
RAIRO Operations Research
RAIRO Oper. Res. 40 (2006) 327–353

DOI: 10.1051/ro:2007001

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL
CONSTRAINTS

Nicolas Beldiceanu
1
, Thierry Petit

1

and Guillaume Rochart
2

Abstract. This article presents a basic scheme for deriving system-
atically a filtering algorithm from the graph properties based represen-
tation of global constraints. This scheme is based on the bounds of the
graph parameters used in the description of a global constraint. The
article provides bounds for the most common used graph parameters.

Keywords. Global constraint, graph constraint, filtering, bound.

Mathematics Subject Classification. 68R01.

1. Introduction

One of the main objectives of constraint programming is to provide generic
tools for solving combinatorial problems, notably AC algorithms [9,14,18], general
purpose combinators [15], and automata for characterizing the solutions of a con-
straint [4,20,30]. To deal with real-world problems, various global constraints with
ad-hoc filtering algorithms, usually based on graph theory [16,17,23–26,28], have
been introduced. In [8], Bessière and Van Hentenryck proposed several definitions
of the notion of globality. They introduced the notion of “semantic globality (ex-
pressiveness), operational globality (quality of filtering), and algorithmic globality
(computational efficiency of the filtering)”. Beldiceanu presented in [2] a system-
atic description of these global constraints in terms of graph properties: among
the 234 constraints of the catalog of global constraints [5], about 200 constraints
are described as a conjunction of graph properties where each graph property has

Received November 16, 2006. Accepted November 20, 2006.

1 École des Mines de Nantes, LINA FRE CNRS 2729, 44307 Nantes, France;
Nicolas.Beldiceanu@emn.fr; Thierry.Petit@emn.fr
2 Bouygues e-lab, 78061 St Quentin en Yvelines, France; Grochart@bouygues.com

c© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/ro:2007001

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2007001

328 N. BELDICEANU, T. PETIT AND G. ROCHART

the form P op V , where P is a graph parameter, op is a comparison operator in
{≤,≥, =, �=}, and V a domain variable1.

Example 1. Consider the nvalue(N,{x1, ..., xm}) constraint [7], where N, x1, ...,
xm are domain variables. The nvalue constraint holds if and only if the number of
distinct values assigned to the variables in X = {x1, ..., xm} is equal to N . It can be
seen as enforcing the following graph property: The number of strongly connected
components of the intersection graph G(X , E), where E = {xi ∈ X , xj ∈ X : xi =
xj}, is equal to N .

In the context of the catalog of global constraints, Dávid Hanák made a pre-
liminary exploitation of this description for designing filtering algorithms, for a
particular graph property [13]. In this article we present a systematic approach
which aims at providing generic filtering algorithms for the most used graph prop-
erties [3]: given a specification of a global constraint C in terms of graph properties,
we can derive a filtering algorithm for C. Section 2 recalls the representation of
global constraints as graph properties. It presents the most used graph parameters
on which this article focuses. Section 3 introduces how to filter by reasoning on
the bounds of the graph parameters involved in the graph-based description of a
global constraint. Section 4 presents how to compute the lower and upper bounds
for the graph parameters introduced in Section 2. For those bounds which are
not sharp, we focus on the graph classes effectively used in the catalog of global
constraints [5] in order to get sharpness for the practical cases. Section 5 recapit-
ulates the different bounds and their respective sharpness and complexity class.
Finally, Section 6 illustrates how reasoning on the bounds of graph parameters is
relevant in the context of the CP(Graph) framework [10] as well as in the context
of over-constrained problems [11].

2. Background

This section summarizes the representation of global constraints as graph prop-
erties introduced in [2], and illustrates this framework with the nvalue [7] con-
straint.

A global constraint C is represented as an initial digraph Gi = (Xi, Ei): to
each vertex in Xi corresponds a variable involved in C, while to each arc e in Ei

corresponds a binary constraint involving the variables at both extremities of e.
To generate Gi from the parameters of C, the set of arcs generators described
in [2] is used. When all variables of C are fixed, we remove from Gi all binary
constraints which do not hold as well as isolated vertices, i.e., vertices which are
not extremity of any arc. This final digraph is denoted by Gf . Then C is defined
by a conjunction of graph properties which should be satisfied by Gf . Each graph
property has the form P op V ; P is a graph parameter, V is a domain variable

1A domain variable is a variable that ranges over a finite set of integers; dom(V), min(V)
and max(V) respectively denote the set of possible values for variable V , the minimum possible
value for V and the maximum possible value for V .

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 329

x x

x x

2

34

5 8

5 1

x x

x x

1 1 2

4 3

(A) (B) (C)

Figure 1. (A) Initial digraph Gi associated with the nvalue(N ,
{x1, x2, x3, x4}) constraint. (B) Final digraph Gf of the ground
solution nvalue(3, {5, 8, 1, 5}). (C) Intermediate digraph when
dom(x1) = {5}, dom(x3) = {1}, dom(x4) = {5} and dom(x2) =
{5, 8}.

and op is one of the comparison operator ≥,≤, =, �=. Within the global constraint
catalog [5], most commonly used graph parameters are:

• NARC and NVERTEX. They respectively denote the number of arcs
and vertices. They are used by respectively 95 and 17 global constraints.
• NCC and NSCC. They respectively denote the number of connected

and strongly connected components. They are used by respectively 19
and 13 global constraints.
• NSINK and NSOURCE. They respectively denote the number of ver-

tices that do not have any successor and the number of vertices that do not
have any predecessor. NSINK and NSOURCE are used by respectively
16 and 15 global constraints. By reversing each arc, the computation of
NSINK and NSOURCE is the same. Therefore, the rest of this article
considers only NSINK.

Example 2. Consider the nvalue(N,X) constraint presented in the introduc-
tion. Parts (A) and (B) of Figure 1 respectively show the initial digraph Gi

generated for the nvalue constraint with X = {x1, x2, x3, x4} and the digraph
Gf associated with the ground solution nvalue(3, {5, 8, 1, 5}). Each vertex of Gi

depicts its corresponding variable. All arcs corresponding to equality constraints
that are not satisfied are removed to obtain Gf from Gi. Each vertex of Gf depicts
the value assigned to its corresponding variable. The nvalue constraint is defined
by the graph property NSCC = N . The nvalue(3, {5, 8, 1, 5}) constraint holds
since Gf contains three strongly connected components, which can be interpreted
as the fact that N is equal to the number of distinct values taken by the variables
x1, x2, x3 and x4. Part (C) of Figure 1 will be referenced in Example 3.

3. Filtering from graph properties

Given a graph property P op V occurring in the description of a global con-
straint, this section first shows how to reduce the domain of V in order to enforce
P op V . Finally, it discusses the case where several graph properties are used to
define a global constraint.

330 N. BELDICEANU, T. PETIT AND G. ROCHART

3.1. Handling one single graph property

We first introduce the notion of intermediate digraph derived from the initial
digraph Gi, where vertices and arcs can have different status as detailed below.
The purpose of this intermediate digraph is to reflect the knowledge we currently
have about the vertices and the arcs of Gi that may or may not belong to the final
digraph Gf . The lower and upper bounds of a graph property will be computed
from this intermediate digraph. This knowledge comes from two sources:

• Because of the current domain of its variables, a binary constraint associ-
ated with an arc of Gi does not hold (or is entailed).
• Because of an external reason (e.g., if a global constraint is defined by two

graph properties on the same initial digraph Gi then an arc may be forced
to belong to Gf by one of the two properties), a given arc or vertex of Gi

is forced to belong to Gf (or is forced not to belong to Gf).
When a global constraint C is posted, the intermediate digraph corresponds to
the initial digraph Gi, while, when all variables of C are fixed, the intermediate
digraph is equal to the final digraph Gf . At any stage all the possible final digraphs
are induced digraphs of the intermediate digraph.

Notation 1. Let Gi = (Xi, Ei) be the initial digraph of a global constraint C,
and Gf = (Xf , Ef) its final digraph. At a given step corresponding to a partial
assignment of values to the variables of C, we classify a vertex vj ∈ Xi and an arc
ek ∈ Ei as follows:

• vj is a T -vertex (i.e., a true-vertex) if and only if vj ∈ Xf ; vj is a F -vertex
(i.e., a false-vertex) if and only if vj /∈ Xf ; otherwise vj is a U -vertex (i.e.,
an undetermined-vertex). XT , XF and XU respectively denote the sets of
T -vertices, of F -vertices and of U -vertices.

• ek is a T -arc (i.e., a true-arc) if and only if ek ∈ Ef ; ek is a F -arc
(i.e., a false-arc) if and only if ek /∈ Ef ; otherwise ek is an U -arc (i.e., an
undetermined-arc). ET , EF and EU respectively denote the sets of T -arcs,
of F -arcs and of U -arcs.

For two distinct elements Q and R in {T, U, F}, let XQR denote the vertex subset
XQ ∪̇XR, and EQR denote the arc subset EQ ∪̇ ER.

