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MIP-BASED HEURISTICS FOR MULTI-ITEM
CAPACITATED LOT-SIZING PROBLEM WITH SETUP
TIMES AND SHORTAGE COSTS*

NABIL ABsi®? AND SAFIA KEDAD-SIDHOUM!

Abstract. We address a multi-item capacitated lot-sizing problem
with setup times that arises in real-world production planning con-
texts. Demand cannot be backlogged, but can be totally or partially
lost. Safety stock is an objective to reach rather than an industrial con-
straint to respect. The problem is NP-hard. We propose mixed inte-
ger programming heuristics based on a planning horizon decomposition
strategy to find a feasible solution. The planning horizon is partitioned
into several sub-horizons over which a freezing or a relaxation strategy
is applied. Some experimental results showing the effectiveness of the
approach on real-world instances are presented. A sensitivity analysis
on the parameters of the heuristics is reported.

Keywords. Lot-sizing, setup time, shortage cost, safety stock deficit,
production planning, mixed integer programming, heuristic.
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INTRODUCTION

The production planning problems encountered in the industry are generally in-
tractable due to several practical constraints. In this context, the decision maker
has to find a good feasible solution in a reasonable execution time rather than
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an optimal one. The problem under consideration arises from an industrial con-
text. In this way, the resolution approach proposed in this paper is motivated by
developing a tool that helps in finding a good feasible solution for the multi-item
capacitated lot-sizing problem with setup times (MCLSP) in which there is a time-
varying demand for a set of N items denoted Z = {1,2,---, N} over T periods.
The production should satisfy a restricted capacity and must take into account a
set of additional constraints.

The production of an item requires one or more resources per period. This can
be induced by the length of the time bucket or the need to use several parallel
resources, typically, material and human. We denote by R the number of available
resources.

Launching the production of an item at a given period involves a time-varying
capacity and a fixed consumption of resource usually called setup time in lot-sizing
literature. For each period, an inventory cost is attached to each item as well as a
variable unit production cost and a setup cost.

In practice, it often happens that no backlogging is allowed. Indeed, the cus-
tomers do not allow any delay on the deliveries. In this case, the orders are
cancelled and we talk about a partial or a total loss of requirement, this is called
a shortage on the demand. The most important cause of shortages is the capacity
resource limitations.

The MCLSP problem has the distinctive feature of allowing requirement short-
ages because we deal with problems with tight capacities. The objective here is to
evaluate the volume of the demand that could meet the available capacity rather
than to estimate the resources capacity. Indeed, when we are in lack of capacity
to produce the total demand, we try to spread the available capacity among the
items by minimizing the total amount of demand shortages. Thus, we introduce in
the model a unit cost parameter for each item at each period for the requirement
not met regarding the demand. These costs should be viewed as penalty costs and
their values are very high in comparison with other cost components.

The use of safety stock is widely prevalent in industry to counter variability
that may be present in a supply chain environment. In our study, a safety stock
is an objective or a target to be reached rather than an industrial constraint to
respect. It can happen that we cannot reach this safety stock; in this case we talk
about safety stock deficits for which we introduce a unitary cost parameter for
each item at each period. These costs should also be viewed as penalty costs and
their values are lower than shortage costs and very high in comparison with other
cost components.

An item could have two or more setup times. The first one depends only on
the item, and the second one is shared by several items. In this case, items that
have the same setup time are gathered in a same group. An item can belong to
one or more groups. Thus, a group can contain one or more items. Launching the
production of an item at a given period involves a setup time and a setup cost for
the group to which it belongs. We denote by J the number of groups.
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Moreover, production planning allows not only determining the quantities to
produce to meet the demands, but also to choose between several manufactur-
ing processes. Indeed, it often happens that alternative modes of production are
available since several production lines or operating sets are used such as sales-
men or subcontractors. Each alternative has specific production cost and resource
consumption parameters. We denote by V' the number of operating sets.

In addition, for economic reasons and in order not to make small crop years,
the decision maker can be brought to fix a threshold of production (minimum
production) which it should be exceeded when the manufacture of an item is
launched. This model is often used when we have big setup costs or times.

In this context, the MCLSP problem consists in finding a production planning
that minimizes the demand shortages, the safety stock deficits as well as the setup,
the inventory and the production costs.

Production planning models involving multiple items, restrictive capacities and
significant setup times have often been studied in the literature. Obtaining optimal
and sometimes even feasible solutions remains challenging. Trigeiro et al. [26]
were among the firsts to try to solve such models. They proposed a lagrangean
relaxation based heuristic to solve the single-machine, multi-item, capacitated lot-
sizing problem with setup times to obtain near-optimal solutions.

Miller et al. [20], Belvaux and Wolsey [4], Leung et al. [14] and Pochet and
Wolsey [21] proposed exact methods to solve multi-item capacitated lot-sizing
problems by strengthening the LP formulations with valid inequalities and then
using a mixed integer programming (MIP) solver.

Different approaches were studied in the literature to solve the classical multi-
item lot-sizing problem with setup times [9,22]. But if all the industrial features
of the problem previously described are taken into account, such approaches are
difficult to generalize and to implement.

In this paper, we present a hybrid method based on a MIP formulation of the
problem and a decomposition strategy of the planning horizon in order to provide
a feasible solution to the MCLSP problem and try to meet the maximum amount
of client’s needs and to reach the safety stock levels. To the best of our knowledge,
the problem we consider has never been tackled before in the literature. For more
details about the characteristics of the MCLSP problem, the reader can refer to
Absi [1].

Florian et al. [11] and Bitran and Yanasse [5] have shown that the single-item
capacitated lot-sizing problem is NP-hard, even for many special cases. Chen and
Thizy [7] have proved that multi-item capacitated lot-sizing problem with setup
times is strongly NP-hard.

