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A DISCRETE-TIME APPROXIMATION TECHNIQUE FOR
THE TIME-COST TRADE-OFF IN PERT NETWORKS
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Abstract. We develop a discrete-time approximation technique deal-
ing with the time-cost trade-off problem in PERT networks. It is as-
sumed that the activity durations are independent random variables
with generalized Erlang distributions, in which the mean duration of
each activity is a non-increasing function of the amount of resource al-
located to it. It is also assumed that the amount of resource allocated
to each activity is controllable. Then, we construct an optimal control
problem with three conflicting objective functions. Solving this opti-
mal control problem, optimally, is impossible. Therefore, a discrete-
time approximation technique is applied to solve the original multi-
objective optimal control problem, using goal attainment method. To
show the advantages of the proposed technique, we also develop a Sim-
ulated Annealing (SA) algorithm to solve the problem, and compare
the discrete-time approximation results against the SA and also the
genetic algorithm results.
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INTRODUCTION

The most important method to schedule a project assuming deterministic du-
rations is the well-known CPM — Critical Path Method. However, most durations
have random natures and therefore, PERT was proposed to determine the dis-
tribution of the total duration, 7. This method is based on the substitution of
the network by the CPAD — critical path assuming that each activity has a fixed
duration equal to its mean (critical path using average durations). The mean and
the variance of the CPAD are given by the sum of the means and of the variances
of its activities, respectively, and therefore these results considered the mean and
the variance of the total duration of the network.

Unfortunately, this is an optimistic assumption as the real mean, E(T), is
greater than or equal to such estimate. Thus, many authors have studied:

1. Analytical approximations of the cumulative distribution function of T,
F(T). Charnes et al. [5] developed a chance-constrained programming approach
to PERT problems. They assume exponential activity durations. Martin [27]
provided a systematic way of analyzing PERT networks through series-parallel
reductions. Fatemi Ghomi and Hashemin [12] generalized the Gaussian quad-
rature formula to compute F(T). Fatemi Ghomi and Rabbani [13] presented a
structural mechanism, which changes the structure of network to a series-parallel
network, to estimate F(T). Schmit and Grossmann [35] developed a new technique
for computing the exact overall duration of a project, when activity durations use
a probability density function which combines piecewise polynomial segments and
Dirac delta functions, defined over a finite interval. Pontrandolfo [30] provided an
approximate estimate of the project duration by deriving the equations that put
into relation the duration of the project and those of every possible PERT-path.
Kulkarni and Adlakha [24] developed a continuous-time Markov process approach
to PERT problems.

2. Upper or lower bounds of F(T). Elmaghraby [9] provided lower bounds for the
true, expected project completion time. Fulkerson [17], Clingen [7], Robillard [31]
and Perry and Creig [29] have done the similar works.

3. Monte-Carlo simulation to estimate F(¢). Several authors have used condi-
tional sampling to achieve variance reduction (see Burt and Garman [4],
Garman [18] and Sigal et al. [34]). Fishman [15] achieved further variance re-
duction by using a combination of quasirandom points and conditional sampling
to estimate the distribution and mean of project completion time.

In CPM networks, activity duration is viewed either as a function of cost or a
function of resources committed to it. The well-known time-cost trade-off problem
(TCTP) in CPM network takes the former view. In the TCTP, the objective
is to determine the duration of each activity in order to achieve the minimum
total direct and indirect costs of the project. Studies on TCTP have been done
using various kinds of cost functions such as linear (Fulkerson [16] and Kelly [21]),
discrete (Demeulemeester et al. [8]), convex (Lamberson and Hocking [25] and
Berman [3]) and concave (Falk and Horowitz [11]).
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When the cost functions are arbitrary (still non-increasing), a dynamic pro-
gramming (DP) approach was suggested by Robinson [32]. Another powerful
approach for solving this problem on dynamic programming was presented by
Elmaghraby [10]. Tavares [36] has presented a general model based on the de-
composition of the project into a sequence of stages, in that the optimal solution
can be easily computed for each practical problem as it is shown for a real case
study. Golenko-Ginzburg and Gonik [19] developed a heuristic method for the sto-
chastic extension of the CPM TCTP model, which takes into account the chance
element of time, yet ignores the possible difference between the actual cost and the
pre-given budget. Laslo [26] developed some formulations of TCTP models that
represent different assumptions of the effect of the changing performance speed on
the frequency distribution parameters of the activity duration, as well as the effect
of the random activity duration on the activity cost.