The following definition of the intermediate digraph takes into account the fact
that the final digraph Gf will not contain any isolated vertex (i.e., a vertex not
involved in any arc) [5, page 45].

Definition 1. The intermediate digraph is the digraph defined from the initial
digraph Gi, from the sets of vertices XT , XF , XU and from the sets of arcs ET ,
EF , EU by applying the next rules while they induce some modifications:

• Remove all F -arcs from Gi.
• Any F -vertex which is not the extremity of at least one T -arc is removed

from Gi
2. When a vertex is removed, we remove also all its ingoing and

outgoing arcs that are turned into F -arcs.

2A F -vertex that is linked to a T -arc is not removed so that Property 1 catches a contradiction.

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 331

• Any U -vertex, which is not the extremity of at least one arc, is turned into
a F -vertex.

• Any U -vertex, which is an extremity of a T -arc, is turned into a T -vertex.
• If a T -vertex with no loop has a unique neighbor, which is a U -vertex,

then this U -vertex is turned into a T -vertex.
• If a T -vertex is the extremity of exactly one U -arc e and not the extremity

of any T -arc, then e is turned into a T -arc.
When a vertex or an arc is removed from Gi, or when the status of a vertex or
of an arc is changed by one of the previous rule, the sets of vertices XT , XF , XU

and the sets of arcs ET , EF , EU are updated to reflect this change.

Example 3. Consider again the nvalue(N,X) constraint presented in the in-
troduction, and assume that not all variables of X = {x1, x2, x3, x4} are fixed:
dom(x1) = {5}, dom(x2) = {5, 8}, dom(x3) = {1}, dom(x4) = {5}. Furthermore,
without loss of generality, assume that, for an equality constraint ec associated
with an arc of the initial digraph Gi of nvalue, entailment is only detected when
the two variables occurring in ec are fixed3. This leads to partition the arcs of
Gi in the following three sets ET = {(x1, x1),(x1, x4),(x3, x3),(x4, x1),(x4, x4)},
EU = {(x1, x2),(x2, x1),(x2, x2),(x2, x4),(x4, x2)} and EF = {(x1, x3),(x2, x3),
(x3, x1),(x3, x2), (x3, x4),(x4, x3)}. The status of the vertices is initially set un-
determined (i.e., XU = {x1, x2, x3, x4}) and we apply the rules of Definition 1 in
order to obtain the intermediate digraph depicted by Part (C) of Figure 1. A solid
line depicts a T -vertex or a T -arc, while a dashed line indicates a U -vertex or an
U -arc. The same style will be used in all other figures of this article in order to
depict T -vertices, T -arcs, U -vertices and U -arcs.

Property 1. From the definition of Gf , a global constraint C has no solution
if its intermediate digraph contains a F -vertex or if it contains a T -vertex that is
not the extremity of any arc.

Given a graph property P op V associated with a global constraint C, the inter-
mediate digraph will be used for evaluating a lower bound P and an upper bound
P of the graph parameter P . Section 4 provides graph invariants for evaluating
P and P for different graph parameters. It assumes that all U -vertices or arcs
of the intermediate digraph can be freely turned into T -vertices or T -arcs (resp.
F -vertices or F -arcs). According to the comparison operator op, Table 1 gives the
four possible cases for reducing the domain of variable V according to P and P .

3.2. Handling several graph properties

Quite often, it happens that one wants to enforce the final digraph Gf of a
global constraint C to verify more than one graph property. In this context, these
graph properties involve several graph parameters that cannot vary independently.
So, in order to get stronger necessary conditions for the feasibility of C we can
search for graph invariants that link the different graph parameters. These graph

3As a consequence, since x2 is not yet fixed, the arc (x2, x2) is an U -arc.

332 N. BELDICEANU, T. PETIT AND G. ROCHART

Table 1. The four possible cases for reducing the domain of a
variable V according to P and P .

P ≤ V min(V) ≥ max(P , min(V))
P ≥ V max(V) ≤ min(P , max(V))
P = V min(V) ≥ max(P , min(V)) ∧ max(V) ≤ min(P , max(V))
P �= V P = P ⇒ P /∈ dom(V)

invariants are typically inequalities between two arithmetic expressions mentioning
several graph parameters4. In this context each graph invariant will be used in
order to adjust the minimum and the maximum value of its graph parameters. An
initial lower and upper bound of each graph parameter will be computed by using
the inequalities of Section 4. Finally we make a last observation: quite often,
it happens that the final digraph Gf associated with a global constraint has a
regular structure that comes from its initial digraph or from a property of the arc
constraint. In this context we can have tighter graph invariants which hold for
specific graph classes.

Example 4. Consider again the nvalue constraint. Bessière et al. [7] give a nec-
essary condition based on a result by Turán [27]. For the final digraph Gf of the
nvalue constraint, which is symmetric, reflexive and transitive5, this necessary
condition6 links the number of strongly connected components, the number of ver-
tices and the number of arcs of Gf : NSCC ≥

⌈
NVERTEX2

NARC

⌉
. This allows us to

evaluate the minimum number of distinct values according to the number of vari-
ables of the nvalue constraint (i.e., NVERTEX, which is fixed to the number
of variables of the nvalue constraint since each vertex of the initial digraph be-
longs to the final digraph) and to the maximum number of arcs of its intermediate
digraph (i.e., NARC).

4. Bounds of graph parameters

This section is devoted to the evaluation of lower and upper bounds of the graph
parameters introduced in Section 2. For this purpose, we will deal with graphs
derived from the intermediate digraph with different sets of arcs and vertices that
are described by the following notations.

4See Chapter 3 of [5] for a collection of about 200 graph invariants.
5Gf consists of one or several cliques.
6We recast the original condition given in [7] to the context of the intermediate digraph of

the nvalue constraint.

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 333

Notation 2. For any words Q, R and S on the alphabet {T, U, F}, XQ and XS

are vertex subsets and ER is an arc subset of the initial digraph Gi (as stated in
the last part of notation 1), and:

• XQ,R (resp. XQ,¬R) denotes the set of vertices in XQ which are incident
with at least one arc (resp. with no arc) in ER:
XQ,R = {x ∈ XQ | ∃e ∈ ER ∧ x ∈ e} and XQ = XQ,R ∪̇XQ,¬R.

• XQ,R,S (resp. XQ,R,¬S) denotes the set of vertices in XQ,R that are neigh-
bors to at least one vertex (resp. to no vertex) in XS by an arc in ER:
XQ,R,S = {x ∈ XQ,R | ∃y ∈ XS ∧ ((x, y) ∈ ER ∨ (y, x) ∈ ER)} and
XQ,R = XQ,R,S ∪̇XQ,R,¬S.

• XQ,¬R,S (resp. XQ,¬R,¬S) denotes the set of vertices in XQ,¬R that are
neighbors to at least one vertex (resp. to no vertex) in XS by an arc in
ETU :
XQ,¬R,S = {x ∈ XQ,¬R | ∃y ∈ XS ∧ ((x, y) ∈ ETU ∨ (y, x) ∈ ETU)} and
XQ,¬R = XQ,¬R,S ∪̇XQ,¬R,¬S.

• ER,Q is the set of arcs in ER which are incident to at least one vertex in
XQ:
ER,Q = {e ∈ ER | ∃x ∈ XQ ∧ x ∈ e}.

• ER,Q,S is the set of arcs in ER which are incident to one vertex in XQ

and to one vertex in XS:
ER,Q,S = {e ∈ ER | ∃x ∈ XQ ∧ ∃y ∈ XS ∧ (e = (x, y) ∨ e = (y, x))}.

Based on the previous notations, we define two kinds of graphs, where X is a set
of vertices and E a set of arcs:

• −→G(X , E) denotes the digraph defined by the vertex set X and the subset
of arcs of E having their two extremities in X .
• ←→G (X , E) denotes the undirected graph derived from

−→
G(X , E) by keeping

all vertices of X and by considering one edge (u, v) (where u and v are
not necessarily distinct) when at least one arc in {(u, v), (v, u)} belongs to−→
G(X , E).

Within the last notation
←→
G (X , E), note that E still refers to the set of arcs of the

corresponding digraph
−→
G(X , E) (and not to the derived sets of edges). This nota-

tion is used either when any two arcs (u, v) and (v, u) in E have the same status,
or when we do not care about the status of the arcs. Note also that

−→
G(XTU , ETU)

is the intermediate digraph introduced by Definition 1.

As we will see later, computing lower and upper bounds of graph parameters can
essentially be seen as computing some graph parameters on the graphs previously
introduced. For this reason we define the following notations for a digraph G.

Notation 3. cc(G), scc(G), sink(G) and source(G) respectively denote the set
of connected components, strongly connected components, sinks and sources of G.
Similarly, in order to restrict to specific induced subgraphs where a given condi-
tion cond is required on each subgraph we use the following notation: cc[cond](G),
scc[cond](G), sink [cond](G) and source [cond](G).