There are few references dealing with lot-sizing problems with shortage costs
or safety stocks. Recently, Sandbothe and Thompson [23] addressed a single-
item lot-sizing problem with constant capacity and shortage costs. The authors
proposed an O(T?) forward dynamic programming algorithm to solve the problem.
Aksen et al. [3] proposed a dynamic programming method to solve the same
problem without capacity constraints in O(T?). Loparic et al. [16] proposed valid
inequalities for the single-item uncapacitated lot-sizing problem with sales instead
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of fixed demands and lower bounds on stock variables. Other authors used specific
MIP-based heuristics to solve lot-sizing problems. We can quote, Clark [8], Kelly
[12], Mercé and Fontan [18], Pochet and Van Vyve [27], Stadtler [24] and Suerie
and Stadtler [25].

The main contributions of this paper are twofold. First, we propose a MIP
formulation for the MCLSP problem. Secondly, we develop MIP-based heuristics
to solve this problem. These methods are integrated in an Advanced Planning
and Scheduling (APS) software. An outline of the remainder of the paper is
as follows. Section 1 describes a MIP formulation of the MCLSP problem. In
Section 2, we illustrate the planning horizon decomposition strategy. In Section 3,
we develop two MIP-based heuristics using this planning horizon decomposition.
Finally, computational results and sensitivity analysis are reported in Section 4 to
show the effectiveness of these MIP-based heuristics.

1. FORMULATION OF THE MCLSP PROBLEM

In this section, we present a MIP formulation of the MCLSP problem, which
is an extension of the classical formulation previously studied by Miller [19] and
Trigeiro et al. [26] for some special cases of the MCLSP problem. This formulation
is usually called aggregated model, see [6]. Other formulations are studied in the
literature. We can mention the facility location-based formulation introduced by
Krarup and Bilde [13] and the shortest path formulation proposed by Evans [10].

In the sequel of the paper, we denote byt =1,..., N, t=1,.... T, 5=1,...,J,
r=1,...,Rand v = 1,...,V respectively for the index of an item, a period, a
group, a resource and an operating set. We set x,;; as the quantity of item i
produced at period ¢ using operating set v. To deal with the fixed setup times
and costs for an item, we need also to define y,;; as a binary variable equal to 1
if item 4 is produced at period ¢ using operating set v (i.e. if x,; > 0). We need
also to define a binary variable z,;; to deal with the group setup times and costs.
This variable is equal to 1 if at least one item i belonging to group j is launched
on operating set v at period t. The variable s;; is the inventory value for item i
at the end of period ¢t. To try to meet the demand for an item ¢ at period ¢, we
could anticipate the production over some periods of time. Therefore, o;; denotes
the last period at which an item 7 produced at period ¢ can be consumed.

The demand shortage for item ¢ at period ¢ is modelled by a non-negative
variable r;; with a very high unit penalty cost in the objective function. Indeed,
the aim of the model considered is to meet the customer’s demand and thus to
have the minimum amount of requirements not met.

Let I;tr and I, represent respectively overstock variable and safety stock deficit
variable of item ¢ at period ¢. I, has a high unit penalty cost in the objective
function. However, this penalty is lower than demand shortage cost. We set [;;
as a parameter which represents the safety stock of item ¢ at period ¢t. Thus, the
variable s;; can be replaced by I;{ + liy — I, . In addition, the following notations
are used in order to describe the mathematical model of the MCLSP problem:
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d;+: demand for item ¢ at period t.

crt: available capacity of resource r in period t.

fuvirt: setup time for item 4, using operating set v, on resource r, at period ¢.
Vyirt: variable resource consumption for item ¢, using operating set v, on resource
r, at period t.

Jujre: setup time for group j, using operating set v, on resource r, at period ¢.

1 if item ¢ belongs to group j.

A5 = .
0 otherwise

payt: minimum production level for item ¢, using operating set v, on resource 7,

at period t.

Qui¢: production unit cost for item ¢, using operating set v, on resource r, at period
t.

Buit: setup cost for item ¢, using operating set v, on resource r, at period t.

wayjt: setup cost for group j, using operating set v, on resource r, at period t.

%-"t' : inventory unit cost for item ¢ at period t.

v;;: safety stock deficit unit cost for item ¢ at period t.

;+: shortage unit cost on the demand of item ¢ at period ¢.

We denote: 0;x = lix — lis—1)-

Using these variables and parameters, we formulate the MCLSP problem as fol-
lows:

min Y QirToit + D Buithit+ Y Witzuje + D purit Y vl + > vl (1)
t it it it

v,i,t v,1,t v,7,
14
Ly = Loy + i+ Y @i = dig + 0 + I} — Iy, Vi,V (2)
v=1
vV N v o J
Z (’U'uirtx'uit + fvi'r'ty'uit) + Z Z Gujrtujt < ¢pt,s Vr, Vit (3)
v=1i=1 v=1 j=1

Tyit § Myvit, VU, VZ, VYt
Toit > Do Yuit, V0, Vi,V

Ut

Yvit = CijZujt, Yo, Vi, Vj, Vit
rit < dig, Vi, Vit
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yoit € {0,1}, Yo, Vi, Vi (11

~_— — Y O N T T —

Zujt € {0,1}, Yo, Vj, Vt (1
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The objective function (1) minimizes the total cost induced by the production
plan (production costs, inventory costs, shortage costs, safety stock deficit costs
and setup costs). Constraints (2) are the inventory flow conservation equations
through the planning horizon. Constraints (3) are the capacity constraints, the
overall consumption must remain lower than the available capacity. Constraints (4)
and constraints (5) impose that, if we produce an item then the production must
not exceed a maximum production level M and must go over a minimum produc-
tion. M could be set to the minimum between the total requirement on section
[t,...,0:] of the horizon and the highest quantity that we can produce for item ¢

regarding the available capacity. Thus, M = min { ZZ;t dip;ming—y_. R {(cn -

fvirt — Z}'le @ijGuirt)/ vm-,.t}}. Constraints (6) illustrate that the setup time and
the setup cost for a group j are taken into account if at least one item ¢ belonging
to group j is launched on operating set v at period ¢. Constraints (7) and (8) define
upper bounds on respectively the requirement not met and the safety stock deficit
for item 4 on period t. Constraints (9), (10), (11) and (12) characterize the vari-

able’s domain: rit,ljt' and I;, are non-negative fori=1,...,Nandt=1,...,T,
Zyi¢ 18 non-negative for i = 1,..., N, t =1,..., T and v =1,..., V. yy; is a bi-
nary variable fori =1,...,N,t=1,...,Tand v =1,...,V, and z,j; is a binary

variable for j =1,...,J,t=1,...,Tandv=1,...,V. The MCLSP problem has
VT(N + J) binary variables and (3N + R+ 2V N + V.JN)T constraints.

