N

N

Minimum Convex-Cost Tension Problems on
Series-Parallel Graphs
Bruno Bachelet, Philippe Mahey

» To cite this version:

Bruno Bachelet, Philippe Mahey. Minimum Convex-Cost Tension Problems on Series-Parallel Graphs.
RAIRO - Operations Research, 2003, 37 (4), pp.221-234. 10.1051/r0:2004202 . hal-00107129

HAL Id: hal-00107129
https://hal.science/hal-00107129
Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00107129
https://hal.archives-ouvertes.fr

Minimum Convex-Cost Tension Problems on
Series-Parallel Graphs

Bruno Bachelétand Philippe Mahe¥y
LIMOS, UMR 6158-CNRS,
Université Blaise-Pascal, BP 10125, 63173 Aubiére, France

Research Report LIMOS/RR03-06

Ibachelet@isima.fr - http://frog.isima.fr/bruno
’mahey@isima.fr



Abstract

We present briefly some results we obtained with known methodsolve minimum cost ten-
sion problems, comparing their performance on non-spagifiphs and on series-parallel graphs.
These graphs are shown to be of interest to approximate nesmsjonh problems, like synchro-
nization in hypermedia documents. We propose a aggregationmethod to solve the minimum
convex piecewise linear cost tension problem on serieaiiphgraphs inO(m?) operations.

Keywords: minimum cost tension, convex piecewise linear costs, S¢ragallel graphs.

Résumé

Nous présentons brievement quelques résultats que nons altenus avec des méthodes con-
nues pour résoudre des probléemes de tension de colt miniommparant leurs performances
sur des graphes guelconques et sur des graphes sérielparall est montré que ces graphes
sont intéressants dans I'approximation de problémes daotencomme la synchronisation de
documents hypermédia. Nous proposons une nouvelle métiiadeégationpour résoudre le
probléme de la tension minimum avec des colts convexesrisdaar morceaux sur des graphes
série-paralléles e@(m?3) opérations.

Mots clés : tension de co(t minimum, co(ts convexes linéaires par rmascegraphes série-
paralléles.
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Abstract

We present briefly some results we obtained with known mettmdolve minimum cost
tension problems, comparing their performance on noniipgcaphs and on series-parallel
graphs. These graphs are shown to be of interest to apprteimany tension problems,
like synchronization in hypermedia documents. We proposevaaggregationmethod to
solve the minimum convex piecewise linear cost tension lpralon series-parallel graphs in
O(m?) operations.

Keywords: minimum cost tension, convex piecewise linear costs, sqrégallel graphs.

Introduction

The exploding use of Internet and of hypermedia documents tuaned crucial the necessity to
dispose of robust on-line algorithms to manage complexityiateractivity. One of the resulting
problems which has emerged recently is the synchronizatidiypermedia documents by con-
sidering that each object can be compressed or delayedrikdéaatic spring. The heterogeneity
of the objects that compose a hypermedia document turnsphesentation in time and space a
hard problem. On the other hand, interactivity means ttadttnme updates of the schedule of the
document should be possible, increasing the need for fdstésion-making algorithms.

cost cost cost cost

duation duation duration duration
ideal ! ideal " ideal i ideal

@ (b) © (d)

Figure 1: Examples of cost functions. a) Piecewise linear with a sindgal value. b) Non-linear, but convex and
derivable. c) Piecewise linear with several ideal valug¢®idcrete values.

As explained in [9] and [17], such documents are composedeafianobjects (audio, video,
text, image...), which duration of presentation must beistdd to satisfy a set of temporal con-
straints that express the progress of the animation as ddfinie author. But for these constraints
to be satisfied, the author must accept some flexibility ordtivation (that we calideal) of pre-
sentation of each object, pauses being totally forbiddemtfexplicitly wanted. To estimate the
quality of an adjustment, a cost function, usually convex (gure 1), is introduced for each
object. To sum up, the problem we attempt to solve here is tbdimadjustment of best quality,
i.e. which minimizes the sum of the costs of the media objects