334 N. BELDICEANU, T. PETIT AND G. ROCHART

Example 5. For instance, the set of connected components of
−→
G(XTU , ETU)

containing at least one T -arc is denoted by cc[|ET |≥1](
−→
G(XTU , ETU)).

Some bounds will be expressed in terms of graph parameters that correspond to
non-polynomial problems. However in such a case we will provide bounds that are
sharp. Note that many of the digraphs, which express a global constraint, belong
to specific graph classes for which a non-polynomial problem becomes polynomial.
Even when the computation is polynomial, we can get better worst-case complex-
ity by exploiting the structure of the intermediate digraph. For instance, in the
context of the group constraint [3], we have to estimate the minimum number of
connected components of the final digraph Gf . For this purpose, Property 10 in
Section 4 requires to compute the number of connected components on the inter-
mediate digraph. This digraph is a subgraph of an elementary path augmented
with loops [5], p. 516. Therefore the complexity for computing the number of
connected components is linear in the number of vertices.

Example 6. We illustrate some sets of vertices and arcs previously introduced
and some graphs on the intermediate digraph depicted by Part (C) of Figure 1:

• XT = {x1, x3, x4} denotes the set of T -vertices.
• XU = {x2} denotes the set of U -vertices.
• ET = {(x1, x1), (x1, x4), (x3, x3), (x4, x1), (x4, x4)} denotes the set of

T -arcs.
• EU = {(x1, x2), (x2, x1), (x2, x2), (x2, x4), (x4, x2} denotes the set of

U -arcs.
• XU,T = ∅ denotes the set of U -vertices that are the extremity of at least

one T -arc. Observe that, from Definition 1, this set is always empty.
• XU,¬T = {x2} denotes the set of U -vertices that are not the extremity of

any T -arc. Observe that, from Definition 1, this set is always equal to XU .
• ETU = {(x1, x1), (x1, x2), (x1, x4), (x2, x1), (x2, x2), (x2, x4), (x3, x3), (x4,

x1), (x4, x2), (x4, x4)} denotes the set of arcs that are U -arcs or T -arcs.
• EU,T = {(x1, x2), (x2, x1), (x2, x4), (x4, x2)} denotes the set of U -arcs such

that at least one of their extremities is a T -vertex.
• −→G(XT , ET)=

−→
G({x1, x3, x4}, {(x1, x1), (x1, x4), (x3, x3), (x4, x1), (x4, x4)})

denotes the digraph defined by the set of vertices XT and the arcs of ET

that have their two extremities in XT .

We now go through the different graph parameters and provide for each of them
a lower and an upper bound. For each graph parameter, we give typical examples
of global constraints for which the graph-based description presented in [5] uses
that parameter.

4.1. Bounds for the number of arcs

Within [5], NARC and NARC are respectively referenced in the description of
about 50 constraints (see, e.g., the disjoint (p. 436), the element (p. 460) and the
inverse (p. 568) constraints) and of 80 constraints (see, e.g., the change (p. 284)
and the element sparse (p. 486) constraints).

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 335

4.1.1. Estimating NARC

Before presenting the idea behind the lower bound on the number of arcs we
first need to introduce the notions of matching and of edge cover.

Definition 2. Given an undirected graph G, a matching of G is a set of edges of
G, excluding loops, such that no two edges have a vertex in common. A maximum
matching is a matching of maximum cardinality. µ(G) depicts the cardinality of
a maximum matching of G.

Definition 3. An edge cover of an undirected graph G is a subset S of edges of G
such that, for each vertex v of G, there is at least one edge e of S such that v is an
extremity of e. A minimum edge cover is an edge cover of minimum cardinality.

The minimum number of arcs in the final digraph Gf will be at least equal
to the current number of T -arcs |ET |. Moreover, in

−→
G (XT , ET) some isolated

T -vertices may remain. Since they will belong to Gf , each of them will be the
extremity of at least one arc in Gf . Therefore the lower bound is equal to |ET |
plus the minimum number of U -arcs of the intermediate digraph

−→
G(XTU , ETU)

required to cover all T -vertices that are not extremities of an arc in ET . This
second quantity is computed polynomially on an undirected graph derived from←→
G (XTU , EU)7. The principle is first to identify the number of isolated T -vertices
in
−→
G(XT , ET) which can be joined one another by turning U -arcs into T -arcs,

since this allows saving one arc in the estimation, for some of them. For all other
isolated T -vertices in

−→
G(XT , ET) an extra arc will be required.

Property 2. NARC ≥ |ET |+ |XT,¬T | − µ(
←→
G (XT,¬T , EU)).

Proof. By definition ∀e ∈ ET : e ∈ Ef (i.e., T -arcs belong to Gf). Thus NARC ≥
|ET |. Moreover in

←→
G (XT , ET) some vertices may have a null degree. Since they

will necessarily belong to Gf (since Gf does not contain isolated vertices), addi-
tional arcs will be required for connecting them. We consider the undirected graph←→
G (XT,¬T , EU), build with T -vertices of null degree in

←→
G (XT , ET) as well as the

U -arcs between these vertices. XT,¬T can be partitioned into the two sets XT,¬T,¬T

and XT,¬T,T . Vertices of the first set cannot be connected one another, therefore
one new arc will be necessary for each of them: NARC ≥ |ET |+ |XT,¬T,¬T |. Ver-
tices of the second set might be connected each other. We will need at least a num-
ber of arcs equal to the cardinality of a minimum edge cover in

←→
G (XT,¬T,T , EU).

From [19] we know that this quantity is |XT,¬T,T |−µ(
←→
G (XT,¬T,T , EU)). Since we

consider a partition of vertices and since by definition all edges in
←→
G (XT,¬T,T , EU)

involve only vertices of XT,¬T,T , from NARC ≥ |ET | + |XT,¬T,¬T | we have
NARC ≥ |ET | + |XT,¬T,¬T | + |XT,¬T,T | − µ(

←→
G (XT,¬T,T , EU)). Observe that

|XT,¬T,¬T | + |XT,¬T,T | = |XT,¬T |. Moreover by definition
←→
G (XT,¬T,¬T , EU) has

7Since in
−→
G(XTU , EU) all arcs have the same status (i.e., U -arcs), we can safely consider the

undirected graph
←→
G (XTU , EU).

336 N. BELDICEANU, T. PETIT AND G. ROCHART

(A)

41 2 3

5 6 7

41 2

5 6 7

(C)(B)

4

6 7

Figure 2. (A) Intermediate digraph and (B) undirected graph
used to compute the cardinality of a maximum matching for es-
timating NARC. (C) Example of a final digraph achieving the
lower bound.

no edges (All vertices of
←→
G (XT,¬T,¬T , EU) belong to XT,¬T,¬T , which is contra-

dictory with the fact of having an arc joining two of them in
−→
G(XT,¬T,¬T , EU).).

Therefore µ(
←→
G (XT,¬T,T , EU)) = µ(

←→
G (XT,¬T , EU)). The property holds. �

Example 7. Figure 2 illustrates Property 2. It shows how to compute NARC
according to the intermediate digraph

−→
G(XTU , ETU) given by Part (A). Part (B)

shows the corresponding undirected graph
←→
G (XT,¬T , EU) used for computing

the cardinality of a maximum matching. We have ET = {(1, 1), (1, 2), (5, 1)},
EU = {(1, 5), (2, 6), (3, 4), (4, 4), (5, 6), (6, 7), (7, 3)}, XT,¬T = {4, 6, 7}, |ET | = 3,
|XT,¬T | = 3, µ(

←→
G (XT,¬T , EU)) = 1, thus NARC ≥ 3 + 3 − 1 = 5. Part (C)

provides a final digraph where this lower bound of 5 arcs is reached.

Property 3. The lower bound provided by Property 2 is sharp.

Proof. We can build a final digraph by adding to the current digraph
−→
G(XT , ET):

• For each x ∈ XT,¬T,¬T any U -arc in
←→
G (XT , EU) such that x is an ex-

tremity.
• For each edge of a minimum edge cover of

←→
G (XT,¬T,T , EU) one arc in−→

G(XT,¬T,T , EU) having the same extremities than that edge.
By definition all T -vertices will be covered, and the total number of arcs will be
equal to |ET |+ |XT,¬T | − µ(

←→
G (XT,¬T , EU)). �

4.1.2. Estimating NARC

Property 4. NARC ≤ |ETU |.
Proof. By definition of

−→
G(XTU , ETU), any arc of the initial digraph that does

not belong to ETU will also not belong to the final digraph Gf . Thus NARC ≤
|ETU |. �

Property 5. The upper bound provided by Property 4 is sharp.

Proof. If all arcs of
−→
G(XTU , ETU) belong to Gf then NARC = |ETU |. �

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 337

4.2. Bounds for the Number of Vertices

Within [5], NVERTEX is only used in graph properties of the form
NVERTEX = variable , where variable is a domain variable, which means that
we need to both evaluate NVERTEX as well as NVERTEX. NVERTEX
is referenced in about 15 constraints such as, for instance, cutset (p. 382) or
group (p. 516).