Weglarz [37] studied this problem using optimal control theory and assuming
that the processing speed of each activity at time ¢ is a continuous, non-decreasing
function of the amount of resource allocated to the activity at that instant of
time. This means that also time is here considered as a continuous variable.
Unfortunately, it seems that this approach is not applicable to networks with a
reasonable size (>10).

Recently, some researchers have adopted computational optimization techniques
such as genetic algorithms and simulated annealing to solve TCTP. Feng et al. [14],
Chau et al. [6] and Azaron et al. [1] proposed models using genetic algorithms and
the Pareto front approach to solve construction time-cost trade-off problems.

The mentioned TCTP models mainly focus on deterministic situations. PERT
does not take into account the time-cost trade-off, analytically. Therefore, com-
bining the aforementioned concepts to develop an optimal or near-optimal method
dealing with the time-cost trade-off problem under uncertainty would be beneficial
to scheduling engineers in forecasting a more realistic project completion time and
cost.

In this paper, we initially extend the method developed by Kulkarni and Ad-
lakha [24] to analytically obtain the distribution function of project completion
time in Markov PERT networks with generalized Erlang distributions of activity
durations. This is done through solving a system of linear differential equations,
which is obtained from a relevant continuous-time Markov process. Then, we con-
struct an optimal control problem with three conflicting objective functions and
develop a discrete-time approximation technique to solve this problem. Finally, we
develop a simulated annealing algorithm and compare the discrete-time approx-
imation results against the simulated annealing and also the genetic algorithm
results, proposed by Azaron et al. [1].

It is assumed that the amount of resource allocated to each activity is con-
trollable, where the mean duration of each activity is a non-increasing function
of this control variable. The direct cost of each activity is also assumed to be a
non-decreasing function of the amount of resource allocated to it.

The problem is formulated as a multi-objective optimal control problem, where
the objective functions are the project direct cost (to be minimized), the mean of
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the project completion time (min) and its variance (min). Then, goal attainment
technique is used to solve this multi-objective problem and to obtain the optimal
resources allocated to the activities.

Solving this optimal control problem, optimally, is impossible. Therefore, we
either need an approximation technique or a heuristic algorithm to solve the prob-
lem. First, we do the discretization of time and convert the optimal control
problem into an equivalent nonlinear optimization problem. Then, we develop
a simulated annealing algorithm to solve the problem. Finally, we compare the
discrete-time approximation results against the simulated annealing and also the
genetic algorithm results, which are two powerful heuristic algorithms.

The remainder of this paper is organized in the following way. In Section 1,
an analytical method for obtaining the distribution function of project comple-
tion time in Markov PERT networks is presented. In Section 2, we present the
multi-objective optimal control problem. In Section 3, we explain about the sim-
ulated annealing algorithm to solve the problem. In Section 4, we solve some
numerical examples and compare the discrete-time approximation results against
the simulated annealing and the genetic algorithm results. Finally we draw some
conclusions of the paper in Section 5.

1. PROJECT COMPLETION TIME IN MARKOV PERT NETWORKS

A project is represented as an Activity-on-Arc (AoA) graph, where an activity
begins as soon as all its predecessor activities have finished. In this section, we
present an analytical method to obtain the distribution function of project com-
pletion time in Markov PERT networks, or in fact the distribution function of the
longest path length from the source to the sink node of a directed acyclic stochastic
network, in which the arc lengths or activity durations are mutually independent
random variables with generalized Erlang distributions. To do this, we extend the
technique of Kulkarni and Adlakha [24].

Approximating general distributions by phase-type (PH) distributions has sig-
nificant applications in the analysis of stochastic systems. A popular approach to
analyzing stochastic networks involving a general distribution of service time G is
to approximate G by a PH distribution. A PH distribution is a very general mix-
ture of exponential distributions. It has been shown that matching three moments
is sufficient for accurate modeling of many systems. Most existing algorithms for
fitting a general distribution G to a PH distribution, restrict their attention to a
subset of PH distributions. This chosen subset is the class of generalized Erlang
distributions, refer to Neuts [28] for more details.