Finding a good feasible solution to the monolithic model presented at Section 1
can be extremely hard, especially if the volume of information treated is very
significant. The use of a branch-and-bound method to solve such problems is
current in industry that uses a generic tool such as APS softwares, but the CPU
time remains exorbitant. A way to deal with such problems is to work on models
with smaller size, for which we can find near-optimal solutions. To key idea of the
heuristics presented in the sequel of the paper is thus to decompose the horizon in
several sub-sections as described in what follows.

2. HORIZON DECOMPOSITION

The approach that we propose is an iterative method; it solves heuristically
at each stage a reduced mixed integer problem. To obtain such a mixed linear
problem, we reduce the number of binary variables and the number of constraints.
To carry out such a reduction, we use an approach based on planning horizon
decomposition.

The principle of the horizon decomposition lies on maintaining the integrity
constraints of the binary variables belonging to a fixed section of the horizon, and
relaxing these constraints on the other ones. By fixing all the setup variables
Yoir and zyj; as well as the production variables z,;; at period ¢, we eliminate
constraints (3), (4), (5), (10), (11) and (12) for this period. Such manipulation
reduces considerably the CPU time to solve the sub-problems. Indeed, the search
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Frozen window Decision window, Approximation window

FIGURE 1. Horizon decomposition.

tree is limited to a reduced number of binary variables, and problem size decreases
since the number of constraints and variables is restricted.

Our approach consists in a hybridization of a branch-and-bound method and
a strategy of horizon decomposition. At each stage of the heuristic, the planning
horizon is broken up into three parts (see Fig. 1): a frozen window, a decision
window and an approximation window.

These sections of the planning horizon are described in what follows:

Frozen window: In this part all the setup variables y,; and z,; are fixed by
former resolutions within the framework of an iterative process. The production
variables x,;; can also be frozen. More precisely, we can either freeze the setup
variables or freeze both setup and production variables.

Decision window: In this sub-section the integrity constraints on setup vari-
ables v, and z,;; are maintained. No modification is made to the mathematical
model of the MCLSP problem reduced to this window.

Approximation window: In the approximation window the integrity con-
straints on setup variables y.,;; and z,; are relaxed. Thus, the production plan
provided by this section of the horizon is not feasible. It gives a lower bound on
the capacity needed to satisfy the demand of this section of horizon.

The idea of the approximation window is motivated by industrial observations.
Indeed, requirements at the beginning of planning horizon represent the costumer’s
orders on small time-buckets, e.g. day or week; the decisions taken at these periods
are work orders which will be used as an entry for a shop scheduling subsequent
resolution. Contrarilly, the requirements at the end of the horizon are the forecasts
on big time-bucket, e.g. month or quarter, they can change when a new production
planning is carried out after a rolling horizon step. The impact of the integrity
constraints relaxation on setup variables at the end of the horizon is thus not as
significant as the relaxation of these constraints at the beginning of the horizon.

Based on this decomposition approach, we propose in the following section two
MIP-based heuristics, the Fix-and-Relax and the Double-Fix-and-Relax heuris-
tics. We also present an alternative to these heuristics which differ on the way
production variables are frozen.

3. MIP-BASED HEURISTICS

In this section, we present two MIP-based heuristics to find a feasible solution to
the model presented at Section 1 by solving smaller problems, from combinatorial
and size point of view. This is carried out by using the horizon decomposition
approach presented in Section 2. The production planning is fixed according to
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Ficure 2. Rolling horizon.

a shifting forward strategy of the decision window through the horizon. Figure 2
describes this principle between two successive stages k and k+ 1 of the heuristics.
The main difference between the heuristics considered in this paper lies in the
way of freezing setup and production variables. In what follows, we present the
principle of the Fix-and-Relax and Double-Fix-and-Relax heuristics.

3.1. FIX-AND-RELAX HEURISTIC

In a first step, we start by by fixing a decision window at the beginning of the
horizon and an approximation window on the remainder of the horizon. Thus,
some of the MCLSP problem constraints are relaxed as described in Section 2 and
the problem is solved using a branch-and-bound algorithm. A second step consists
then in shifting forward the decision window while keeping an overlapping section
with the precedent decision window. This principle is reiterated. Therefore, at
step k, setup variables related to the section that precedes the decision window
are frozen according to the solution obtained at step k£ — 1. The MCLSP problem
is then solved by a branch-and-bound algorithm at step k. This procedure is
repeated until the end of the planning horizon is reached. The solution provided
by this procedure is feasible. Indeed, all the integrity constraints are satisfied at
the end of the procedure.

The Fix-and-Relax heuristic is controlled by four parameters, two of them are
relating to the decomposition of the planning horizon and the two others are
connected with the stopping criteria of the branch-and-bound method. They are
described as follows:

e oy Size of the decision window at stage k of the algorithm;
0r: Number of overlapping periods between the decision windows of stages
k—1 and k, with o > 0 > 0;
e Opti: Minimum optimality percent to reach at stage k of the algorithm;
e Timey: Time-Limit at stage k of the algorithm.
In addition, we denote by Pfkbk, the MCLSP problem solved at step k of the
heuristic for & > 1. [ag,bg] is the decision window of step k. By convention,
[1,0] = (). We recall the following properties:

e Setup variables y,;; and z,; are frozen in section [1, a; — 1] according to
the solution obtained at stage k — 1 of the heuristic;
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FIGURE 3. Fix-and-Relax method.

e Integrity constraints on the setup variables y,;; and z,;; are maintained
in the decision window [ag, bx];

e Integrity constraints on the setup variables y,;; and z,;; are relaxed in the
approximation window [b; + 1, 7.

