) ; ( 4/ 3; 6; { a} ) }

sh1
* = { ( −1/ 2; 2 ;{ b; d } ) ; (1 ; 10; { a ;b} ) }

Figure 9:Example of equalization of parallel tensions.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



9

while st∗
1
6= ∅ and st∗

2
6= ∅ do

let p1 = (c1; e1; l1) be the first piece of st∗
1
;

let p2 = (c2; e2; l2) be the first piece of st∗
2
;

λ ← min{e1; e2};

st∗
G
← st∗

G
∪ {(c1 + c2; λ; l1 ∪ l2)};

st∗
1
← st∗

1
− {p1};

st∗
2
← st∗

2
− {p2};

if e1 > λ then st∗
1
← st∗

1
∪ {(c1; e1 − λ; l1)};

if e2 > λ then st∗
2
← st∗

2
∪ {(c2; e2 − λ; l2)};

end while;

Figure 10:Algorithm to build the optimal tension of a parallel composition.

Then to build the functionC∗G = C∗1 + C∗2 we use the procedure 10 (only detailed for thest∗G
part of the function) that is illustrated by figure 11. If we note p1 andp2 the numbers of pieces of
C∗1 andC∗2 , thenC∗G has at mostp = p1 + p2 pieces, and the whole process of finding the optimal
tension of a parallel composition needsO(pm) operations (the equalization process go through at
mostp pieces and copies at mostm arcs for each piece, the same for algorithm 10 that creates at
mostp pieces and copies for each at mostm arcs).

C2
*

C1
*

sh2
* = { (1 ; 4 ; { f ; g } ) }

st2
* = { ( −1/4 ; 8 ; { e} ) ; (1 ; 5 ; { e ;g} ) ; ( 2; 5; { f } ) }

st1
* = { (1 /2 ; 4 ;{ b; d } ) ; ( 3/4 ; 8 ;{ a} ) }

sh1
* = { ( −1/2 ; 2; { b ; d} ) ; (1 ; 10; { a ;b} ) }

CG
*

shG
* = { (1 /2 ; 2 ; { b ;d ; f ; g } ) ; ( 2 ; 2 ; { a ; b; f ; g } ) }

stG
* = { (1 /4 ; 4 ; { b ; d; e} ) ; ( 1/ 2; 4 ; { a ;e} ) ; ( 7/4 ; 4 ; { a ; e ;g} ) }

Figure 11:Example of minimum cost function of a parallel composition.

Finally algorithm 12 resumes the whole aggregation method,which, from the leaves of the SP-
tree of the graph, applies the series and parallel compositions with the construction of the optimal
tension and the minimum cost function as we just explained inthe previous paragraphs.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



10

algorithm aggregate(Tree T = (o, Tl, Tr),Tension θ∗
T
,Function C∗

T
)

if Tl 6= ∅ then aggregate(Tl,θ∗
l
,C∗

l
);

if Tr 6= ∅ then aggregate(Tr,θ∗r,C∗

r );

if o = + then build C∗

T
and θ∗

T
of the series composition Tl + Tr;

else if o = // then build C∗

T
and θ∗

T
of the parallel composition Tl//Tr;

else sh∗
T
← {(c1u; ou − au; {u})}; st∗

T
← {(c2u; bu − ou; {u})};

end algorithm;

Figure 12:Algorithm to build the optimal tension of a SP-graph.

In this algorithmT = (o;Tl;Tr) is the SP-tree with the rooto, the left subtreeTl and the right
subtreeTr. We show now that this recursive method has a polynomial complexity.

Theorem 1 The aggregation algorithm performsO(m3) operations.

We established that each composition needsO(pm) operations. It is known that a SP-graph
containsm − 1 SP-relations (n − 2 series relations because each one creates a node and there
are only two nodes at the beginning of the construction process, andm − n + 1 parallel relations
because any SP-relation creates an arc and there is only one arc at the beginning). So the aggre-
gation needsO(pm2) operations. We explained earlier that for each composition, if p1 andp2 are
the numbers of pieces forC∗1 andC∗2 , C∗G has at mostp1 + p2 pieces. That means if each arc
has a two-piecewise cost function, the minimum cost function of the whole graph has at most2m
pieces, and the aggregation needsO(m3) operations.

4 Numerical Results

Table 2 shows numerical results of the methods presented in section 1 and the aggregation al-
gorithm on series-parallel graphs. Details on how the testswere performed can be found in the
comments of table 1 (section 1). The linear programming and the out-of-kilter methods take ad-
vantage of the particular structure of the SP-graphs and behave really better on this class of graphs.
However the cost-scaling approach on the dual of the problemdoes not work that well on this kind
of instances, even with an improvement technique like thewave implementation(cf. [2]). The
aggregation method reveals quite efficient, and not very sensitive to the graph dimension.