Now, let G = (V, A) be a PERT network, where the source and sink nodes
are denoted by s and ¢, respectively. Let V' = {v1,va,..., v} represent the set
of nodes, and A = {aq,aq, ..., a, } represent the set of activities of the PERT net-
work. Duration of activity a € A (Ta) exhibits a generalized Erlang distribution
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of order n, and the infinitesimal generator matrix G, as:

Dt Aa O - 00
0 Az Aw - 0 0
Go=| :
0 0 0 e Aan,
0o 0 0 0 0

In this case, T, would be the time until absorption in the absorbing state. An
Erlang distribution of order n, is a generalized Erlang distribution with A\,; =
Ag2 = ... = Agn. When n, = 1, the underlying distribution becomes exponential
with the parameter A,1.

First, we transform the original PERT network into a new one, in which all
activity durations have exponential distributions. For constructing this network,
we use the idea that if the duration of activity a is distributed according to a
generalized Erlang distribution of order n, and the infinitesimal generator ma-
trix G, it can be decomposed to n, exponential serial arcs with the parameters
Aal, Aa2s s Aan- Then, we substitute each generalized Erlang activity with n,
serial exponential activities with the parameters A\;1, a2, --v Aan-

Now, Let G’ = (V’, A") be the transformed network, in which V' and A’ rep-
resent the sets of its nodes and activities, respectively. The duration of each
activity a € A’ in the transformed network is exponential with parameter \,. For
a € A', let a(a) be the starting node of arc a, and 8(a) be the ending node of arc a.

Definition 1. Let I(v) and O(v) be the sets of arcs ending and starting at node v,
respectively, which are defined as follows:

Iw)={ac A :Ba)=v} (@eV) (1)

OWw)={ae A :aa)=v} (veV’). (2)

Definition 2. If X C V', such that s € X and t € X = V' — X, then an
(s,t) cut is defined as:

(X, X)={ae A :ala) € X, B(a) € X}. (3)
An (s,t) cut (X, X) is called an uniformly directed cut (UDC), if (X, X) is empty.

Definition 3. Let D = E U F be a uniformly directed cut (UDC) of a net-
work. Then, it is called an admissible 2-partition, if E(F = ¢ and I(3(a)) ¢ F
for any a € F.
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Definition 4. We assume that the project modeled by network G starts at time
zero and ends at a random time 7. During the project execution and at time ft,
each activity can be in one of the active, dormant or idle states, which are defined
as follows:

Active: an activity is active at time t, if it is being executed at time t.

Dormant: an activity is dormant at time ¢, if it has finished but there is at
least one unfinished activity in 7(3(a)). If an activity is dormant at time ¢,
then its successor activities in O(3(a)) cannot begin.

Idle: an activity is idle at time ¢, if it is neither active nor dormant at time ¢.

The sets of active and dormant activities are denoted by Y(t) and Z(t), respec-
tively, and X (t) = (Y'(¢), Z(¢)).

Let S denote the set of all admissible 2-partition cuts of the network, and
S =SU{(¢,#)} Note that X (t) = (¢, ) implies that Y (t) = ¢ and Z(t) = ¢, i.e.
all activities are idle at time t and hence the project is completed by time ¢.

It is proven that {X(¢),t > 0} is a continuous-time Markov process with the
state space S (refer to Kulkarni and Adlakha [24] for details). The infinitesimal
generator matrix of this process is denoted by Q = [¢{(E, F),(E', F")}], (E,F)
and (E', F') € S where

N ifae B I(B(a) ¢ FU{a}, (4)
E'=E—{a},F' = FU{a};

if a € E,1(B(a)) C FU{a},

E,F),(E',F)} = Aa E' = (E —{a}) UO(B(a)), (5)
(B, F), (B, F) By

2acpra if B'=EF' =F; (6)

0 otherwise. (7)

{X(t),t > 0} is a finite-state absorbing continuous-time Markov process. Since
q{(9,®)(d, 9)} = 0 this state would be an absorbing one and obviously the other
states are transient. Furthermore, the states in S are numbered such that the @Q
matrix is an upper triangular matrix. We assume that the states are numbered
1,2,...,N = |S|. State 1 is the initial state, namely (O(S), #) and state N is the
absorbing state, namely (¢, ¢).