K denotes the total number of steps for the Fix-and-Relax method. If o, and dj,
are constant for all k, that is o, = o and 6y = 0, then K = [(T' —0)/(c — )] + 1.
We can notice that K is bounded by T in the worst case.

The principle of the Fix-and-Relax method is presented in Figure 3.

We can notice that the overlapping periods between the decision windows of
two successive stages k and k 4 1 of the algorithm permits at stage k to re-open
the decisions taken at stage k. This questioning makes possible the construction
of a better production plan since the approximation window gives only a default
estimation of the capacity needed to meet the demand. An undervaluation of the
resource capacity can cause shortages on the demands. However, by adding these
overlapping periods, an additional anticipation can be made on the total demand.
We will show through the Example 3.1 a situation for which it is interesting to
have overlapping periods between the decision windows of iterations k and k + 1.

We can observe that there is no frozen section at the first step of the algo-
rithm. All the sub-problems Pfk b, are solved using a branch-and-bound algorithm
(CPLEX callable library). The Fix-and-Relax heuristic is described by the algo-
rithm 1. The solution obtained at the end of algorithm 1 is a feasible solution for
the MCLSP problem.

Example 3.1. We show through this example a situation where it is important
to have overlapping periods between the decision windows of two successive stages
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Algorithm 1 Fix-and-Relax heuristic

1: k—1,a,« 1, by < ok
2: while by < T do

3:  Solve the sub-problem Pfk b

4 k—k+1, ap < bp—1 — 0k, b — bp—1 + oK — Ok
5 if b, > T then

6: by «— T

7 end if

8: end while

9: Solve the sub-problem Pfk b

TABLE 1. MCLSP dimensions.

VIN|J|R|T
1111115

TABLE 2. MCLSP costs.

t 1 2 3 4 5
wie | 250 [212,5| 175 |137,5| 100
Beit | 20000 | 20000 | 20000 | 20000 | 30000
Quir | 10 10 10 10 10
T 1 1 1 1 1

TABLE 3. MCLSP Data.

t 1 2 3 4 5
di¢ | 800 | 1000 0 1000 | 1000
fi1¢ | 500 | 500 | 500 | 500 | 500
V11t 1 1 1 1 1
ci¢ | 1500 | 1500 | 1500 | 2000 | 2000

of the heuristic. We consider the MCLSP problem with the dimensions, the costs
and the data respectively defined in Tables 1-3.

We execute the Fix-and-Relax heuristic twice with o = 3 for all k. The
first execution is parameterized with §, = 0 for all k, while the second one is
parameterized with d; = 1 for all k. Sub-problems are solved optimally using
Cplex 9.0. The results are presented in Tables 4 and 5.

Tables 4 and 5 show that using the first parameter set, we obtain 300 for the
shortages at period 5, while this quantity is reduced to zero when using the second
parameter set. This improvement is due to the overlapping periods that allow
an additional anticipation of the production to meet the demand. Indeed, the
production has increased in the third period.
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TABLE 4. Fix-and-Relax results with §, = 0 for all k.

t 1 2 3 4 5
x11¢ | 1000 | 1000 0 1500 0
Y11t 1 1 0 1 0
S1t 200 200 | 200 | 700 0
1t 0 0 0 0 300

TABLE 5. Fix-and-Relax results with §, = 1 for all k.

t 1 2 3 4 5
x11+ | 800 | 1000 | 500 | 1500 | O
Y11t 1 1 1 1 0
S1t 0 0 500 | 1000 | O
T1¢ 0 0 0 0 |0

3.2. DOUBLE-FIX-AND-RELAX

The principle of the Double-Fix-and-Relax heuristic is closely related to the
Fix-and-Relax method. The main differences are described below. Initially we
set an approximation window which size is equal to the planning horizon. The
MCLSP problem is thus solved using the simplex method, since all variables are
non-negative. In a second step, three windows are considered, a decision window
at the beginning of the planning horizon followed successively by an approximation
window and a frozen window. For the last one, the setup and production variables
are fixed according to the results found at the first step. The MCLSP is then
solved using a branch-and-bound algorithm with this new horizon decomposition.

At each of the subsequent stages, a shifting forward operation is applied for
the decision and the approximation windows. An overlapping period between the
decision window of two successive stages kK — 1 and k is maintained as described
previously. The setup variables of the horizon section which precedes the decision
window of stage k are frozen according to the solution obtained at stage k — 1
of the algorithm. Similarly, the MCLSP is then solved using a branch-and-bound
algorithm with this new horizon decomposition. This procedure is repeated until
the right ending point of the decision window is greater or equal to T. The
solution provided at the end of this heuristic is a feasible production plan. Indeed,
the Double-Fix-and-Relax method respects all the integrity constraints at the end
of the procedure.

The motivation of setting an approximation window at the end of the plan-
ning horizon is detailed in Section 2. The rationale of the Double-Fix-and-Relax
heuristic is to start by finding a default estimation of the production plan on the
whole planning horizon by relaxing all the integrity constraints imposed on the
setup variables. Such a plan captures the interaction, if it exists, between the first
and the last periods of the planning horizon. Once this interaction is estimated in
terms of capacity needs, the production plan at the end of the horizon is frozen
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in order to reduce the size of the sub-problems. The production variables fixed
for these periods are progressively relaxed with the shift of the decision window.
Indeed, at each stage of the algorithm, the decision window is followed by an ap-
proximation window which size must be large enough to correct the first default
estimation and to carry out necessary anticipation on the total demand.

The Double-Fix-and-Relax heuristic is controlled by five parameters, three of
them are relating to the decomposition of the planning horizon and the two others
ones are connected with the stopping criteria of the branch-and-bound method.
In addition to the Fix-and-Relax parameters described in Section 3.1, we define
the new parameter pp as the size of the approximation window at stage k of the
algorithm.