4.2.1. Estimating NVERTEX

Before presenting the idea of the lower bound on the number of vertices we first
need to introduce the notions of bipartite graph and of hitting set.

Definition 4. An undirected graph G(X, E) is bipartite if there is a partition
(Y, Z) of X such that ∀(u, v) ∈ E, either u ∈ Y and v ∈ Z, or u ∈ Z and v ∈ Y .
Such a graph will be denoted by G((Y, Z), E).

Definition 5. Given a bipartite graph G((Y, Z), E), a hitting set [12] of G((Y, Z),
E) is a subset Z ′ of Z such that for any vertex y ∈ Y there exists an edge in E
connecting y to a vertex in Z ′. h(G) denotes the cardinality of a minimum hitting
set of G8.

When estimating NVERTEX, we know that all T -vertices will belong to Gf .
Since Gf does not contain isolated vertices and since

−→
G(XT , ET) may contain

isolated vertices, some additional U -vertices may have to be turned to T -vertices,
in order to connect those vertices. All isolated vertices in

−→
G(XT , ET) that are the

extremity of an U -arc such that the other extremity is a T -vertex may be connected
to Gf by that arc. Therefore we ignore these vertices. This case includes the case
of U -loops where the extremity is a T -vertex. From the remaining isolated vertices,
the number of required additional vertices is equal to the cardinality of a minimum
hitting set in an undirected graph derived from

←→
G (XTU , EU).

Property 6. NVERTEX ≥ |XT |+ h(
←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T)).

Proof. In the previous formula, XT,¬T,¬T represents the set of T -vertices that are
not the extremity of any T -arcs and that have not a T -vertex as neighbor, while
XU,¬T,T is the set of U -vertices that have at least one T -vertex as neighbor. Finally
EU,T is the set of U -arcs such that at least one of their extremities is a T -vertex.

All T -vertices in XT will belong to Gf . Starting from the point that Gf cannot
contain isolated vertices, some vertices in XT having a null degree in

←→
G (XT , ET)

may require to turn some U -vertices into T -vertices. By definition this is not the
case for vertices in XT,T . This is also not the case for vertices which are not covered
by a T -arc but which are the extremity of an arc in EU where the other extremity
is a T -vertex (i.e., the set XT,¬T,T). (XT,T , XT,¬T,T , XT,¬T,¬T) is a partition of
XT : let us consider now the case of vertices in XT,¬T,¬T . They are not directly

8From [12], computing the exact value of the cardinality of a minimum hitting set is NP-Hard
in the general case.

338 N. BELDICEANU, T. PETIT AND G. ROCHART

2

2

6

3

5

7

4

(B)(A)

31 4

5 6 7

(C)

76

1 3

XT,¬T,¬T

XU,¬T,T

Figure 3. (A) Intermediate digraph and (B) undirected graph
used to compute the cardinality of a minimum hitting set for es-
timating NVERTEX. (C) Example of a final digraph achieving
the lower bound.

connected one another neither by a T -arc nor by an U -arc. Therefore if this set is
not empty then some U -vertices will be forced to be turned to T -vertices. Those
U -vertices must be an extremity of at least one edge containing a T -vertex, so
we consider XU,¬T,T , and the arcs joining them to T -vertices. By definition the
minimum number of vertices in XU,¬T,T required to cover all vertices in XT,¬T,¬T

is h(
←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T)). The property holds. �

Example 8. Figure 3 illustrates Property 6. It shows how to compute the
lower bound of NVERTEX according to the intermediate digraph

−→
G(XTU , ETU)

depicted by Part (A) of Figure 3. Part (B) illustrates the corresponding bi-
partite graph

←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T) used for computing the cardinal-

ity of the minimum hitting set. We have XT = {1, 3, 6}, EU,T = {(1, 1), (1, 2),
(3, 4), (5, 1), (5, 6), (6, 7), (7, 3)}, XT,¬T,¬T = {3, 6}, XU,¬T,T = {2, 4, 5, 7}, |XT | =
3 and h(

←→
G ((XT,¬T,¬T , XU,¬T,T),EU,T)) = 1 (i.e., 7 allows to cover both 6 and 3),

thus NVERTEX ≥ 3+ 1 = 4. Part (C) provides a final digraph where this lower
bound of 4 vertices is reached.

Property 7. The lower bound provided by Property 6 is sharp.

Proof. Following the schema of the proof, it is possible to build a final digraph
from

←→
G (XT , ET) by turning to T -vertices h(

←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T)) U -

vertices. �

4.2.2. Estimating NVERTEX

Property 8. NVERTEX ≤ |XTU |.
Proof. By definition of

−→
G(XTU , ETU), any vertex of the initial digraph that does

not belong to XTU will also not belong to the final digraph Gf . Thus
NVERTEX ≤ |XTU |. �

Property 9. The upper bound provided by Property 8 is sharp.

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 339

Proof. This upper bound is reached when all vertices of
−→
G(XTU , ETU) belong to

the final digraph Gf . �

4.3. Bounds for the number of connected components

Within [5], NCC is most of the time used in graph properties of the form
NCC = variable , where variable is a domain variable, which means that we need
to both evaluate NCC as well as NCC. NCC is referenced in about 18 constraints
such as, for instance, cycle (p. 386), group (p. 516) or tree (p. 902).

4.3.1. Estimating NCC

Property 10. NCC ≥ |cc[|XT |≥1](
−→
G(XTU , ETU))|.

Proof. First observe that from Property 1,
−→
G(XTU , ETU) cannot have a con-

nected component consisting of one single isolated T -vertex. Second, note that all
arcs and vertices of a connected component of

−→
G(XTU , ETU), where there is no

T -vertices, may finally not belong to Gf . We can ignore them. To obtain in Gf

less connected components than the ones of
−→
G (XTU , ETU) containing T -vertices,

it is necessary to have at least one new arc that joins two of them. This is not
possible because

−→
G(XTU , ETU) contains all the arcs that will potentially belong

to Gf . The property holds. �
Property 11. The lower bound provided by Property 10 is sharp.

Proof. Build a final digraph with all arcs and vertices from ETU that belong to
a connected component of the set cc[|XT |≥1](

−→
G(XTU , ETU)). All the other U -arcs

from ETU are removed. The number of connected components will be equal to
|cc[|XT |≥1](

−→
G(XTU , ETU))|. �

4.3.2. Estimating NCC

T -vertices and T -arcs of
−→
G(XTU , ETU) will necessarily belong to Gf . If we

except T -vertices with no predecessor and no successor in
−→
G(XT , ET) we are able

to count in
−→
G(XTU , ETU) a certain number of connected components with only

T -vertices and T -arcs. By definition, augmenting any of these connected compo-
nents by new arcs cannot increase their number. Therefore, the intuitive idea for
computing an upper bound of NCC is first to count these connected components,
to remove them from

−→
G(XTU , ETU), to remove also all the arcs connected to them,

and then to estimate the maximum number of connected components that may
exist in the remaining digraph.

We have to take into account that some T -vertices with no predecessors and no
successors in

−→
G(XT , ET) may exist. These ones will belong to Gf . If they are fi-

nally connected to one of the connected components of cc[|ET |≥1](
−→
G(XT , ET)) (i.e.,

the set of connected components of
−→
G(XT , ET) containing at least one T -arc), then

they will not increase the number of connected components. Therefore, we can

340 N. BELDICEANU, T. PETIT AND G. ROCHART

ignore T -vertices with no predecessors and no successors exclusively connected to
the connected components previously counted9 in cc[|ET |≥1](

−→
G(XT , ET)). Sim-

ilarly we have to ignore U -vertices which are also exclusively connected to the
connected components in cc[|ET |≥1](

−→
G(XT , ET)).

Definition 6.
−→
G rem = (Xrem , Erem) is the digraph obtained from

−→
G(XTU , ETU)

by first removing all vertices present in the set of connected components
cc[|ET |≥1](

−→
G(XT , ET)) and then removing all vertices becoming isolated in the

remaining digraph.

Property 12. From Definition 6 we have:

• No vertex is common to Xrem and to a connected component of
cc[|ET |≥1](

−→
G(XT , ET)).

• All T -arcs belong to connected components in cc[|ET |≥1](
−→
G (XT , ET)).

• Any vertex, which is neither present in Xrem nor in cc[|ET |≥1](
−→
G(XT , ET)),

cannot be an extremity of an arc involving a vertex of Xrem .

Proof. By construction of
−→
G rem . �

From Property 12 we can safely add |cc[|ET |≥1](
−→
G (XT , ET))| to an estimation

of the maximum possible number of connected components in any final digraph
derived from

−→
G rem . This will give us the estimation NCC we are looking for. Let

us now go into details.