Let T represent the length of the longest path in the network, or the project
completion time. Clearly, T'= min{t > 0: X (¢t) = N/X(0) = 1}. Thus, T is the
time until {X (¢),t > 0} gets absorbed in the final state starting from state 1.

Kolmogorov backward or forward equations can be applied to compute F(t) =
P{T < t} or the distribution function of project completion time in the Markov
PERT network. Using the backward algorithm, we define:

Pi(t) = P{X(t) = N/X(0) =i} i=1,2,.,N (8)

Therefore, F(t) = Pi(t).
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The system of differential equations for the vector P(t) = [Pi(t), P2(t),...,
Py(t)]7 is given by

P'(t) = QP(t)
P(0) = 0,0, ...,1]%. (9)

2. MULTI-OBJECTIVE OPTIMAL CONTROL PROBLEM

In this section, we develop a multi-objective model to optimally control the
resources allocated to the activities in a PERT network whose activity durations
exhibit generalized Erlang distributions, where the mean duration of each activity
is a non-increasing function and the direct cost of each activity is a non-decreasing
function of the amount of resource allocated to it. We may decrease the project
direct cost by decreasing the amount of resources allocated to the activities. How-
ever, clearly it causes the mean project completion time to be increased, because
these objectives are in conflict with each other. Consequently, an appropriate
trade-off between the total direct costs and the mean project completion time is
required. The variance of the project completion time should also be considered in
the model, because when we only focus on the mean time, the resource quantities
may be non-optimal if the project completion time substantially varies because of
randomness.

Therefore, we face a multi-objective stochastic programming problem. The
objective functions are the project direct cost (to be minimized), the mean of
project completion time (min) and the variance of project completion time (min).

The direct cost of activity a € A is assumed to be a non-decreasing function
dq(x4) of the amount of resource z, allocated to it. Therefore, the project direct
cost (PDC) would be equal to PDC = 3" 4 da(4a).

The mean duration of activity a € A, which is equal to >

;'Iil %@j’
to be a non-increasing function g,(z,) of the amount of resource z, allocated
to it. Let U, represent the amount of resource available to be allocated to the
activity a, and L, represent the minimum amount of resource required to achieve
the activity a.

The mean and the variance of project completion time are given by

is assumed

B(T) = /0 TPl at (10)

2

Var(T) = /OOO 2P| (t)dt — [/OOO tPl’(t)dt] (11)

where P{(t) is the density function of project completion time.
The infinitesimal generator matrix ) would be a function of the vector A =
Aaj,a € A, j=1,2,..,n,]7 in the optimal control problem, where n, is the order
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of the generalized Erlang distribution. Therefore, the nonlinear dynamic model is:

P'(t) = QN P(t)
Pi(0)=0 i=1,2,.,N—1.
Py(t) =1 (12)

Accordingly, the appropriate multi-objective optimal control problem is:
Min fi(z,A) =3 ,c 4 daa
Min fo(z,\) = [;°tP/(t)dt
Min f3(z,\) = [;C2P{(t)dt — [, tP{(t)dt]?

s.t.

Pi(0)=0 i=1,2,.,N—1

ga(wa) =372 5 a€A

z, < U, a€ A
Ty > Lg acA
Aaj =0 a€ A, j=1,2,..,ng. (13)

A possible approach to solving (13) to optimality is to use the maximum principle,
see Sethi and Thompson [33] for details. It is proved that finding the optimal solu-
tion of the above optimal control problem is impossible (refer to Azaron et al. [1]
for details). Relatively, few optimal control problems can be solved optimally. So,
we need an approximation or a heuristic technique to solve this problem.

First, we use an approximate technique. In this technique, we do the discretiza-
tion of time and convert the optimal control problem (13) into an equivalent nonlin-
ear programming problem. In other words, we transform the differential equations
into the equivalent difference equations as well as transform the integral terms into
equivalent summation terms. To follow this approach, the time interval is divided
into K equal portions with the length of At. If At is sufficiently small, it can be
assumed that P(t) varies only in times 0, At, ..., (K — 1)At . Since each P;(k), for
1 =1,2,...N—1,k = 1,2,..., K, is a distribution function, then the following
constraints should also be considered in the final discrete-time problem.