We denote by P° the MCLSP problem where all the integrity constraints are
relaxed. We denote by P(fk becy,» the problem solved at each step k of the heuristic
with & > 1. We recall the features of the Pfkbm problem below (by convention,
if a > 3 for section [, 5] then [, 8] = 0):

e setup variables y,;; and z,;; are frozen in the section of horizon [1, a — 1]
according to the solution obtained at stage k — 1 of the heuristic;

e integrity constraints on the setup variables ¥,;; and z,;; are maintained in
the decision window defined by the horizon section [ag, bx];

e integrity constraints on the setup variables y,;; and z,;; are relaxed in the
approximation window defined by the horizon section [by + 1, ¢i];

e setup variables ¥, 2vj¢ and production variables x,; are frozen in the
section of the horizon [c; 41, T according to the solution obtained at stage
k — 1 of the heuristic.

K denotes the total number of iterations for the Double-Fix-and-Relax method.
We recall that K is in O(T'). The principle of the Double-Fix-and-Relax method
is presented in Figure 4.

Each sub-problem Pfk bec,, 18 solved using a branch-and-bound algorithm. Double-
Fix-and-Relax heuristic is described by Algorithm 2. The solution obtained is

feasible for the MCLSP problem.

Some alternative algorithms could be derived from both of the two methods
previously described (see Sects. 3.1 and 3.2). Indeed, the production variables
Tyi¢ could be fixed when we fix the setup variables. Such a procedure reduces
considerably the size of the sub-problems solved at each stage of the heuristic.
Therefore, the CPU time are lowered at each stage. Nevertheless, a disadvantage
of such an alternative is the reduction of possible production anticipations. In
fact, when the production is frozen, no additional production could be allowed.

3.3. ELEMENTS COMPARISON

An advantage of the Double-Fix-and-Relax method in comparison with the
Fix-and-Relax method is that less variables and constraints are considered at each
step. Indeed, freezing the end of the horizon reduces the size of the sub-problems
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FI1GURE 4. Double-Fix-and-Relax method.

Algorithm 2 Double-Fix-and-Relax method

1: Solve the sub-problem P°
2 k1, ar < 1, kaJkyckku+pk
3: while b, < T do

4:  Solve the sub-problem P

kbkCr

5 k«—k+1,ar < bp—1 — Ok, bp «— bp—1 + ok — Ok, ck — br + pr,
6: if ¢x > T then

7 cp «— T

8 end if

9: if by > T then

10: by «— T

11:  end if

12: end while

13: Solve the sub-problem Pfkbkck

induced. Maintaining all the integrity constraints of the MCLSP problem leads to
models for which it is very difficult to find a feasible solution by using a branch-
and-bound method on real instances.

The principle of the Fix-and-Relax and Double-Fix-and-Relax methods is to
solve iteratively several sub-problems Pfk b, and Pfk bue, With overlapping periods
between two successive decision windows. If we assume that o = o and §, = 0,
instead of solving the MCLSP problem with VT (N + J) binary variables and
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(B3N + R+ 2VN + VJN)T constraints, the Fix-and-Relax and Double-Fix-and-
Relax methods solve a maximum of [ (T — ¢)/(o0 — §)]|+1 problems with V(N+J)o
binary variables.

4. COMPUTATIONAL EXPERIMENTS

In this section, we present some experimental issues. All of our algorithms are
implemented in C++ and integrated in a generic APS software, n.SKEP!. We use
the callable CPLEX 9.0 library [15] to solve MIP problems.

4.1. ALGORITHMS AND IMPLEMENTATION

Here is the list of the algorithms implemented to assess the heuristics effective-
ness. We compare the Fix-and-Relax and Double-Fix-and-Relax methods with
a monolithic resolution of the initial MCLSP problem. The MCLSP problem as
well as the sub-problems generated at each stage of the heuristics are solved using
CPLEX 9.0 solver which provides a branch-and-bound algorithm to solve MIP
problems. Moreover, we can use with the solver several standard MIP cuts to
strengthen the LP relaxation at each node. An alternative consisting in fixing the
production variables at the same time as the setup variables is also developed.

e BC: algorithm based on the standard branch-and-cut of the solver;

e FR: algorithm based on the Fix-and-Relax method and the standard
branch-and-cut of the solver to solve sub-problems Pfk by’

e FR1: algorithm based on the Fix-and-Relax method and the standard
branch-and-cut of the solver to solve sub-problems Pfk b, » Where the pro-
duction variables are fixed at the same time as the setup variables;

e DFR: algorithm based on Double-Fix-and-Relax method and the stan-
dard branch-and-cut of the solver to solve sub-problems Pfk brcr

e DFR1: algorithm based on Double-Fix-and-Relax method and the stan-
dard branch-and-cut of the solver to solve sub-problems Pfk becy, - Here, the
production variables are fixed at the same time as the setup variables.

For all the algorithms, we used the aggregated model defined in Section 1. The
computations are performed on a Pentium IV 2.66 Ghz PC.

4.2. TEST INSTANCES

We carried out some tests on a set of instances resulting from real-world situ-
ations. In fact, the heuristics we have proposed are implemented in an APS soft-
ware n.SKEP developed by Dynasys and they are used by its customers. These
real benchmarks come from process industry contexts such as food industry. In
these environments, manufacturers have several resources and production lines,
the items are gathered into family and are constrained to minimum production
runs. The most important objective of the decision maker is to minimize shortages

ln SKEP: Supply Chain Management Software, DynaSys S.A.



HEURISTICS FOR MULTI-ITEM CAPACITATED LOT-SIZING PROBLEM 185

TABLE 6. Test instances.

Instances | V| N J R | T
11 31264 | 144 | 21 | 19
12 31469 | 215 | 20 | 19
13 3 1292|144 | 20 | 30
14 3| 514|215 |20 | 30

on demand as well as safety stock deficits. These instances are characterized by a
large number of groups and significant setup times. Items that share a common
setup time are gathered into the same group. The shortage and deficit costs re-
spectively for the demand and the safety stock could be viewed as penalty costs
and their values are higher than other cost components. They have the feature of
decreasing over the horizon. Actually, demands in the first periods of the horizon
correspond to real orders by opposition to the demands in the last periods that
are usually only forecasts. The characteristics of the instances are described in
Table 6.