Notation 4. NCCrem denotes the maximum possible number of connected com-
ponents in any final digraph derived from

−→
G rem .

Notation 5.
←→
G rem = (Xrem , Erem) is the undirected graph obtained from the

undirected graph
←→
G (XTU , EU) by removing all vertices present in cc[|ET |≥1](

−→
G(XT ,

ET)) and then all vertices becoming isolated in the remaining undirected graph.

Definition 7. Given an undirected graph G, which eventually contains loops, a
l-matching of G is a set of edges such that no two edges have a vertex in common.
A maximum l-matching is a l-matching of maximum cardinality10. µl(G) denotes
the cardinality of a maximum l-matching of G.

Observe that a l-matching can contain loops.

Property 13. NCCrem = µl(
←→
G rem).

9We do not loose the sharp aspect of the evaluation because if such a vertex is connected
by only one arc to a connected component then this does not decrease the number of connected
components. It is possible to build a final digraph where all such vertices satisfy this property

(that is, connect them only by one arc to a connected component of cc[|ET |≥1](
−→
G(XT , ET))).

10Existing polynomial algorithms for computing maximum matchings can be adapted to this
case: each loop can be unfolded by creating a new vertex and then those algorithms apply.

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 341

Proof. For evaluating the maximum possible cardinality of a set of connected com-
ponents in any final digraph derived from

−→
G rem , we evaluate the maximum number

ns of subgraphs containing at least one edge among all sets of subgraphs built from←→
G rem as follows (we have to consider subgraphs with at least one edge because in
the final digraph Gf any vertex will be the extremity of at least one arc). Let S
be such a set of subgraphs. To each subgraph in S corresponds a subset of vertices
and a subset of edges of

←→
G rem forming a connected component, such that no two

subgraphs in S have a vertex in common.
Among the sets S where each subgraph is formed either by a single edge or by

an isolated U -vertex, ns is by construction equal to the cardinality of a maximum
l-matching. Therefore NCCrem ≥ µl(

←→
G rem).

Let us now prove by induction on the number of edges of
←→
G rem that NCCrem ≤

µl(
←→
G rem). For a graph

←→
G rem reduced to one single edge this is true. Assume

that this is true for a graph of m edges. We show that this still holds for a graph←→
G rem with m+1 edges. Let S be a set of subgraphs of

←→
G rem that maximizes the

number of subgraphs containing at least on edge. Two possible cases may occur
for S:

• Any subgraph in S contains at most one edge. In this case it forms a
maximum l-matching and ns = µl(

←→
G rem).

• There is a subgraph s ∈ S containing k > 1 edges.
– Either there exists one edge in s whose removal creates two connected

components, each of them involving at least one edge. This contra-
dicts the fact that S maximizes the number of subgraphs containing
at least one edge.

– Or such an edge does not exists. In this case removing any edge of
s has no impact on ns and by the induction hypothesis, ns is equal
to the cardinality of a maximum l-matching on the graph

←→
G ′rem

obtained from
←→
G rem by removing that edge.

By definition of a maximum l-matching, any maximum l-matching of←→
G rem have a cardinality greater than or equal to µl(

←→
G ′rem) when

µl(
←→
G ′rem) is obtained from

←→
G rem by removing one edge. NCCrem ≤

µl(
←→
G rem).

The property holds. �

Property 14. NCC ≤ |cc[|ET |≥1](
−→
G(XT , ET))| + µl(

←→
G rem).

Proof. From Property 12, any arc has at least either a vertex in cc[|ET |≥1](
−→
G(XT ,

ET)), or a vertex in
−→
G rem . �

Example 9. Figure 4 illustrates Property 14. It shows how to compute the upper
bound of NCC according to the intermediate digraph

−→
G(XTU , ETU) depicted by

Part (A) of Figure 4. In Part (A), C1 and C2 corresponds to the connected com-
ponents of

−→
G (XT , ET) that have at least one T -arc (i.e., cc[|ET |≥1](

−→
G(XT , ET))).

342 N. BELDICEANU, T. PETIT AND G. ROCHART

8

43

(B) (C)

4

765

321

(A)

1 2 3 4

5 6 7 8

C2

C1

Figure 4. (A) Intermediate digraph and (B) undirected graph
used to compute NCCrem for estimating NCC. (C) Example of
a final digraph achieving the upper bound.

Part (B) illustrates the corresponding undirected graph
←→
G rem on which we com-

pute a maximum l-matching. We have |cc[|ET |≥1](
−→
G(XT , ET))| = 2, NCCrem =

µl(
←→
G rem) = 2, thus NCC ≤ 2 + 2 = 4. Part (C) provides a final digraph where

this upper bound of 4 connected components is reached.

Property 15. The upper bound provided by Property 14 is sharp.

Proof. From Property 13, NCCrem is a sharp upper bound of the number of con-
nected components of

←→
G rem . From Property 13, NCCrem = µl(

←→
G rem). Within−→

G(XTU , ETU), the upper bound NCCrem is related to all U -arcs such that their
vertices are either U -vertices, or T -vertices with neither predecessor nor successor
in
−→
G(XT , ET), that is, T -vertices that do not belong to a connected component

of cc[|ET |≥1](
−→
G (XT , ET)).

The exact number of connected components of
−→
G(XT , ET) containing at least

one T -arc is |cc[|ET |≥1](
−→
G (XT , ET))|. Within

−→
G(XTU , ETU), from Property 12,

all T -arcs of
−→
G(XTU , ETU) belong to cc[|ET |≥1] (

−→
G(XT , ET)).

Finally, consider U -arcs such that at least one of their two vertices is a T -vertex
belonging to cc[|ET |≥1] (

−→
G(XT , ET)). By construction turning any of such an U -arc

to a T -arc will augment a previously counted connected component of cc[|ET |≥1]

(
−→
G(XT , ET)), but cannot create a new one. Therefore, |cc[|ET |≥1](

−→
G(XT , ET))|+

µl(
←→
G rem) is a sharp bound. �

4.4. Bounds for the number of strongly connected components

Within [5], NSCC is most of the time used in graph properties of the form
NSCC = variable , where variable is a domain variable. This means that we
need to both evaluate NSCC as well as NSCC. NSCC is referenced in about
12 constraints such as, for instance, not all equal (p. 688), nvalue (p. 698) or
soft alldifferent var (p. 814).

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 343

6 874

3211

11109

87654

32

(A) (B) (C)

C9C9

ZY

C8

C3 C4 C5 C6 C7

C1 C2

C7 C9

C6 C2

C3 C5 C6 C7

C8

Figure 5. (A) Intermediate digraph and (B) corresponding
bipartite graph used to compute the cardinality of a minimum
hitting set. (C) Example of a final digraph achieving the lower
bound.

4.4.1. Estimating NSCC

Property 16. NSCC ≥ |scc[|XT |≥1](
−→
G(XTU , ETU))| + h(GNSCC((Y, Z), E)),

where GNSCC((Y, Z), E) is the bipartite graph defined as follows:
• To each strongly connected component of

scc[|XT |=1∧|ETU |=0](
−→
G(XTU , ETU)), which has not as successor or

predecessor a vertex belonging to a strongly connected component of
scc[|XT |≥1](

−→
G(XTU , ETU)), corresponds a vertex in Y .

• To each strongly connected component of
−→
G(XTU , ETU), which has an arc

ingoing to or outgoing from a strongly connected component associated
with an element of Y , corresponds a vertex of Z.

• Given a vertex y ∈ Y and a vertex z ∈ Z, (y, z) ∈ E if and only if there
is an arc between a vertex of the strongly connected component associated
with Y and a vertex of the strongly connected component associated with
Z in the digraph

−→
G(XTU , ETU).

From Definition 5, h(GNSCC((Y, Z), E)) is the minimum number of elements of
Z required to connect all elements of Y (i.e., the cardinality of a minimum hitting
set).

Proof. First observe that two T -vertices that belong to two distinct strongly
connected components of

−→
G (XTU , ETU) also belong to distinct strongly

connected components of the final digraph Gf . Therefore NSCC ≥
|scc[|XT |≥1](

−→
G (XTU , ETU))|. Since in the final digraph any strongly connected

component contains at least one arc, the T -vertices corresponding to X require
to be linked to some additional strongly connected components. Then, by defini-
tion of a minimum hitting set, the minimum number of such additional strongly
connected components is h(GNSCC((Y, Z), E)). �

Example 10. Figure 5 illustrates Property 16 on the intermediate digraph−→
G(XTU , ETU) depicted by Part (A). All the strongly connected components C1,

344 N. BELDICEANU, T. PETIT AND G. ROCHART

C2, . . . , C9 of this intermediate digraph are enclosed in a dotted rectangle. Part
(B) shows the corresponding bipartite graph GNSCC((Y, Z), E) and outlines one
of its minimum hitting set with thick lines. Since 5 strongly connected components
of
−→
G(XTU , ETU) contain at least one T -vertex (i.e., C3, C5, C6, C7, C8) and since

the cardinality of a minimum hitting set on the bipartite graph GNSCC((Y, Z), E)
is equal to 1 (i.e., we need one extra strongly connected component in order to
connect the vertices of C6 and C7) we have NSCC ≥ 5 + 1 = 6. Part (C) pro-
vides a final digraph where this lower bound of 6 strongly connected components
is reached.

