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Abstract

Given a graph G = (V,E) and a “cost function” f : 2V → R

(provided by an oracle), the problem [PCliqW] consists in finding a
partition into cliques of V (G) of minimum cost. Here, the cost of a
partition is the sum of the costs of the cliques in the partition. We
provide a polynomial time dynamic program for the case where G is an
interval graph and f belongs to a subclass of submodular set functions,
which we call “value-polymatroidal”. This provides a common solu-
tion for various generalizations of the coloring problem in co-interval
graphs such as max-coloring, “Greene-Kleitman’s dual”, probabilist
coloring and chromatic entropy. In the last two cases, this is the first
polytime algorithm for co-interval graphs. In contrast, NP-hardness
of related problems is discussed. We also describe an ILP formu-
lation for [PCliqW] which gives a common polyhedral framework to
express min-max relations such as χ = α for perfect graphs and the
polymatroid intersection theorem. This approach allows to provide
a min-max formula for [PCliqW] if G is the line-graph of a bipartite
graph and f is submodular. However, this approach fails to provide
a min-max relation for [PCliqW] if G is an interval graphs and f is
value-polymatroidal.
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1 Introduction

Let G = (V,E) be a simple graph. In the following, a clique of G refers to a non-
empty subset of vertices inducing a complete subgraph (not necessarily maximal
with this property). Let C(G) denote the set of cliques of G. A partition into cliques
of G is a partition Q = (K1, . . . ,Kk) of V (G), where K1, . . . ,Kk ∈ C(G). In other
words it is a coloring of G, the complementary graph of G. Let P(G) denote the set
of all partitions into cliques of G. A classical problem consists in determining χ(G),
the minimum number of cliques necessary to partition G. In several applications
however (see section 3), there is a cost f(C) associated to every clique C ∈ C(G),
and we are interested in partitioning G into cliques, minimizing the sum of the
costs of the cliques in the partition. Let χ(G, f) denote this minimum:

(1) χ(G, f) := min
Q∈P(G)

∑

K∈Q

f(K).

In order to describe some properties of f , one may assume that f is not only
defined on cliques but is a set function on V, that is f : 2V → R. This has
no consequences for the definitions of χ(G, f) and [PCliqW] below. Notice that if
f(C) = 1 for all cliques C, we get the classical problem of coloring G and we have
χ(G,1) = χ(G). Determining χ(G, f) is therefore an NP-hard problem. Moreover,
since |C(G)| is usually exponential in |V | (the complete graph Kn on n vertices has
|C(Kn)| = 2n), encoding f itself raises complexity issues. In several applications
however, both G and f have structural properties that allow to solve problem
[PCliqW] in time polynomial in |V |.

[PCliqW] Partition into cliques with weights
INPUT : A graph G = (V,E) and a value oracle, providing f(K) in constant

time for each K ∈ C(G).
OUTPUT : A partition into cliques of cost χ(G, f).

[PCliqW] can also be described in terms of batch scheduling with compatibility
graphs [12]. In this terminology (see [4] for batch scheduling problems not involving
compatibility graphs and [16] for a classification of chromatic scheduling problems),
each clique of a partition into cliques of G is called a batch. The operating time
of a batch K is then f(K) and our objective is to minimize the makespan Cmax

(whence the batches are ordered arbitrarily on the batch machine). Talking about
cliques and batches allows to distinguish easily between cliques of G and cliques in
a partition of V (G). Two famous polytime cases of [PCliqW] are when

• G is perfect and f ≡ 1 [17],

• G is complete and f is submodular set function [17]

Our solution for [PCliqW] for interval graphs and value-polymatroidal functions
can be seen as a compromise between these two classical cases. Moreover, [PCliqW]
enjoys a simple min-max formula in both cases [17] (χ(G) = α(G) in the first
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case and “Dilworth’s truncation” in the second). One could therefore expect a
common generalized min-max formula to hold in other cases for which [PCliqW] is
polynomial. We deal with this issue in section 7.