The set of temporal constraints can be modeled as a directagh ¢ = (X;U) (cf. [6])
whereX is a set of noded/ a set of arcsi;n = |U| andn = | X|. The nodes represent events (the
start or the end of presentation of an object). The arcs egmheration constraints between nodes.
With each ara: is associated a time interval,; b, |, an ideal duratior,, and a cost functiom,,
defined on the interval. An arc= (z;y) between two nodes andy means the event precedes
y and they are separated by a duratigrbetweena,, andb,,, the ideal value being,. Figure 2
shows how to represent some of the main temporal relatioed inshypermedia synchronization
(introduced by [3]).
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Figure 2:Graph representation of temporal constraints.

Let7 : X — R be a potential function which assigns a date to each evermt abthe graph.
Then the duratiord,, of an object associated with an arc= (z;y) can be seen as the difference
of potentials,, = m, — 7, in other words¢ = (6,,),cv is a tension vector on the graph (e.g. [7]).
Denoting by A the incidence matrix of the graph, i.e. mateixof dimension(m x n) with the
elementsu,,, equal to—1 (if v leavesz), +1 (if w comes tar) or 0 (any other case), the problem
is simply formulated as following:

minimize » ~ ¢, (6,,)

uelU
withd = ATr, a <0 <b

And let T be the set of feasible tensions, iBy; = {# €¢ R™ |0 = ATn,a < 0 < b}. In
this article, we only consider convex two-piecewise lineast functions as shown by figure 1a,
the adaptation to more pieces of the methods described hetaightforward. Hence, from now
on we consider the cost functiong as following:

cL(on —6y) ,if 0, < o,
cu(fu) = { 20y —04) , i 0, > 0y

In section 1, we present the results we obtained with knowthoas to solve the minimum
cost tension problem on graphs with non-specific structufben in section 2, we recall and
introduce some properties of the series-parallel graplsedto tension. Section 3 explains the
aggregatioormethod. Numerical results of this method and comparisotistive previous methods
are presented and discussed in section 4. The last sectisrttda article with our first thoughts
on how to exploit this method on non series-parallel graphs.

1 Minimum Cost Tension Problem

With convex piecewise linear costs, it is possible to moHelproblem with linear programs. It
is a solution widely used in practice for the synchronizatwoblem (e.g. [10], [17]). Another
way to solve the problem is thamut-of-kilter algorithm first introduced for the minimum cost flow
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problem [14] and then for the minimum cost tension problefi8]. We present an adaptation of
that method to piecewise linear costs in [5]. That algoritemseudo-polynomial) (m?(A + B))
operations wherel = max,cp{ay;b,} and B = max,cp{cl;c2}. A polynomial method is
presented in [15] but is only really efficient in practice fospecial class of graphPdnelopé&s
graphs). More recently, [1] presents an algorithm to solw®ee generic problem called tleen-
vex cost integer dual network flow problethe algorithm consists in transforming the minimum
cost tension problem into a minimum cost flow problem, solét the well-knowncost-scaling
method (e.g. [2]). This algorithm is polynomial)(mn?lognA) operations, and proves to be
very efficient in practice.

[ Nodes| Arcs | CPLEX | Kilter | Cost-Scaling|

50 200 0,44 0,12 0,1

50 400 0,83 0,3 0,19
100 400 0,93 0,47 0,28
100 800 2 1,3 0,54
500 2000 12,5 15,4 3,5
500 4000 37,7 49,1 6,8
1000 | 4000 57,2 76,5 11,6
1000 | 8000 193,7 | 239,9 20,4

Table 1:Numerical results on non-specific graphs.