Property 17. The lower bound provided by Property 16 is sharp.

Proof. For proving that this lower bound is sharp, we show how to construct in four
steps a solution that reaches |scc[|XT |≥1](

−→
G(XTU , ETU))| + h(GNSCC((Y, Z), E))

strongly connected components:
(1) All U -vertices and U -arcs of strongly connected components of

scc[|XT |≥1](
−→
G(XTU , ETU)) are respectively turned into T -vertices and T -

arcs.
(2) For all T -vertices connected to such strongly connected components, which

are not involved in a T -arc, an U -arc is turned to a T -arc to connect them.
(3) Consider a minimum hitting set of GNSCC((Y, Z), E): we turn all

U -vertices and U -arcs of the strongly connected components of the sub-
set Z ′ of Z corresponding to that minimum hitting set to T -vertices and
T -arcs. For each T -vertex in Y we turn an U -arc connected to a strongly
connected component of Z ′ (by definition of GNSCC((Y, Z), E) such an
arc always exists).

(4) Finally, all remaining U -vertices and U -arcs are respectively turned
into F -vertices and F -arcs. This leads to a final digraph containing
|scc[|XT |≥1](

−→
G (XTU , ETU))| + h(GNSCC((Y, Z), E)) strongly connected

components.
�

4.4.2. Estimating NSCC

Property 18. NSCC ≤ |scc(−→G(XTU , ET))|.
Proof. Since the digraph

−→
G(XTU , ET) does not contain any U -arcs, all its U -

vertices are isolated. Thus, |scc(−→G(XTU , ET))| = |scc(−→G (XT , ET))| + |XU |. Two
distinct vertices of

−→
G(XT , ET) that belong to the same strongly connected com-

ponent of
−→
G (XT , ET) will also belong the same strongly connected component of

the final digraph Gf . Therefore we can have |scc(−→G(XT , ET))| strongly connected
components in a final digraph. Moreover, we count one extra strongly connected
component for each U -vertex since we can connect each of them without creating
any new circuit. This leads to the upper bound. �

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 345

(A)

2 3 4

5 6 7

1

8

2 3 4

5 6 7

1

8

(C)(B)

1 3 42

5 6 7 8

Figure 6. (A) Intermediate digraph and (B) graph used for
estimating NSCC. (C) Example of a final digraph achieving the
upper bound.

Example 11. Parts (A) and (B) of Figure 6 illustrate Property 18. It shows
how to compute the upper bound of NSCC according to the intermediate digraph−→
G(XTU , ETU) depicted by Part (A). Part (B) illustrates the corresponding digraph−→
G(XTU , ET), which has 7 strongly connected components, thus NSCC ≤ 7.
Part (C) provides a final digraph where this upper bound of 7 strongly connected
components is reached.

Property 19. The upper bound provided by Property 18 is sharp.

Proof. We show how to construct a solution that reaches |scc(−→G(XTU , ET))|
strongly connected components with no isolated vertices. Consider the digraph−→
G(XTU , ETU), where we contract each strongly connected component consisting
of only T -vertices into one single vertex. On this new digraph we construct a
spanning forest F . Now, if we remove from

−→
G(XTU , ETU) all U -arcs that do not

belong to F , we get a solution with the required number of strongly connected
components with no isolated vertices. �

4.5. Bounds for the number of sinks

Within [5], NSINK is most of the time used in graph properties of the form
NSINK = variable , where variable is a domain variable, which means that we
need to both evaluate NSINK as well as NSINK. NSINK is referenced in about
15 constraints such as, for instance, common (p. 332), same (p. 754) or sort (p. 842).

4.5.1. Estimating NSINK

In order to evaluate NSINK we first need to introduce the notion of reduced
digraph.

Definition 8. Given a digraph G, the reduced digraph Gr is derived from G in
the following way:

• To each strongly connected component of G corresponds a vertex of Gr.
• To each arc of G that connects different strongly connected components

corresponds an arc in Gr (multiple arcs between the same pair of vertices
are merged).

346 N. BELDICEANU, T. PETIT AND G. ROCHART

Property 20. NSINK ≥ |sink[|XT |=1](
−→
G(XTU , ETU))| + h(G′r((Y, Z), E)),

where G′r((Y, Z), E) is the bipartite graph stem from the reduced digraph of−→
G(XTU , ETU) in the following way:

• Y denotes the set of strongly connected components scc[|XT |=1∧|ETU |=0]

(
−→
G(XTU , ETU)) such that:
– For all y ∈ Y , y is not a sink in the reduced digraph.
– All descendants in the reduced digraph of a vertex y ∈ Y correspond to

strongly connected components of
−→
G(XTU , ETU) reduced to one single

U -vertex with no arc, that is, belonging to scc[|XT |=0∧|XU |=1∧|ETU |=0]

(
−→
G(XTU , ETU)).

• Z denotes the set of strongly connected components in
scc[|XT |=0∧|XU |=1∧|ETU |=0](

−→
G (XTU , ETU)) that are sinks in the re-

duced digraph.
• An edge e = (y, z), y ∈ Y , z ∈ Z belongs to E if and only if there is a

path from y to z in the reduced digraph.

Proof. The vertices in sink[|XT |=1](
−→
G(XTU , ETU)) will also be sinks of the final

digraph Gf . Moreover all T -vertices such that there is a path to a vertex in
sink[|XT |=1](

−→
G (XTU , ETU)) or to a circuit of

−→
G(XTU , ETU) can be non-sink ver-

tices in Gf by setting to T -arcs and T -vertices all the U -arcs and U -vertices of the
corresponding path.

Let us now consider the simplified digraph
−→
G′(XTU , ETU) stem from

−→
G(XTU ,

ETU) from which we remove all vertices v verifying one of the following conditions:

• v is in sink[|XT |=1](
−→
G(XTU , ETU)) or v is in scc[|ETU |≥1](

−→
G (XTU , ETU))

(i.e., v belongs to a circuit of
−→
G(XTU , ETU)).

• There is a non-empty path from v to a T -vertex or to a circuit of
−→
G(XTU ,

ETU).
By construction the minimum number of sinks over all final digraphs associated
with

−→
G(XTU , ETU) is equal to |sink[|XT |=1](

−→
G(XTU , ETU))| plus the minimum

number of sinks over all final digraphs associated with
−→
G′(XTU , ETU). Observe

that all sources of
−→
G′(XTU , ETU) are T -vertices corresponding to the set Y of

G′r((Y, Z), E). In addition all sinks of
−→
G′(XTU , ETU) are U -vertices corresponding

to the set Z of G′r((Y, Z), E). Let v be such a sink. By construction, any U -vertex,
which is an ascendant of v in

−→
G′(XTU , ETU) has a set of ascendant T -vertices

included in the set of ascendant T -vertices of v. Therefore the minimum number of
sinks over all final digraphs associated with

−→
G′(XTU , ETU) is equal to the minimum

hitting set of G′r((Y, Z), E). The property holds. �

Example 12. Figure 7 illustrates Property 20 on the intermediate digraph−→
G(XTU , ETU) depicted by Part (A). Parts (B) and (C) respectively give
the corresponding simplified digraph

−→
G′(XTU , ETU) as well as the corre-

sponding bipartite graph G′r((Y, Z), E), where Y = {6, 7}, Z = {14, 15}

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 347

9

7 15

6 14

11

14

6

15

7

12

8 9

4

13

10

5

(B)

(C)

14

11

6 7

1 2 3

STEP 4.a

STEP 4.b

STEP 1

S
T

E
P

 3

STEP 1

(D)

13

10

5

1 2 3 4

(A)

14 15

11 12

6 7 8

Figure 7. (A) Intermediate digraph, (B) corresponding sim-
plified digraph and (C) corresponding bipartite graph used to
compute the cardinality of a minimum hitting set. (D) Steps
for constructing a final digraph achieving the lower bound.

and E = {(6, 14), (7, 14), (7, 15)}. Since
−→
G(XTU , ETU) contains a single

T -vertex that is a sink, sink[|XT |=1](
−→
G(XTU , ETU)) = {{13}} and thus

|sink[|XT |=1](
−→
G (XTU , ETU))| = 1. The cardinality of the minimum hit-

ting set, h(G′r((Y, Z), E)), is equal to 1. As a consequence NSINK ≥
|sink[|XT |=1](

−→
G (XTU , ETU))| + h(G′r((Y, Z), E)) = 2. Part (D) provides a final

digraph where this lower bound of 2 sinks is reached. The four steps for construct-
ing such a lower bound are given in the proof of the next property.

Property 21. The lower bound provided by Property 20 is sharp.