In section 2, we define polymatroid rank functions and motivate the definition
of value-polymatroidal set functions in the context of [PCliqW]. In section 3, we
provide examples of value-polymatroidal set functions. In section 4, we discuss
value-polymatroidal functions whose values f(U) depend only on the size |U |. In
section 5, we provide a dynamic program which solves [PCliqW] for interval graphs
in polytime if f is value-polymatroidal. The algorithm extends to the minimum
cost partition problem for circular arc graphs, when we only consider cliques in
which the arcs share a common point. As a counterpart, we mention NP-hardness
of [PCliqW] for interval graphs if f is only assumed to be polymatroidal [2]. In
section 6, we discuss NP-hardness of [PCliqW] on split graphs for subclasses of
value-polymatroidal set functions. In section 7, we deal with some polyhedral issues
and provide a min-max formula for [PCliqW] in line-graphs of bipartite graphs.

2 Value-polymatroidal set functions

A set function f : P(V ) → R is submodular if it satisfies one of the following
equivalent properties [17]:

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) for all S, T ⊆ V,(2)

f(S + u) + f(T ) ≤ f(S) + f(T + u) for all T ⊆ S ⊆ V and u ∈ V \S,(3)

f(S + u+ v) + f(S) ≤ f(S + u) + f(S + v) for all S ⊆ V and u, v ∈ V \S.(4)

A set function f is non-negative if all its values are, non-decreasing if S ⊆ T =⇒
f(S) ≤ f(T ), subcardinal if f(U) ≤ |U | for all U ⊆ V . A polymatroid rank func-
tion is a submodular, non-negative, non-decreasing set function such that f(∅) = 0.
A matroid rank function is a subcardinal, integral polymatroid rank function.

In some graph classes, submodularity of f is enough to ensure polynomiality
of [PCliqW] (see section 7 and [16]). Although submodularity is not sufficient for
interval graphs (see Theorem 5.5), a stronger exchange property will do. We say
that f is a value-polymatroidal set function if f(∅) = 0, f is non-decreasing and
for every S and T subsets of V such that f(S) ≥ f(T ) and every u ∈ V \(T ∪ S),
we have

(5) f(S + u) + f(T ) ≤ f(S) + f(T + u).

Proposition 2.1 Every value-polymatroidal set function is a polymatroid rank
function.

Proof Let f be value-polymatroidal. Since f is non-decreasing, we have f(S) ≥
f(T ) for every T ⊆ S ⊆ V and therefore f(S + u) + f(T ) ≤ f(S) + f(T + u) for
every u ∈ V \S. 2
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By a maximal clique, we mean a clique maximal for inclusion (not necessarily
for cardinality). The main motivation behind the definition of value-polymatroidal
set functions is given by the following proposition.

Proposition 2.2 For any graph G and any value-polymatroidal set function f on
V (G), there is a partition Q of cost χ(G, f) in which one of the cliques in Q is a
maximal clique of G.

Proof Let Q be a minimum cost partition of G and choose any clique K ∈ Q, such
that f(K) ≥ f(T ) for all T ∈ Q. If K is not a maximal clique of G, there exists
some t ∈ V \K such that K+ t is a clique in G. Now, t belongs to some T ∈ Q−K.
Since f is non-decreasing, f(K) ≥ f(T ) ≥ f(T − t). Since f is value-polymatroidal,
f(K+ t)+f(T − t) ≤ f(K)+f(T ). Repeat the process until K becomes a maximal
clique of G. 2

In general, rank functions of (poly)matroids are not value-polymatroidal, and
the conclusion of Proposition 2.2 doesn’t hold as shown in Figure 1.
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Figure 1: A graph G and a graphic matroid M (whose rank function is not
value-polymatroidal) such that χ(G, r(M)) = 2 = r({a, b}) + r({c, d}). No
optimal partition contains a maximal clique of G.

3 Examples of value-polymatroidal set functions

In this section we mention some (coloring) problems that have been studied in
the literature, and that amount to solving [PCliqW] for special subclasses of value-
polymatroidal set functions. These problems are often formulated is terms of finding
a minimum cost partition into stable sets, which is equivalent to [PCliqW] by taking
the complementary graph.
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Maximum Let p : V → R+ and define

(6) f(U) := max
u∈U

p(u)

for any U ⊆ V . Then f is value-polymatroidal. Indeed, let S, T ⊆ V with f(S) ≥
f(T ), and let u ∈ V \(S ∪ T ). Then, since p(s) = f(S) ≥ f(T ) = p(t) for some
s ∈ S and t ∈ T , we have

f(S+u)+f(T ) = max{p(s), p(u)}+p(t) ≤ p(s)+max{p(t), p(u)} = f(S)+f(T+u).