P(K)<1 i=1,2,.,N-1, k=12, ..K. (14)
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Theoretically, when K approaches to infinity and At approaches to zero, the opti-
mal results of the original problem will be obtained, but in this case the computa-
tional time also approaches to infinity, which is not practical in reality. Practically,
we should select a finite value for K. The accuracy of the discrete-time approxi-
mation model is guaranteed by using a small value for At and a large value for K.
An accurate solution should also possess the following property: Pi(K) > 1 — ¢,
in which € is a positive value approaching zero.

We also develop a simulated annealing approach to solve the problem. Fi-
nally, we compare the discrete-time approximation technique against the simu-
lated annealing technique and the genetic algorithm to show the advantages of the
discrete-time approximation technique.

2.1. GOAL ATTAINMENT METHOD

The goal attainment method requires setting up a goal and weight, b; and ¢;
(¢; >0), 5 =1,2,3, for the project direct cost, the mean of the project completion
time and its variance, respectively. The c; relate the relative under-attainment of
the b;. For under-attainment of the goals, a smaller ¢; is associated with the more
important objectives. c;, j = 1,2, 3, are generally normalized so that 2?21 c; = 1.

Considering P(kAt) or the kth value of P as P(k), the appropriate goal at-
tainment formulation of the discrete-time approximation of the time-cost trade-off
problem leads to:

Min z
s.t.
e da(a) —c12 < by
Wy RAH(PL(k +1) = Py(k)) — c22 < by

o (RA2(Py(k + 1) — Pu(k)) — [y kAL(Py(k + 1) — Py(k))]? — c3z < bs

P(k+1) = P(k) + Q\)P(k)At k=01, K—1

Pi(0)=0 i=1,2,..,N—1

Py(k) =1 k=0,1,.,K

Pik) <1 i=1,2,.,N-1, k=12 ..,K
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z, < U, a€ A
ZazLa ac A
Az > 0. (15)

Lemma 1. If zx is Pareto-optimal, then there exists a ¢, b pair such that zx is
an optimal solution to the optimization problem (15).

The optimal solution using this formulation is fairly sensitive to b and c¢. De-
pending upon the values for b, it is possible that ¢ does not appreciably influence
the optimal solution. Instead, the optimal solution can be determined by the
nearest Pareto-optimal solution from b. This might require that ¢ be varied para-
metrically to generate a set of Pareto-optimal solutions.

Solving the goal attainment formulation (15) leads to the approximated objec-
tive function value z (z4pproz). For computing the exact value of (2gzqct), in order
to obtain the accuracy of the discrete-time approximation technique, we should do
the following approach. After solving the optimization problem (15) and obtaining
A*, we compute P (t) from equation (9). Then, the exact mean and the variance
of the project completion time are computed from (10) and (11), respectively.
Finally, zgzqct is given by

)

C1 C2 C3

“bact = Maz { PDC —by E(T) = by Var() ~by } |

(16)

3. SIMULATED ANNEALING ALGORITHM

3.1. INTRODUCTION

Simulated annealing (SA) is a stochastic relaxation technique that has its origin
in statistical mechanics (refer to Kirkpatrick et al. [22] and Koulamas et al. [23]).
The SA methodology draws its analogy from the annealing process of solids. In the
annealing process, a solid is heated to a high temperature and gradually cooled to
low it to crystallize. As the heating process allows the atoms to move randomly, if
the cooling is done too rapidly, it gives the atoms enough time to align themselves
in order to reach a minimum energy state that named stability or equipment. This
analogy can be used in combinatorial optimization, in which the state of solid
corresponding to the feasible solution, the energy at each state corresponding to
the improvement in the objective function and the minimum energy state will be
the optimal solution.

SA uses a stochastic approach to direct the search. It allows the search to
proceed to a neighboring state even if the move causes the value of the objective
function becomes worse. SA guides the original local search method in the fol-
lowing way. If a move to a neighbor X’ in the neighborhood N(X) decreases the
objective function value, or leaves it unchanged, then the move is always accepted.
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X1 | X2 | X3 | ... | XA

FIGURE 1. Solution representation.

SUB InitTemp()

DO

Generate two solutions X; and X at
random

LOOP UNTIL (Zapp(X1) # Zapp(X2))

Set TOZ -l ZAPP(XI)' ZAPP(X2)|/11’1(0.9)
END SUB

FIGURE 2. Generation of initial temperature subroutine-pseudo code.