Proof. For proving that this lower bound is sharp, we show how to construct a
solution that reaches |sink[|XT |=1](

−→
G (XTU , ETU))|+ h(G′r((Y, Z), E)) sinks:

(1) All U -vertices and U -arcs of a strongly connected component of
scc[|ETU |≥1](

−→
G(XTU , ETU)) are respectively turned into T -vertices and T -

arcs.
(2) For each still isolated T -vertex u such that there is a non-empty path from

u to a strongly connected component containing at least one arc, turn all
U -vertices and U -arcs of that path into T -vertices and T -arc.

(3) For each still isolated T -vertex u such that there is a non-empty path from
u to a T -vertex that is a sink, turn all U -vertices and U -arcs of that path
into T -vertices and T -arcs.

(4) Given a minimum hitting set of G′r((Y, Z), E):
(a) Turn all U -vertices of

−→
G(XTU , ETU) corresponding in G′r((Y, Z), E)

to the subset Z ′ of Z belonging to the minimum hitting set into T -
vertices.

(b) For each still isolated T -vertex u such that there is a non-empty path
from u to a vertex of Z ′, turn all U -vertices and U -arcs of that path
into T -vertices and T -arc.

348 N. BELDICEANU, T. PETIT AND G. ROCHART

1 2

3 4

5

6

7 8

9

Figure 8. An intermediate digraph for which the upper bound
of NSINK is not sharp.

Observe that only Step 4 implies the creation of new T -vertices that are sinks.
Their number is equal to h(G′r((Y, Z), E)). �

4.5.2. Estimating NSINK

Notation 6. Within
−→
G(XTU , ETU), let XP denote the set of U -vertices that

are not sources and such that at least one successor is a sink having one single
predecessor.

Property 22. NSINK ≤ |sink(
−→
G(XT , ET))| + |XU | − |source[|XU |=1](

−→
G (XTU ,

ETU))| − |XP |.
Proof. Let S be the set of vertices that cannot for sure be sinks of the final digraph
Gf . S corresponds to those T -vertices which have an outgoing T -arc. The quantity
|sink(

−→
G(XT , ET))|+|XU | is equal to the difference between the number of vertices

of the initial digraph Gi and the number of elements of S. We can remove from this
quantity the number of U -vertices that are sources in the intermediate digraph.
Moreover a pending vertex in

−→
G(XTU , ETU) and its predecessor cannot be both

sinks in a final digraph. Therefore we can also remove |XP |. �

Property 23. The upper bound provided by Property 22 is not sharp.

Proof. Consider the intermediate digraph depicted by Figure 8. Since we do
not have any T -vertex, |sink(

−→
G(XT , ET))| = 0. Since the number of sources

is equal to 3 and since XP = {3} we have |sink(
−→
G(XT , ET))| + |XU | −

|source[|XU |=1](
−→
G(XTU , ETU))| − |XP | = 0 + 9 − 3 − 1 = 5. But we can only

get a maximum of 4 sinks since the leftmost and rightmost connected components
respectively can generate at most 2 and 2 (and not 3 as suggested by the upper
bound) sinks. �

Within the catalog of global constraints [5], all constraints mentioning NSINK
are represented by a bipartite graph where the set of vertices is partitioned into
the set of sources and the set of sinks. In this context the upper bound provided by
Property 22 is sharp. This stems from the fact that |XU |−|source[|XU |=1](

−→
G(XTU ,

ETU))| represents the set of U -vertices with no outgoing arc in the bipartite graph.
Since they are not isolated they can all be turned to T -vertices.

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 349

Table 2. Bounds of the different graph parameters. Columns S
and C respectively indicate the sharpness and the complexity of
each bound (P and N respectively denote “polynomial” and “NP-
Complete”).

Graph Parameter Bound S C

NARC |ET | + |XT,¬T | − µ(
←→
G (XT,¬T , EU)) Yes P

NARC |ETU | Yes P

NVERTEX |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T), EU,T)) Yes N

NVERTEX |XT U | Yes P

NCC |cc[|XT |≥1](
−→
G(XT U , ET U))| Yes P

NCC |cc[|ET |≥1](
−→
G(XT , ET))|+ µl(

←→
G rem) Yes P

NSCC |scc[|XT |≥1](
−→
G(XT U , ET U))| + h(GNSCC((Y, Z), E)) Yes N

NSCC |scc(
−→
G(XT U , ET))| Yes P

NSINK |sink[|XT |=1](
−→
G(XT U , ETU))| + h(G′

r((Y, Z), E)) Yes N

NSINK |sink(
−→
G(XT , ET))| + |XU | − |source[|XU |=1](

−→
G(XT U , ETU))| − |XP | No P

5. Summary

This section recapitulates the different bounds and provides the related infor-
mation with respect to complexity and sharpness (see Tab. 2).

The problem of a sharp bound on the maximum number of sinks remains open.
Regarding complexity, the three non-polynomial bounds are the lower bounds of
NVERTEX, NSCC and NSINK. They all involve the minimum hitting set
problem. For NVERTEX and NSCC the part of the formula corresponding to
the minimum hitting set comes from the fact that no isolated vertex can remain
in the final digraph Gf .

6. Applications to other contexts

This section shows how to use the bounds of graph parameters in the context of
the CP(Graph) framework [10] and in the context of over-constrained problems.

6.1. CP(Graph)

This section shows how the results of this paper can be exploited within the
CP(Graph) framework. The CP(Graph) framework introduces graph variables as
well as constraints on these variables for representing some constraints related to
graphs. The main similarities and differences of both approaches respectively are:

• Both the graph-based representation of global constraints introduced in [1]
and the CP(Graph) framework represent a global constraint as the search
of a subgraph of an initial digraph, so that this subgraph verifies some
graph properties. Similar graph properties are relevant in both approaches.

350 N. BELDICEANU, T. PETIT AND G. ROCHART

Table 3. Bounds of the different graph parameters in the con-
text of the CP(Graph) framework. Columns S and C respectively
indicate the sharpness and the complexity of each bound (P and
N respectively denote “polynomial” and “NP-Complete”).

Graph Parameter Bound S C

NARC |ET | Yes P

NARC |ETU | Yes P

NVERTEX |XT | Yes P

NVERTEX |XTU | Yes P

NCC |cc[|XT |≥1](
−→
G(XTU , ETU))| Yes P

NCC |cc(−→G(XT , ET))| + |XU | Yes P

NSCC |scc[|XT |≥1](
−→
G(XTU , ETU))| Yes P

NSCC |scc(−→G(XTU , ET))| Yes P

NSINK |sink[|XT |=1](
−→
G(XTU , ETU))| + h(G′

r((Y, Z), E)) Yes N

NSINK |sink(
−→
G(XT , ET))| + |XU | Yes P

• The CP(Graph) framework introduces graph variables, while the graph
properties representation stays with domain and set variables, which allows
us to model existing global constraints. The graph-based representation
forbids isolated vertices in the final digraph, which is not the case for the
CP(Graph) framework.

From a filtering perspective, both the CP(Graph) framework and the graph-based
representation have to find out which arcs and vertices will effectively belong
to the final digraph. Observe that the graph-based representation has also to
propagate all binary constraints associated with the arcs of the final digraph,
which is not the case for the CP(Graph) framework. The lower and upper bounds
of a graph variable can be respectively reinterpreted as the graphs

−→
G(XT , ET) and−→

G(XTU , ETU). As a consequence, if we take into account the fact that isolated
vertices may belong to the final digraph, all bounds of Section 4 can be easily
adapted to the context of CP-graph. This leads to new bounds summarized in
Table 3.

All previous bounds are sharp. Regarding complexity, all the bounds are poly-
nomial but NSINK.

6.2. Over-constrained problems

In over-constrained problems all the constraints cannot be simultaneously satis-
fied. It is required to relax some of them to obtain a solution. Relaxed constraints
are called soft constraints. A soft constraint is derived from its original constraint
by adding a cost. This cost expresses a distance to the satisfaction of the original
constraint. Within the context of soft global constraints, Beldiceanu and Petit pre-
sented in [6] a generic definition of costs based on graph properties. They showed
that, given a ground solution, computing such a cost is polynomial. Unfortunately,

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 351

the paper does not deal with filtering aspects. In order to do so, we propose to
exploit the properties that were presented in Section 4. Let us first consider those
soft constraints derived from global constraints that can be represented by one
single graph property.

Definition 9 (Ground solutions: violation cost of a graph property [6]). Consider
the graph property P op V representing a global constraint C. Let p denotes the
effective value of the graph parameter P on the final digraph Gf associated with the
instantiated global constraint C. Depending on the value of op (i.e., =, �=,≥,≤),
the violation cost of P op I is:

• cost(p, =, V) = |p− V |,
• cost(p, �=, V) = 1−min(1, |p− V |),
• cost(p,≥, V) = max(0, V − p),
• cost(p,≤, V) = max(0, p− V).