Moreover, the resource capacities are not very tight for I1 and I12. The instance
12 is characterized by high setup times. I3 and I4 are the largest instances, and
they have minimum production constraints as well as high setup times. They are
also characterized by tight capacities.

To assess the effectiveness of the heuristics, we have performed computational
tests on a series of extended instances from the lot-sizing library LOTSIZELIB [17],
initially described in Trigeiro et al. [26]. Trigeiro et al. [26] instances are denoted
by try_7, where N is the number of items and T is the number of periods. These
are characterized by a variable resource consumption equal to one, and enough
capacity to satisfy all the requirement over the planning horizon. They are also
characterized, by an important setup cost, a small fixed resource requirement
(setup time).

Since these instances have enough capacity to satisfy all the requirements over
the planning horizon, we make some modifications to induce shortages. We have
derived 12 new benchmarks? from the try_7 instances by augmenting the fixed
resource requirements (setup times), the variable resource requirements and by
adding safety stocks. We have also generated shortage and safety stock deficit
costs. More details are given below. These new benchmarks fall into 2 classes of
6 instances each:

e The class A was obtained by increasing the variable resource requirements
and adding safety stocks. Variable resource requirements are multiplied
by a coefficient (1 + 1) such that 0 < n < 0.001 X ¢, ¢; represents the
available resource capacity at period ¢t. Safety stock coverage is the number
of periods that must hold demand in stock. It is expressed in number of
periods. Safety stock expressed in coverage is mainly used to cover the
possible variation between forecasts and carried out sales. At each period,

2Test problems can be obtained from http://www-poleia.lip6.fr/ safia/lotsizing
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safety stock is calculated according to the future demands. Thus, safety
stock is equal to the sum of the demands on the section of the horizon
which starts at this period and which has the length of the safety stock
coverage. Safety stock coverage is equal to 0.1 x T'.

e The class B is based on the first one. In fact, we carried out some modifi-
cations on fixed resource requirements which are increased by multiplying
them by a coefficient (1 + 7) such that 7~ 0.1 X ¢;.

Shortage and safety stock deficit costs are considered as penalty costs and their
values must be higher than other cost components. Therefore, They are fixed such
that @i > maxy ¢ {ou; Bires Vi Vo b and v > maxy g { i B Vi }-
Moreover, ¢;; and ;, have the feature that they decrease over the horizon. In
fact, demands in the first periods of the horizon correspond to real orders and not
forecasts by opposition to the demands in the last periods that are usually only
predictions. They are generated in the same way for all the described instances.

4.3. RESULTS

To compare the implemented algorithms, we use the following criteria. The
first one called GAP is equal to (UB — LB) / (UB), where LB and U B represent
respectively the lower bound and the upper bound values at the termination of
the branch-and-bound algorithm. The second criteria is a CPU time denoted
CPU — Time. %Lost and %Deficit represent respectively the percentage of
demand shortages and the percentage of safety stock deficits.

The proposed heuristics provide only upper bounds to the MCLSP problem.
In order to evaluate the optimality percentage of these methods, we use the lower
bound found at the end of the BC method.

The branching strategy in all the branch-and-bound algorithms is depth-first
search to find a feasible solution. Upper bounds are either obtained when LP
solutions are integral or by the standard LP based heuristics provided by the
solver.

Fix-and-Relax and Double-Fix-and-Relax methods are controlled by several pa-
rameters. An empirical preliminary analysis showed that the following parameters
lead to good results. For the Fix-and-Relax method, we set: o, = 3 forall k, 6 = 1
for all k > 1, opt, = 5% for all k and a time-limit of 300 seconds for each stage.
At each step k, the branch-and-bound algorithm stops if (UBy, — LBy) / (UBy) is
lower than opty, or if the time-limit is reached. LB}y and U By represent respec-
tively the lower bound and the upper bound values at the termination for the
branch-and-bound algorithm of a step k of the heuristic.

Apart from the previous setting, we define at stage k of the Double-Fix-and-
Relax algorithm, pr = 4 for all k. The BC' method is controlled by a minimum
optimality percent of 5% and a time-limit of 3600 seconds. The branch-and-bound
algorithm stops if the minimum GAP or the time-limit criterion is satisfied.
Table 7 summarizes the computational results when a time-limit and a GAP stop-
ping criteria are used for all the algorithms on instances I1, 12, I3 and I4.
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TABLE 7. Computational results I1, 12, I3 and I4.

Method CPU-Time %GAP UB LB Y% Lost  %Deficit
Instance 11

BC 3600 25,44 616057049,33 459347279,99 0,00 0,86
FR 1133 24,04 604747858,07 459347279,99 0,01 0,95
FR1 1224 29,68 653254932,91 459347279,99 0,03 0,97
DFR 365 27,62 634629402,32 459347279,99 0,00 0,88
DFR1 521 30,99 665577091,20  459347279,99 0,01 1,12
Instance 12

BC 3600 8,41 423228776,24 387628214,43 0,03 0,91
FR 200 15,80 460348758,04 387628214,43 0,03 1,50
FR1 303 22,86 502473221,20 387628214,43 0,04 2,10
DFR 135 11,64 438691571,36 387628214,43 0,03 1,49
DFR1 186 14,49 453205802,18  387628214,43 0,04 1,30
Instance 13

BC 3600 72,98 4422837201,10 1195061357,10 1,07 10,15
FR 3480 80,73  6200212481,48 1195061357,10 1,32 17,90
FR1 3662 24,29 1578441356,50 1195061357,10 0,16 6,66
DFR 629 24,44 1581640954,47 1195061357,10 0,16 8,10
DFR1 1020 27,41 1646320778,18 1195061357,10 0,19 6,72
Instance 14

BC 3600 12,47  6765340128,67 5921842374,92 3,04 1,22
FR 1770 22,52 7642976846,79  5921842374,92 3,38 6,62
FR1 1567 22,78 7668991587,14  5921842374,92 3,15 6,29
DFR 483 17,55 7182226467,62 5921842374,92 3,32 5,60
DFR1 1020 28,12  8238379889,67 5921842374,92 3,67 5,98
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Clearly DFR method outperforms FR, FR1 and DFR1 regarding all the criteria,
that is optimality percent, CPU time, shortages and deficits. We can notice that
DFR leads to GAPs that are close to the ones found by BC on the instances 11, 12
and 14 with significantly lower CPU times. DFR and BC methods have almost the
same percentage of shortages on instances I1, I2 and 14, but BC method gives less
deficits on safety stocks. For instance 13, BC method does not find a good feasible
solution after 3600 seconds. DFR gives a better solution after 629 seconds; FR1
finds an equivalent feasible solution after 3662 seconds. For instance I1, FR leads
the best solution, nevertheless the CPU time is 1224 seconds. From Table 7 we
can conclude that DFR method gives the best compromise between the CPU time
and the solution quality.