More precisely, the solution X’ is accepted as the new current solution if A < 0
where A = C(X’) — C(X) and C(X) is the value of objective function. Moves,
which increase the objective function value, are accepted with a probability of
e(=2/T) to allow the search to escape a local optimum; where T' is a parameter
named the temperature. The value of T varies from a relatively large value to
a small value close to zero. These values are controlled by a cooling schedule
that specifies the initial and incremental temperature values at each stage of the
algorithm.

3.2. SA IMPLEMENTATION

3.2.1. Solution representation

As shown in Figure 1, the solution is represented by an array with A entries
that A is the number of activities in PERT network. The value of ith entry is the
amount of resource allocated to activity ¢ where L; < z; < U;.

3.2.2. Initial temperature

The initial temperature is generated according to a heuristic procedure, which
is shown in Figure 2. This procedure ensures that in primary iterations of SA al-
gorithm, the probability of accepting the non-improver solutions is about 90 per-

cent. Because, according to the InitTemp() presented in Figure 2, we have

—AZapp
e v ~0.9.

3.2.3. Neighborhood search

For exploitation of solution space and generating the neighbor solutions, we use
an arithmetic mutation, in which the value of allocated resource to a randomly
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SUB MUTATION (X" =(x/.%}.....x....x} )
Select activity a at random
choose u randomly at interval (0,1)
choose Arandomly at interval (0,1)
If u > 0.5 Then
Y= AX" + (1-)U,

Elese

V' ALa+ (1-2) X'
End If

X” = (xl”’x;’“" yZ,...,x;;)
END SUB

FIGURE 3. Generation of neighborhood solution subroutine-
pseudo code.

selected activity is changed base on the linear combination of the current value of
allocated resource and its upper or lower bound. The related procedure is shown
in Figure 3.

3.2.4. Temperature updating rule

We consider a well-known temperature updating rule introduced by Gutz-
mann [20]. According to the Gutzmann rule, the rate of decreasing temperature

at each iteration is as below:
L ﬂ 1/MTT
= e

where A is the number of activities, Tp is the initial temperature and T’ is the final
temperature. MTT is the maximum number of consecutive temperature trails that
is a stoppage rule.

3.2.5. SA algorithm

The principle advantage of simulated annealing algorithm is escaping of local
optimums by acceptation of no improver solutions with respect to the certain prob-
ability in each temperature. The SA algorithm has two inside and outside loops.
The inside loop controls the achievement to equilibrium in the current temperature
and outside loop controls the rate of temperature decrease. The SA parameters
are as follows:

EL (Epoch Length): Number of accepted solutions in each temperature for
achieving to equipment.
MTT: Maximum number of consecutive temperature trails.
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r=0,T =Ty, X" =@, EL=100, MTT=20

Generate X’
Xb”t — X()
Call InitTemp( )
Te=To/2
Yaarr
=4 {L/] ; A= number of activities (Gutzmann, 1987)
T
(" Do (Outside loop)
n=0
( Do (Inside loop)

X""=MUTATION(X")
AZapp = Zare(X"") - Zapp(X")
If AZpp <0 Then
n=n+1 and X" = X""
<< If Zapp(X") - Zapp(X***")<0 Then X" = X"
Else
Generate y — U(0,1) Randomly

7AZA1’I’

T,

”

Set z=¢€
Ify <zThenn=n+1 and X' = X"
\ End if

Loop While( n < EL)

r=r+1

T, =axT,,
Loop While (r < MTT and T,> Ty)
Print X*'

FIGURE 4. SA algorithm pseudo code.

To: Initial temperature.

Ty: Final temperature.

a: Decreasing rate of the temperature (cooling schedule).

X: Typical solution.

Zapp(X): The fitness of solution X with respect to the approximate value
of z

n: Counter for number of accepted solutions in each temperature.

r: Counter for number of consecutive temperature trails, where T, is equal
to temperature in iteration r.

The steps of complete algorithm are shown in Figure 4. Each problem is exe-
cuted ten times and the best obtained solution is reported.