In constraint programming the cost of a soft constraint can be directly rep-
resented by a domain variable of the problem11. In our context this variable is
cost(P, op, V). The soft constraint is consistent if and only if the intermediate di-
graph can be extended to a final digraph where the effective value p of P satisfies
the expression of Definition 9 that corresponds to op. It depends on the current
domains of variables V and on cost(P, op, V). Typically, branch and bound algo-
rithms for solving over-constrained problems progressively reduce the upper bound
of the domain of cost(P, op, V).

Furthermore, propagation according to P and P can be performed on variables
V and cost(P, op, V). A constraint involving P , V and cost(P, op, V) can be
directly derived from Definition 9: instead of considering a single value p, we then
consider a range of allowed values for P , which is defined by P and P . Such
a constraint can be propagated in a classical way, providing us with a filtering
technique. In this context, all the propositions of Section 4 are relevant.

Definition 10 (Graph properties based violation cost [6]). Consider a global
constraint defined by a conjunction of graph properties. The violation cost of such
a global constraint is the sum of the violation costs of its graph properties.

From Definition 10, the filtering technique can be generalized to constraints
defined by several graph properties, by propagating a constraint derived from
several expressions instead of being derived from a single one.

7. Conclusion

This article provides lower and upper bounds for the set of most common graph
parameters used in the graph-based representation of global constraints. It is the
first step to mechanically obtain a filtering algorithm for those global constraints
that can be specified by a conjunction of graph properties. It also highlights the
use of bounds of graph parameters for the CP(Graph) framework as well as for

11Both for the sake of efficiency [1, 22, 28, 29] and expressivity [21].

352 N. BELDICEANU, T. PETIT AND G. ROCHART

constraint relaxation. In order to get a stronger filtering, a natural continuation of
this work would be to identify and drop elements of the initial digraph according
to the bounds of graph parameters. Finally to get efficient filtering algorithms one
should also specialized our bounds to specific graph classes that arise in practice
in the catalog [5].

Acknowledgements. The authors thank Sophie Demassey for clarifying notation 2.

References

[1] P. Baptiste, C. Le Pape and L. Peridy, Global Constraints for Partial CSPs: A Case-Study of
Resource and Due Date Constraints, in Principles and Practice of Constraint Programming
(CP’98), edited by M. Maher and J.-F. Puget, Springer-Verlag, Lect. Notes Comput. Sci.
1520 (1998) 87–101.

[2] N. Beldiceanu, Global Constraints as Graph Properties on a Structured Network of Elemen-
tary Constraints of the Same Type, in Principles and Practice of Constraint Programming
(CP’2000), edited by R. Dechter, Springer-Verlag, Lect. Notes Comput. Sci. 1894 (2000)
52–66. Preprint available as SICS Tech Report T2000-01.

[3] N. Beldiceanu, Global Constraints as Graph Properties on Structured Network of Elemen-
tary Constraints of the Same Type. Technical Report T2000-01, Swedish Institute of Com-
puter Science (2000).

[4] N. Beldiceanu, M. Carlsson and T. Petit, Deriving Filtering Algorithms from Constraint
Checkers, in Principles and Practice of Constraint Programming (CP’2004), edited by
M. Wallace, Springer-Verlag, Lect. Notes Comput. Sci. 3258 (2004) 107–122. Preprint avail-
able as SICS Tech Report T2004-08.

[5] N. Beldiceanu, M. Carlsson and J.-X. Rampon, Global Constraint Catalog. Technical Report
T2005-08, Swedish Institute of Computer Science (2005).

[6] N. Beldiceanu and T. Petit, Cost Evaluation of Soft Global Constraints, in Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR 2004), edited by J.-C. Régin and M. Rueher, Springer-Verlag, Lect. Notes
Comput. Sci. 3011 (2004) 80–95.

[7] C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan and T. Walsh, Filtering Algorithms for the
nvalue Constraint, in International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’05),
Prague, Czech Republic, edited by R. Barták and M. Milano, Springer-Verlag, Lect. Notes
Comput. Sci. 3524 (2005) 79–93

[8] C. Bessière and P. Van Hentenryck, To Be or not to Be . . . a Global Constraint, in Principles
and Practice of Constraint Programming (CP’2003), edited by F. Rossi, Springer-Verlag,
Lect. Notes Comput. Sci. 2833 (2003) 789–794.

[9] C. Bessière and J.-C. Régin, Refining the Basic Constraint Propagation Algorithm, in Pro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001, edited by B. Nebel, Morgan Kaufmann
(2001) 309–315.

[10] G. Dooms, Y. Deville and P. Dupont, CP(Graph): Introducing a Graph Computation Do-
main in Constraint Programming, in Principles and Practice of Constraint Programming
(CP’2005), edited by P. van Beek, Springer-Verlag, Lect. Notes Comput. Sci. 3709 (2005)
211–225.

[11] E.C. Freuder and R.J. Wallace, Partial constraint satisfaction. Artificial Intelligence 58
(1992) 21–70.

[12] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company (1979).

BOUNDS OF GRAPH PARAMETERS FOR GLOBAL CONSTRAINTS 353

[13] D. Hanák, Implementing Global Constraints as Structured Graphs of Elementary Con-
straints. Scientific Journal Acta Cybernetica 16 (2003) 241–258.

[14] P. Van Hentenryck, Y. Deville and C.M. Teng, A Generic Arc Consistency Algorithm and
its Specializations. Artificial Intelligence 57 (1992) 291–321.

[15] P. Van Hentenryck, V. Saraswat and Y. Deville, Design, implementation, and evaluation of
the constraint language cc(FD). J. Logic Programming 37 (1998) 139–164.

[16] I. Katriel and S. Thiel, Fast Bound Consistency for the global cardinality Constraint, in
Principles and Practice of Constraint Programming (CP’2003), edited by F. Rossi, Springer-
Verlag, Lect. Notes Comput. Sci. 2833 (2003) 437–451.

[17] K. Mehlhorn and S. Thiel, Faster Algorithms for Bound-Consistency of the sortedness
and the alldifferent Constraint, in Principles and Practice of Constraint Programming
(CP’2000), edited by R. Dechter, Springer-Verlag, Lect. Notes Comput. Sci. 1894 (2000)
306–319.

[18] U. Montanari, Networks of constraints: Fundamental properties and applications to picture
processing. Information Science 7 (1974) 95–132.

[19] R.Z. Norman and M.O. Rabin, An algorithm for minimum cover of a graph. American Math.
Soc. 10 (1959) 315–319.

[20] G. Pesant, A Regular Language Membership Constraint for Finite Sequences of Variables,

in Principles and Practice of Constraint Programming (CP’2004) edited by M. Wallace,
Springer-Verlag, Lect. Notes Comput. Sci. 3258 (2004) 482–495.

[21] T. Petit, J-C. Régin and C. Bessière, Meta constraints on violations for over constrained
problems, in 12th IEEE International Conference on Tools with Artificial Intelligence (IC-
TAI 2000), 13-15 November 2000, Vancouver, BC, Canada, IEEE Computer Society (2000)
358–365.

[22] T. Petit, J-C. Régin and C. Bessière, Specific filtering algorithms for over constrained prob-
lems, in Principles and Practice of Constraint Programming (CP’2001), edited by T. Walsh,
Springer-Verlag, Lect. Notes Comput. Sci. 2239 (2001) 451–463.

[23] C.-G. Quimper, A. López-Ortiz, P. van Beek and A. Golynski, Improved Algorithms for
the global cardinality Constraint, in Principles and Practice of Constraint Programming
(CP’2004), edited by M. Wallace, Springer-Verlag, Lect. Notes Comput. Sci. 3258 (2004)
542–556.

[24] J.-C. Régin, A Filtering Algorithm for Constraints of Difference in CSP, in 12th National
Conference on Artificial Intelligence (AAAI-94) (1994) 362–367.

[25] J.-C. Régin, Generalized Arc Consistency for global cardinality Constraint, in 14th National
Conference on Artificial Intelligence (AAAI-96) (1996) 209–215.

[26] J.-C. Régin, The Symmetric alldiff Constraint, in 16th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI-99) (1999) 420–425.

[27] P. Turán, On an Extremal Problem in Graph Theory. Mat. Fiz. Lapok 48 (1941) 436–452,
in Hungarian.

[28] W.-J. van Hoeve, A Hyper-Arc Consistency Algorithm for the soft alldifferent Constraint,
in Principles and Practice of Constraint Programming (CP’2004), edited by M. Wallace,
Springer-Verlag, Lect. Notes Comput. Sci. 3258 (2004) 679–689.

[29] W.-J. van Hoeve, G. Pesant and L.-M. Rousseau, On global warming: Flow-based soft global
constraints, in Journal of Heuristics 12 (2006) 347–373.

[30] N.R. Vempaty, Solving Constraint Satisfaction Problems using Finite State Automata, in
National Conference on Artificial Intelligence (AAAI-92), AAAI Press (1992) 453–458.