Table 1 aims at a practical comparison of the methods, wisickvways tricky because of
all kinds of biases. But the goal here is to get an idea of havntlethods behave on graphs
with non-specific structure. Later in this article, we shdwe performance of these very same
implementations on series-parallel graphs. Results greesged in seconds, obtained on a RISC
6000 / 160 MHz processor with an AlX Unix operating system. We GNU C++ 2.95 compiler
and its object-oriented features to implement the methéds.the linear programming, we use
the simplex method provided in CPLEX 6.0 software. Theseltgsre the means of series of 10
tests on randomly generated graphs. Bdtand B are fixed to1000. The implementation of the
methods and the generation of the graphs are available.in [4]

2 Series-Parallel Graphs

A common definition of series-parallel graphs is based orcarséve construction of the graphs
(e.g. [12], [13], [22]) that is very intuitive and close toetlvay synchronization constraints are
built in a hypermedia document.

A graph isseries-paralle] also calledSP-graph if it is obtained from a graph with only two
nodes linked by an arc, applying recursively the two follogvoperations:

e Theseries compositigrapplied upon an are = (z;y), creates a new nodeand replaces
u by two arcsu; = (x; z) andus = (z;y) (cf. figure 3a). We calkeriesthe relation that
bindsu; anduy, and note itu; + us.

e Theparallel compositionapplied upon an are = (z;y), duplicatesu by creating a new
onev = (z;y) (cf. figure 3b). We calparallel the relation that binds. andv and note it

u//v.
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Figure 3:Series and parallel compositions.

We regroup the series and parallel relations under the &®relation During the construc-
tion process, a SP-relation that binds two arcs can becoraiation between two series-parallel
subgraphs. Hence, we introduce the teingle SP-relatiorio identify a SP-relation between two
arcs. From the recursive definition of a SP-graph, it is eassetify that a SP-graph has always a
single SP-relation (the SP-relation created from the lastposition). Hence, it is easy to check
if a graph is series-parallel: find a single SP-relation eghaph, apply a reduction reverse to the
composition that produces the SP-relation and go on agdiironfy one arc remains in the graph.
This linear-time method is explained in [22] and [20]. Anatlefficient approach to recognize
a SP-graph is proposed in [13], based on the fact that patB®igraphs are organized a certain
way.

Figure 4:Example of SP-tree.

The SP-relations are binary operations, so we can repraseRtgraph by a binary tree called
decomposition binary treer SP-tree(cf. [22], [11]). Figure 4 shows a SP-tree of an SP-graph.
All the algorithms cited earlier to recognize a SP-graph lmamdapted, without any complexity
loss, to build a SP-tree during their process. Hence we sélthis representation to present our
aggregationmethod.

From the definition of a SP-graph, it is obvious that a SP{gfes only onesourcenode (i.e.
without any predecessor) and only daegetnode (i.e. without any successor). Hence we define
themain tensiorf of a graph as the tension between its soureed target, i.e. § = m; — 7.

3 Aggregation Method

We present here theggregationmethod to solve the minimum cost tension problem with convex
piecewise linear cost functions (cf. figure 1a) on an SPigrEp Note that the resolution of an
optimization problem on this kind of graphs is usually eaian on non-specific graphs (e.g.
[11], [8], [21]).

The aggregation method works on an SP-ffeaf the SP-grapliz. The method is recursive:
considering an SP-relation 1, it supposes that the optimal tensions of the two subgrappbead
in the relation are known, and from them it is possible to kyibuild the optimal tension of the
whole SP-relation. Hence, starting from the leaved pthe optimal tension of each SP-relation
is built to finally reach the root of the trég.

To get an efficient algorithm, we need what we call thimimum cost functiod'; of a SP-

graphG. This function represents the cost of the optimal tensioare/the main tension is forced
to a given value.
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Ca(z) =min{ ) cu(8u) | 0 € T, 6 = x}
uelU

As each functiorz, is convex, the minimum cost function is indeed convex (assgrthat
Ca(z) = +o0 if no feasible tension exists such that the main tensionriefibtoz).

@) (b)

Figure 5:SP-relations between subgraphs.