Nodes Arcs CPLEX Kilter Cost-Scaling Aggregation

50 200 0,4 0,07 0,09 0,05
50 400 0,71 0,15 0,2 0,09
100 400 0,73 0,2 0,31 0,09
100 800 1,4 0,38 0,63 0,18
500 2000 4,4 3 4,5 0,5
500 4000 10,7 5,3 11,3 0,99
1000 4000 11,6 9 17,2 1
1000 8000 30,8 21,5 34,5 2,1

Table 2:Numerical results on series-parallel graphs.

Conclusion

We show here how to solve the minimum cost tension problem on series-parallel graphs with
convex piecewise linear costs inO(m3) operations. But the real instances that interest us for the
hypermedia synchronization are a bit more complex than the SP-graphs. They are indeed related

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



11

to thegeneralized series-parallelgraphs (cf. [16]). Through this article, we explained that,in
the context of the minimum cost tension problem, a SP-graph can be reduced to a single arc with
a convex piecewise linear cost function. One idea can be to identify series-parallel subgraphs
of a non-specific graph, to aggregate these subgraphs and solve then the minimum cost tension
problem on the reduced graph with any known method. To improve this simple idea, our future
work will be to find algorithms to extractseries-parallel componentsfrom a graph and to develop
an efficient process (using the aggregation method) to find the minimum cost tension of the whole
graph when assembling back these components.

References

[1] Ravindra K. Ahuja, Dorit S. Hochbaum, and James B. Orlin.Solving the Convex Cost
Integer Dual Network Flow Problem. To appear, 1999.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows - Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[3] James F. Allen. Maintaining Knowledge about Temporal Intervals. InCommunications of
the ACM, volume 26-11, pages 832–843, 1983.

[4] Bruno Bachelet. B++ Library.http://frog.isima.fr/bruno/?doc=bpp_library.

[5] Bruno Bachelet and Philippe Mahey. Optimisation de la présentation d’un document hyper-
média. InAnnales Scientifiques de l’Université Blaise Pascal, volume 110-42, pages 81–90,
2001.

[6] Bruno Bachelet, Philippe Mahey, Rogério Rodrigues, andLuiz Fernando Soares. Elastic
Time Computation for Hypermedia Documents. InSBMidìa, pages 47–62, 2000.

[7] C. Berge and A. Ghoula-Houri.Programmes, jeux et réseaux de transport. Dunod, 1962.

[8] M.W. Bern, E.L. Lawler, and A.L. Wong. Linear-Time Computation of Optimal Subgraphs
of Decomposable Graphs. InJournal of Algorithms, volume 8-2, pages 216–235, 1987.

[9] M. Cecelia Buchanan and Polle T. Zellweger. Specifying Temporal Behavior in Hypermedia
Documents. InEuropean Conference on Hypertext ’92, pages 262–271, 1992.

[10] M. Cecelia Buchanan and Polle T. Zellweger. Automatically Generating Consistent Sched-
ules for Multimedia Documents. InMultimedia Systems, pages 55–67. Springer-Verlag,
1993.

[11] Alak Kumar Datta and Ranjan Kumar Sen. An Efficient Scheme to Solve Two Problems for
Two-Terminal Series Parallel Graphs. InInformation Processing Letters, volume 71, pages
9–15. Elsevier Science, 1999.

[12] R.J. Duffin. Topology of Series-Parallel Networks. InJournal of Mathematical Analysis and
Applications, volume 10, pages 303–318, 1965.

[13] David Eppstein. Parallel Recognition of Series-Parallel Graphs. InInformation and Compu-
tation, volume 98-1, pages 41–55, 1992.

[14] D.R. Fulkerson. An Out-of-Kilter Method for Minimal Cost Flow Problems. InSIAM Jour-
nal on Applied Mathematics, volume 9, pages 18–27, 1961.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.



12

[15] Malika Hadjiat. Penelope’s Graph: a Hard Minimum Cost Tension Instance. InTheoretical
Computer Science, volume 194, pages 207–218. Elsevier Science, 1998.

[16] Chin-Wen Ho, Sun-Yuan Hsieh, and Gen-Huey Chen. Parallel Decomposition of General-
ized Series-Parallel Graphs. InJournal of Information Science and Engineering, volume
15-3, pages 407–417, 1999.

[17] Michelle Y. Kim and Junehwa Song. Multimedia Documentswith Elastic Time. InMulti-
media ’95, pages 143–154, 1995.

[18] Jean-Marie Pla. An Out-of-Kilter Algorithm for Solving Minimum Cost Potential Problems.
In Mathematical Programming, volume 1, pages 275–290, 1971.

[19] R.T. Rockefellar.Convex Analysis. Princeton University Press, 1970.

[20] Berry Schoenmakers. A New Algorithm for the Recognition of Series Parallel Graphs.
Technical report, No CS-59504, Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands, 1995.

[21] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-TimeComputability of Combinatorial
Problems on Series-Parallel Graphs. InJournal of the ACM, volume 29, pages 623–641,
1982.

[22] Jacobo Valdes, Robert E. Tarjan, and Eugène L. Lawler. The Recognition of Series Parallel
Digraphs. InSIAM Journal on Computing, volume 11-2, pages 298–313, 1982.

Research Report LIMOS/RR03-06
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.