4. NUMERICAL EXAMPLES

To investigate the performance of the proposed method for the time-cost trade-
off problem in PERT networks, we consider 3 typical very small, small and medium-
scaled cases with different configurations. Cases I, IT and III are shown in Fig-
ures 5, 6 and 7, respectively. Tables 1, 2 and 3 show the characteristics of the
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1 2

FIGURE 7. Case III.

TABLE 1. Characteristics of the activities in Case I.

A | Distribution | Parameters | dq(2a) | 9a(2a) | La | Ua

1 | Exponential A1 3:0% +2124—5x1 | 1 4

2 | Exponential Ao 209 +1(120—3x5 | 1 6

3 | Generalized | (A31,A\32) T3 15—223| 1 | 6
Erlang

activities in Cases I, IT and III, respectively. The cost unit is in thousand dollars
and the time unit is in months. The objective is to obtain the optimal allocated
resource quantities, using the discrete-time approximation technique.
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TABLE 2. Characteristics of the exponential activities in Case II.

A do(za) 9a(a) L,

2.231 0.7 — 0.1331
3ra+1|1.5—02x,
xr3 + 2 1—-0.1z3

Ty 1.5 —0.324
3x5+4|0.9—0.1xs
z6+3 | 1.1 —0.1xzg

o|alklolo|o|S

S| U | W[N]~
= = = =] =] =

TABLE 3. Characteristics of the exponential activities in Case III.

a | do(za) 9a(a) L, |U,
1 21, 0.7—0.1xy | 1.5 | 3
2 | 3xz2+1 |15—-02z9| 15| 3
3| 23+2 | 1-01zs |15] 3
4 T4 1.5 — 031‘4 1.5 3
5 | 35 +4 | 1.3—-02z5| 15| 3
6 | 26+3 | 1.1—0.126|15] 3
7| 2x7+5 | 15—-02z7 | 15| 3
8 | dzs+1 | 1-02z5 |15] 3
9 | bx9g+2 |09—-01xg | 1.5 | 3
10| 2290+3 | 2—04x10 | 1.5 3

The sizes of the state spaces in Cases I, II and III are equal to 7, 17 and 25,
respectively. Then, three factorial experiments according to the following three
sets of c:

el : (el =0.909, c2 = 0.0455, ¢3 = 0.0455)
€2 : (¢l =0.7693, c2 = 0.0769, ¢3 = 0.1538),
€3 : (c1 =0.8929,¢2 = 0.0178, ¢3 = 0.0893),

and also the following two sets of b in the three indicated cases:

Case I: b1 : (b1 = 25,52 = 8,b3 = 25), b2 : (b1 = 40,b2 = 7,b3 = 20),
Case II: b1 : (b1 = 40,52 = 1.5,b3 = 0.7), b2 : (b1 = 35,02 = 1.6,b3 = 0.8),
Case III: b1 : (bl = 65,b2 = 5,b3 = 3.5), b2 : (bl = 70,b2 = 4.5,b3 = 3),

are designed to obtain a set of Pareto-optimal solutions in each case. For ex-
ample, using the first set of ¢ leads to the following considerations: one month
deviation from the mean project completion time is as important as its variance
and 20 times as important as one thousand dollars deviation from the project
direct cost, respectively.
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FIGURE 8. Objective function values of Case I.

We consider the following levels of K (K = 20, K =50 and K = 200) in our
computational experiments. Pj(K) should be greater than 0.99 in all experiments.
To satisfy this property, we consider the following combinations of K and At in
Cases I, II and III, respectively: (K = 20,At¢t = 2), (K = 20,A¢ = 0.25) and
(K = 20,At = 0.5), if K = 20, (K = 50,At = 0.8), (K = 50, At = 0.1) and
(K =50,At = 0.2), if K =50, and finally (K = 200, At = 0.2), (K = 200, At =
0.025) and (K = 200, At = 0.05), if K = 200. LINGO 6 is used to compute the
approximated objective function values (Zappros.) and the related computational
times, according to the goal attainment formulation (15) for the six indicated
combinations of b and ¢ in each case. The exact objective function values (Zgzqct)
are also computed from equation (16).

We also solve the problem using both the simulated annealing and the genetic
algorithm, proposed by Azaron et al. [1], and compare the discrete-time approxi-
mation results against the simulated annealing and the genetic algorithm results.