We consider two series-parallel subgraghsand G-, and suppose that their minimum cost
functionsCq, andCg, are known. If we look at the SP-relatiah; + G4 (cf. figure 5a),G;
and G5 only share one node, hence there is no tension constraivtedre them. But if we add
the constraint that the main tension@f + G5 must be equal ta, it imposes tar; andzs, the
main tensions of~; andGs, thatz = z; + z. Hence, the minimum cost functidry;, ; ¢, of the
SP-relationGy + G5 is:

CG1+G2 (w) = _min CG1 (1‘1) + CGz (1‘2)
r=r1+x2
It meansCq, 4+, is the inf-convolutionC¢, [ Cg, . It is well-known that this operation main-
tains convexity (e.g. [19]).

If we look now at the SP-relatiotv; //G+ (cf. figure 5b),G; andG4 share their source and
target nodes, hence the only tension constraint between ithéhat their main tensions; and
xo must be equal. If we add the constraint that the main tensiai;¢/G> must bez, then it
imposest = 1 = 2. Hence, the minimum cost functkaI//G2 of the SP-relatiortz, //G> is:

CG1//G2 (z) = Cgy (2) + Ca, (x)

It meansCyq, //q, is simply the sunC¢, + Cg,, which is convex ifCq, andCg, are convex.
From our analysis of the two SP-relations, it is easy to vaitelgorithm that builds the minimum
cost functionC of a SP-grapltz. But what interests us is to find the minimum cost tensio&' of
We propose now a specific way to represent the minimum costiuns so we know not only the
cost of the optimal tension of a SP-relation, but also howuitdht.

For this purpose, we define tieentered minimum cost functidrf, of G as following:
C(x) = Cgla +t) — Cg(t)
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That meang”,(0) = 0 and the function represents the minimum cost to increaseaedse
the main tension from the value

Cs(x)
) A
2
2/5
- | > x
— 251+
5™ 10 "sMs5t 7

Figure 6:Example oft-centered minimum cost function.

We choose to represent this piecewise function with two g€tsandstt,, shl, represent€,
on the interval — oo; 0] andst., represent&%, on the interval0; +oco[. These sets simply contain
the definition of each piece of the function on the intervaythepresent. They contain triplets of
the form(c; e; 1) wherec represents the slope of the cureehe length of the interval on which the
piece is defined antlis a set of the arcs that must be increased or decreased tbthedpnsion
on this piece. For efficiency reasons, the triplets are ddrtan the smallest slope to the highest.
Here are the setgl, andsh, of the example of figure 6:

shi; = {(—2/5;5; {a; b}); (3/5;10; {c}); (3; 5; {d; e} ) }
st = {(2/5;5;{a; b}); (275 {c; e})}

For instance, if we want to decrease the main tensiohuwfit, we need to decrease blnit
the tension of the arasandb and we will gain2/5 units.

Let us notef, the minimum cost tension of a gragh and C, = Cgé. We explain here
how to find¢¢, and build theC¢, function. First theC’; function of an arcu is represented by
shi = {(ck; 04, — ay; {u})} andst? = {(c2; b, — oy; {u})} with the optimal tensiol’ = o,,.

Now consider the grapy = G; + G2 and suppose that we know the optimal tensiéhand
65 and the minimum cost functionS; andC3 of the subgraphs:/; andG,. The tensiordy, of
G made of the two tensior andé3 is optimal, because there is no constraint between the two
subgraphs after the series composition. To incré_éswe can choose to increagg or 6;. If we
look atp; = (c1;5e1;11) andpa = (c2; e2;l2), the first pieces oft} andsts, we decide to increase
0_{ if ;1 < cqgor elsee_’g. The same reasoning can be made to decr@@se
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C, C,
\ > \ >
sh,={(1;10;{ a;b})} sh={(1/3;6;{€e}); (5/4;4;{ f;9})}
st={(1/2;4;{b;d}) ;(4/3;6;{a})} st={(1;5;{e;qg});(2;5{ f})}
o

.
Ll

shy={(1/3;6;{€});(1;10;{a;b});(5/4;4;{ f;9})}
st.={(1/2;4;{b;d});(1;5;{e;q});(4/3;6;{a});(2;5;{ f})}

Figure 7:Example of minimum cost function of a series composition.