We also carried out tests on the instances of class A and class B. For the Fix-
and-Relax method, we set: o = 3 for all k, § = 1 for all k& > 1, opty, = 1%
for all £ and a time-limit of 60 seconds for each stage. Apart from the previous
setting, we define at stage k of the Double-Fix-and-Relax algorithm, p; = 4 for all
k. The BC method is controlled by a minimum optimality percent of 1% and a
time-limit of 200 seconds. The branch-and-bound algorithm stops if the minimum
GAP criterion or the time-limit criterion is satisfied.

Table 8 summarizes the computational results when a time-limit and a GAP stop-
ping criteria are used for all the algorithms on instances of class A and B.

From Table 8, we can notice that class B problems are much more difficult than
class A ones regarding the CPU times and the GAPs derived. Class B problems
do have larger setup times than class A ones.

DFR and FR methods outperform FR1 and DFR1 regarding all the criteria. We
can also notice that DFR and FR leads to GAPs that are close to the ones found
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TABLE 8. Computational results for Class A and B.

N T Method CPU-Time %GAP UB LB %Lost  %Deficit
Class A

6 15 BC 200 1,18 4649063,73 4594355,62 27,05 68,06
6 15 FR 0,59 1,51 4664906,20  4594355,62 27,26 67,73
6 15 FR1 0,64 2,50 4712137,71 4594355,62 27,35 66,45
6 15 DFR 0,64 1,51 4664906,20 4594355,62 27,26 67,73
6 15 DFR1 0,67 3,17 4744841,17 4594355,62 27,96 67,48
6 30 BC 200 4,86 5373962,39 5112526,07 13,93 42,46
6 30 FR 2,67 6,28 5455078,94 5112526,07 14,06 42,93
6 30 FRI 2,7 7,10 5503152,13  5112526,07 14,63 39,36
6 30 DFR 2,17 6,08 5443339,47  5112526,07 14,22 38,84
6 30 DFR1 2,27 6,82 5486538,01 5112526,07 14,64 38,26
12 15 BC 200 1,63 8931582,99 8786329,68 24,03 68,81
12 15 FR 1,72 2,65 9025396,59 8786329,68 24,37 69,04
12 15 FR1 1,64 3,31 9087554,06 8786329,68 24,87 69,45
12 15 DFR 1,59 3,03 9060634,23 8786329,68 24,58 69,89
12 15 DFR1 1,7 4,23 9174185,95 8786329,68 25,20 71,06
12 30 BC 200 5,91 10488446,95 9868131,34 13,28 36,73
12 30 FR 7,14 6,58 10563117,63 9868131,34 13,39 41,38
12 30 FR1 8,3 8,66 10803451,49 9868131,34 14,09 37,15
12 30 DFR 5,92 5,90 10487023,27 9868131,34 13,15 42,75
12 30 DFR1 6,31 8,34 10766018,53 9868131,34 13,95 39,96
24 15 BC 200 1,46 16619159,95 16375783,15 24,00 67,35
24 15 FR 4,22 2,01 16712435,78 16375783,15 24,28 69,26
24 15 FR1 3,72 3,57 16981781,35 16375783,15 24,87 68,81
24 15 DFR 3,38 1,81 16678253,35 16375783,15 24,25 69,58
24 15 DFR1 3,31 3,91 17041520,56 16375783,15 25,03 70,51
24 30 BC 200 3,09 27184143,95 26345431,03 19,02 27,97
24 30 FR 14,8 3,41 27275422,81 26345431,03 18,50 31,27
24 30 FR1 17,19 4,42 27563791,40 26345431,03 19,18 27,86
24 30 DFR 12,53 3,74 27369808,34 26345431,03 18,74 30,11
24 30 DFR1 14,7 4,21 27504422,93 26345431,03 19,11 27,34
Class B

6 15 BC 200 2,27 5830113,28 5698078,38 34,47 59,13
6 15 FR 0,69 2,73 5858168,59  5698078,38 34,04 62,79
6 15 FR1 0,67 2,52 5845495,92 5698078,38 34,67 60,13
6 15 DFR 0,75 2,39 5837544,14 5698078,38 34,60 59,49
6 15 DFR1 0,64 2,52 5845187,18 5698078,38 34,67 60,17
6 30 BC 200 5,14 7887366,21 7482152,71 22,20 39,53
6 30 FR 1,86 4,47 7832065,14  7482152,71 21,95 40,24
6 30 FRI 1,84 4,29 7817366,30  7482152,71 21,94 41,27
6 30 DFR 1,75 4,47 7832065,14  7482152,71 21,95 40,24
6 30 DFR1 1,53 4,25 7814117,13 7482152,71 21,91 41,75
12 15 BC 200 4,34 13376789,44 12796410,89 38,12 60,67
12 15 FR 3,58 3,73 13292194,25 12796410,89 37,74 60,98
12 15 FR1 3,33 5,63 13559460,73 12796410,89 39,05 60,57
12 15 DFR 4,17 3,88 13312283,78 12796410,89 37,79 61,00
12 15 DFR1 3,11 5,07 13479203,38 12796410,89 38,69 59,68
12 30 BC 200 16,18 17242514,85 14453922,45 23,72 42,12
12 30 FR 20,34 14,92 16988946,09  14453922,45 23,24 42,86
12 30 FR1 19,05 17,05 17424705,06 14453922,45 24,69 43,13
12 30 DFR 24,09 15,03 17009714,00 14453922,45 23,70 46,02
12 30 DFR1 18,81 16,62 17334236,26 14453922,45 24,45 42,15
24 15 BC 200 7,55 28920671,65 26737370,61 43,68 62,30
24 15 FR 10,58 6,69 28655048,09 26737370,61 43,52 60,50
24 15 FR1 8,86 7,16 28799376,04 26737370,61 43,99 60,45
24 15 DFR 17,84 5,68 28348357,04 26737370,61 42,84 60,81
24 15 DFR1 7,2 6,49 28593139,10 26737370,61 43,39 60,94
24 30 BC 200 14,84 46725651,41 39792758,6 33,18 44,23
24 30 FR 45,33 12,57 45512020,24 39792758,6 32,33 43,86
24 30 FR1 60,56 14,88 46746268,85 39792758,6 33,66 43,50
24 30 DFR 56,28 12,72 45591716,51 39792758,6 32,44 46,02
24 30 DFR1 98,69 15,87 47297771,66 39792758,6 33,95 43,65