Figures 8, 9 and 10 show the approximated and the exact objective function
values in the discrete-time approximation technique for the six combinations of b
and c in Cases I, II and III, respectively, considering K = 20, 50 and 200, and
also the objective function values using the simulated annealing and the genetic
algorithm.

Figures 11, 12 and 13 show the related computational times (sec.) on a PC
Pentium IV 2.1 GHz for the six combinations of b and ¢ in Cases I, II and III,
respectively, using the three mentioned techniques.

According to Figures 8, 9 and 10, in almost all combinations of the three in-
dicated cases, the approximated and the exact objective function values in the
discrete-time approximation technique are decreased, when we increase K, or the
accuracy of the discrete-time approximation method is increased. The differences
between Zapproz. and Zggac: are also decreased, when K is increased. Moreover,
in all cases, the objective function values obtained using the discrete-time ap-
proximation technique with K = 200, which seem to be optimal or very near to
optimal solutions, are less than the values obtained by the simulated annealing and
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FIGURE 9. Objective function values of Case II.
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FiGURE 11. Computational times of Case I.

the genetic algorithm, especially when there is any activity with non-exponential
duration in the PERT network such as Case I.

According to Figures 11, 12 and 13, computational time grows with K. Compu-
tational times are also strongly dependent on the network size and also the number
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FicURE 13. Computational times of Case III.

of activities with non-exponential durations in the network. Moreover, compar-
ing the computational times in the discrete-time approximation technique against
the simulated annealing and the genetic algorithm shows that the discrete-time
approximation technique is not computationally efficient in large-sized problems,
especially when using a large value for K. The computational times using the ge-
netic algorithm are much less than the other methods, especially in Cases I and II.

It is totally concluded that if we take some more time or increase the value
of K in the discrete-time approximation technique, the quality of results would
be much better than the simulated annealing and the genetic algorithm as two
heuristic alternatives for solving the problem.

5. CONCLUSIONS

In this paper, we developed a discrete-time approximation technique dealing
with the time-cost trade-off problem in PERT networks with generalized Erlang
distributions of activity durations.
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The multi-objective nonlinear optimization problem was cast into a discrete-
time approximation, and the latter model was solved using the goal attainment
technique. This method has fewer variables to work with, so it will be compu-
tationally faster, and therefore is a good method to solve our problem, which is
very complicated to solve even with the presented discrete-time approximation
technique.

We solved three different typical cases with different configurations. It was
found that in all cases, the approximated and the exact objective function values
are decreased, when K is increased. Moreover, the differences between Z4pproz.
and Zgg.c are decreased, when K is increased. We also concluded that the com-
putational time is strongly dependent on the network size and grows with K.

When K approaches to infinity and At goes to zero, the approximated dis-
crete project completion time distribution approaches to the original continuous
distribution. In this case, the optimal solution of the discrete-time problem also
approaches to the optimal solution of the original continuous-time problem, ac-
cordingly. An optimal difference scheme is the minimum value for At, in which

The discrete-time approximation technique is not computationally efficient es-
pecially for solving large scale problems. As indicated, the computational times
using the simulated annealing and the genetic algorithm are significantly lower
than the discrete-time approximation technique, but the quality of the discrete-
time approximation results is better than those heuristic algorithms, when K is
increased.

As mentioned, solving the original optimal control problem, optimally, is im-
possible. Therefore, we should have either used the discrete-time approximation
technique or a heuristic approach to solve the problem. The efficiency of any
heuristic approach for solving large-sized problems can be tested by comparing its
results against the discrete-time approximation results in small and medium-sized
problems. For example, according to our experiments, the quality of results in the
simulated annealing is mainly better than the genetic algorithm, while the compu-
tational times using the genetic algorithm are less than the simulated annealing.

As explained, each general distribution can be approximated by a phase-type
distribution. Therefore, our model can be easily extended to the general PERT
networks, where general activity durations are allowed. In general PERT networks,
the non-exponential distributions are approximated by the appropriate generalized
Erlang distributions, first, (by matching the first three moments) and then our
proposed model is applied to obtain the optimal allocated resource quantities.

Another multi-objective technique like the surrogate worth trade-off method,
method of satisfactory goals or STEM could also be applied to solve our multi-
objective problem (see Azaron et al. [2], which is dealing with the surrogate worth
trade-off method).
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