We can conclude that to build the functioif, = C O C5, we need to createh, = shiUsh}
andsty, = st} U st3 sorted from the smallest slope to the highest. Figure 7 stamwexample.
If we notep; andp, the numbers of pieces @ff andC3, thenC¢, hasp = p; + p> pieces, and
the process of finding the optimal tension of a series cortipasieeds)(pm) operations Q(p)
operations to go through thepieces and)(m) to copy a set of at most arcs for each piece).

We consider now the grapi = G1//G2 and suppose that we know the optimal tensiéhs
and#; and the minimum cost functionS} and C3 of the subgraphgs; andGs. The parallel
composition is possible only & = 65 (if we want to get a valid tension). As we need to find the
optimal tensiord;, of the graphG:, we need a method to equaligé and 6 optimally, i.e. such
that the tensiom}, made of9; andé; is optimal. Suppose th&f < 03, to equalized; andd; we
can increasé_{ and/or decreas%, so we look apy = (c15e1;l1) andpy = (co; e2;l2), the first
pieces ofst] andsh’. We decide then to increa§_§ if c; < ¢y Or else to decrea@. This process
is repeated unt; = 05 (cf. algorithm 8 and figure 9).
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while 07 <03 do

if stf =0 and shl =0 then /*no feasible tension %/

let p; =(ci;er;l1) be the first piece of st} if sty #0;
et ps = (c2;ez;l2) be the first piece of shi if shi#0;

if shy =0 or c1 <c2 then /*tensionincrease */
X minfer; B — O}
for each wely do 07, <« 07, +A;
st} — st} —{p1};
if A<ep then stf — stjU{(c1;e1 — X1}
shy — shiU{(—c1; A1)}
el se /*tension decrease */
X minfea; 85 — 07}
for each uely do 05, « 65, — A
shi — shi— {p2};
if A<ez then shi — shiU{(c2;e2 — \l2)};
sty — sty U{(—c2; N 12)}
end if;
end while;

Figure 8:Algorithm to equalize parallel tensions.

C, 8,-6,=8 C,

1 > \ >
sh;={(1;10;{a;b})} shy={(1/3;6;{€e});(5/4;4;{ f;g})}
st={(1/2;4;{b;d}); (4/3;6;{a})} st,={(1;5:{ e;g});(2;5:{ f})}

o 6,- 6,=2 o

A A
sh={(1:10:{a;b})} sh,={(5/4;4;{ f;g})}
st={(1/2;4;{b;d}); (4/3;6:{a})} st={(-1/3;6;{e}); (1;5:{e;g}); (2;5:{ T })}

(o} 8,-6,=0 c,
A A
sh,={(-1/2; 2;{ b;d}) ;(1;10;{ a;b})} sh,={(5/4;4:;{ f;g})}
st;={(1/2;2;{ b;d}); (4/3;6:{ a})} st,={(-1/3;6;{e}); (1;5:{e;q});: (2;5:{ f})}

Figure 9:Example of equalization of parallel tensions.
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while stf #0 and stj #0 do

let p1 =(ci;e1;l1) be the first piece of stf;
et po=(c2;e2;l2) be the first piece of st};
A — min{er;ea};

sta — staU{(cl + ca; Al Ulg)};

sty « st} —{m}

sty — st3 — {pa};

if er >\ then stf — stfU{(c1;e1 — Xl1)}s

if ex> X then sti — stiU{(co;ea — Al2)};

end while;

Figure 10:Algorithm to build the optimal tension of a parallel compiasi.

Then to build the functio', = C} + C'5 we use the procedure 10 (only detailed for ting
part of the function) that is illustrated by figure 11. If wet@p; andp, the numbers of pieces of
CT andC3, thenC has at mosp = p; + p» pieces, and the whole process of finding the optimal
tension of a parallel composition nee@$pm) operations (the equalization process go through at
mostp pieces and copies at mastarcs for each piece, the same for algorithm 10 that creates at
mostp pieces and copies for each at moshrcs).