by BC on the instances of class A with insignificant CPU times. The two methods
give better GAPs than the ones found by BC on the instances of class B with
significantly lower CPU times. We can easily notice that adding a frozen window
at the beginning of the horizon induce a higher shortage amount and a lower safety
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stock deficit. We can also see that freezing the beginning of the horizon involves
higher CPU times and optimality percents. DFR gives better GAPs and CPU
times than FR for the instances of class A, while FR involves better GAPs and
CPU times than DFR for the instances of class B. Generally, FR has less deficit
on safety stock than DFR. The Methods DFR and FR give the best results while
the methods FR1 and DFRI1 give the worse results.

According to Tables 7 and 8, we can say that freezing the end of the planning
horizon helps to find good results. On the other hand, adding a frozen window
at the beginning of the horizon does not allow significant improvements on the
solution quality.

4.4. SENSITIVITY ANALYSIS

The performance of the Fix-and-Relax and Double-Fix-and-Relax methods de-
pends on the parameter choice. In order to study the calibration sensitivity of these
methods, we have performed computational tests on a series of extended instances
from the lot-sizing library LOTSIZELIB [17], initially described in Trigeiro et al.
[26]. Particularly, we analyze the variation of the parameters on the CPU time
and the quality of the solutions found by the heuristic Double-Fix-and-Relax since
the previous computational results showed that is the best method. An empirical
analysis showed that large values of o, do not lead to good values of CPU Time.
We have noticed that having o lower that 5 periods gives the best compromise
between the GAP and the CPU time.

In what follows, we assume o, = o, § = 0, Time, = time and opt, = opt
for all k. The parameter o takes the values 1,2,3 and 4. The parameter ¢ takes
values between: 0,...,0—1. The stopping criteria for all the algorithms are set to
opt = 1% and a time-limit of 60 seconds for each stage. We also study the variation
of the stopping criteria parameters time and opt. The time-limit for each step time
takes the values 1,3,5,10,20 and 30 seconds with opt = 0. paramater opt takes
the values 1%, 2%, 3%, 4%, 5% and 6% with time = 60 seconds. The parameter p
is equal to 4 for all the algorithms.

The GAP values are calculated with the upper bound found by the heuristic and
the best lower bound obtained at the end of BC method. We allow a maximum of
200 seconds CPU time for the BC method. Computational results are summarized
by the following figures. Figures 5 and 6 report respectively the variation of the
quality of the solution computed by GAP and CPU Time according to o, with
0 varying between 0 and o — 1, GAP and CPU Time represent the averages of
several tests according to the variation of §. Figures 7 and 8 report respectively
the variation of GAP and CPU Time according to d, with o between 1 and 4, GAP
and CPU Time represent the averages of different tests according to the variation
of o.

From Figures 5-8, we can notice that the increase of o and §, grows up consid-
erably the CPU times while allowing an improvement on the GAPs induced.

Figures 9 and 10 report respectively the variation of GAP and CPU Time
according to opt. The parameters ¢ and ¢§ are fixed respectively to 3 and 1 since
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the previous analysis shows that this tuning gives the best compromise between
the GAP and the CPU time.

From Figures 9 and 10 we can notice that the increase of opt reduces the CPU
times but it grows up the GAP considerably.
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We have also studied the variation of the GAP parameter according to the time-
limit. We have noticed that the GAP parameter decreases when the time-limit
increases for values lower than 5 seconds. When the time-limit is greater than 5
seconds, GAP does not decrease considerably.

In our computational experiments, we have assumed that the parameters o and
Ok are constant, it would be interesting to analyze the variation of these parameters
thought the heuristics execution. For example, taking a large values of o} and §
at the beginning of the heuristic and reduce these values when shifting forward
the decision window.

5. CONCLUSION

In this paper, we propose a mathematical formulation of a new multi-item ca-
pacitated lot-sizing problem with setup times. This formulation takes into account
several industrial constraints, shortage costs, safety stock deficit costs, several
item-groups, multiple resources, multiple operating sets and minimum produc-
tion constraints. To derive a good feasible solution, we develop new MIP-based
heuristics. These hybrid algorithms are based on a planning horizon decomposi-
tion and a branch-and-bound approach. Computational experiments showing the
effectiveness of the proposed methods are given. The principle of these heuristics
can be used to solve other intractable lot-sizing problems. These methods can
be improved by using a better approximation of the setup variables at the end
of the horizon; these heuristics can also be used in conjunction with a polyhedral
approach to solve sub-problems optimally (see [2,20]). Feasible solutions provided
by heuristics can be used as upper bounds to accelerate branch-and-cut methods.
Another issue of this work is to use multicriteria optimization approach. In fact,
the objective function is a sum of several cost components. Shortage and safety
stock deficit costs are higher in comparison with other cost components. It would
be interesting to find a set of effective or non-dominated solutions based on these
two criteria.
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