C
A
sh={(-/2;2:{b;d}); (1;10:{a;b})}
st={(1/2;4;{b;d});(3/4;8:{ a})}
C,
A
_oshE{(1:45{ fio})}
T st={(4/4;8;{e});(1;5:{e:g}):(2;5:{ f})}
Co
A
sh={(1/2:2:{b;d; fig}):(2:2;{a:b; fig})}
st={(1/4;4;{b;d;e}) ;(12;4;{a;e}); (7/4;4;{a;e;qg})}

Figure 11:Example of minimum cost function of a parallel composition.

Finally algorithm 12 resumes the whole aggregation mettbit;h, from the leaves of the SP-
tree of the graph, applies the series and parallel compositvith the construction of the optimal
tension and the minimum cost function as we just explaindterprevious paragraphs.
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10

al gorithm aggregate(Tree T = (o,T;,T), Tensi on 0%, Function C7.)
if T;#0 then aggregate(T;, 6], C});
if T.#0 then aggregate(Tr, 0%, C});

if o=+ then build C} and 67 of the series conposition T;+ Ty,

else if o=// then build C; and 63 of the parallel conposition T;//T;
el se shi — {(ck;ou —au; {u})}; sth — {(c2;bu — ou; {u})};

end al gorithm

Figure 12:Algorithm to build the optimal tension of a SP-graph.

In this algorithmT" = (o; T;; T}) is the SP-tree with the roet the left subtred; and the right
subtre€erl’,.. We show now that this recursive method has a polynomial dexitp.

Theorem 1 The aggregation algorithm perforng3(m?3) operations.

We established that each composition ne@dsm) operations. It is known that a SP-graph
containsm — 1 SP-relations+{ — 2 series relations because each one creates a node and there
are only two nodes at the beginning of the construction m®icandn — n + 1 parallel relations
because any SP-relation creates an arc and there is onlyoaethe beginning). So the aggre-
gation need€)(pm?) operations. We explained earlier that for each compositfign andp, are
the numbers of pieces fary andC5, Cf has at mosp, + p, pieces. That means if each arc
has a two-piecewise cost function, the minimum cost fumatibthe whole graph has at madst
pieces, and the aggregation neétsn?) operations.

4 Numerical Results

Table 2 shows numerical results of the methods presentedctipe 1 and the aggregation al-
gorithm on series-parallel graphs. Details on how the test® performed can be found in the
comments of table 1 (section 1). The linear programming ardtut-of-kilter methods take ad-
vantage of the particular structure of the SP-graphs anavesteally better on this class of graphs.
However the cost-scaling approach on the dual of the probiees not work that well on this kind
of instances, even with an improvement technique likewlage implementatiofcf. [2]). The
aggregation method reveals quite efficient, and not vergisesmto the graph dimension.

[ Nodes [ Arcs | CPLEX [ Kilter | Cost-Scaling] Aggregation |

50 200 0,4 0,07 0,09 0,05
50 400 0,71 0,15 0,2 0,09
100 400 0,73 0,2 0,31 0,09
100 800 1,4 0,38 0,63 0,18
500 2000 4,4 3 4,5 0,5
500 4000 10,7 53 11,3 0,99
1000 | 4000 11,6 9 17,2 1
1000 | 8000 30,8 215 34,5 2,1

Table 2:Numerical results on series-parallel graphs.

Conclusion

We show here how to solve the minimum cost tension problemesiessparallel graphs with
convex piecewise linear costs @(m?) operations. But the real instances that interest us for the
hypermedia synchronization are a bit more complex than Brgr&phs. They are indeed related
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to the generalized series-parallaraphs (cf. [16]). Through this article, we explained that,
the context of the minimum cost tension problem, a SP-graphbe reduced to a single arc with
a convex piecewise linear cost function. One idea can beentifg series-parallel subgraphs
of a non-specific graph, to aggregate these subgraphs armlthelh the minimum cost tension
problem on the reduced graph with any known method. To imgthis simple idea, our future
work will be to find algorithms to extracteries-parallel componenfsom a graph and to develop
an efficient process (using the aggregation method) to fiadrimimum cost tension of the whole
graph when assembling back these components.
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