A set function arising as in (6) is called a max-batch cost function. When
restricted to max-batch cost functions, the corresponding problem of finding a
minimum cost partition into stable sets is called [max-coloring] and is strongly-
NP-hard for split graphs [8, 3], for bipartite graphs [8] and for interval graphs [11].
However, [max-coloring] is polynomial for P4-free graphs [8] as well as for co-interval
graphs [12, 2, 9].

Independent probabilities Let q : V → [0, 1] and for U ⊆ V , let

(7) f(U) := 1 − Πu∈Uq(u)

Let S, T ⊆ V with f(S) ≥ f(T ), and u ∈ V \(S ∪ T ). Write f(S) = 1 − σ and
f(T ) = 1 − τ (so σ ≤ τ). Then

f(S) + f(T + u) = (1 − σ) + (1 − q(u)τ)

≥ (1 − q(u)σ) + (1 − τ) = f(S + u) + f(T ).

Hence f is value-polymatroidal. A set function arising as in (7) is a probabilistic

cost function. Transitive references for applications of probabilist optimization
can be found in [7].

When restricted to probabilistic cost functions, [PCliqW] is strongly NP-hard
in split graphs [7]. The corresponding problem of partitioning into stable sets is
called [probabilist coloring].

Chromatic Entropy Let p : V → [0, 1] and for U ⊆ V , let

cU :=
∑

u∈U

p(u)(8)

f ′(U) := −cU log(cU ).(9)

If cV = 1, f ′ is a chromatic entropy cost function. Although f ′ is not value-
polymatroidal (it is not non-decreasing), the function f := f ′+c is value-polymatroidal
as can be derived from the concavity of the function x 7→ x − x log(x) [1]. Since
for any partition V = K1 ∪ · · · ∪ Kk of V into cliques, we have

∑
i f(Ki) =

c(V ) +
∑

i f
′(Ki), the two functions f ′ and f yield the same optimal partitions.

The corresponding problem of partitioning into stable sets is called [chromatic
entropy] [1, 6] and is strongly NP-hard for interval graphs [6].
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Uniform matroid and Partial q-coloring Let q ∈ N and let

(10) f(U) := min{q, |U |}

Then f is value-polymatroidal, and the proof is left as an exercise since a more gen-
eral statement is given with the next example. Functions arising this way are exactly
the rank functions of uniform matroids. [PCliqW] with such a cost function arises in
Greene-Kleitman’s min-max relations stating that for any (co)-comparability graph
G and any integer q, the maximum cardinality αq(G) of the union of q stable sets
of G satisfies αq(G) = χ(G, f) (see [5] and [17], sections 14.6 and 14.7 on unions of
chains and antichains in posets and section 66.5e on “k-perfect” graphs for more
details and references).

Size-defined concave Assume that f(∅) = 0 and that

(11) f(U) := ψ(|U |)

for some ψ : N → R+. Then f is value-polymatroidal if and only if f is the rank of
a polymatroid and also if and only if ψ has a non-decreasing concave extension on
the real segment [0, |V |] (see section 4). The rank function of a uniform matroid is
a special case.

4 Size-defined submodular set functions

In this section, we notice that if f(U) only depends on |U |, then polymatroid ranks
coincide with value-polymatroidal functions. Let [a..b] denote the set of integers in
the interval [a, b]. A set function f on V is size-defined if there exists a function
ψ : [0..|V |] → R such that f(U) = ψ(|U |). The function ψ is then the compact

representation of f . Recall that a function f : [a, b] → R is concave if for all
c, d ∈ [a, b] we have f(c) + f(d) ≤ 2f((c+ d)/2)

Theorem 4.1 Let f be a size-defined, non-decreasing set function such that f(∅) =
0 and ψ be the compact representation of f . The following are equivalent:

i) f is value-polymatroidal

ii) f is a polymatroid rank function

iii) 2ψ(i) ≥ ψ(i− 1) + ψ(i+ 1) for all i ∈ [1..|V | − 1]

iv) ψ(i+ 1) − ψ(i) ≥ ψ(j + 1) − ψ(j) for all i, j ∈ [0..|V | − 1], with i < j

v) ∃ ψ̂ : [0, |V |] → R concave such that ψ(i) = ψ̂(i) for i ∈ [0..|V |]

Proof i) =⇒ ii): Proposition 2.1
ii) =⇒ iii): Use definition (4) of polymatroids with |S| = i− 1.
iii) =⇒ iv): By induction on j − i. The case j − i = 1 being exactly iii). Adding
ψ(i+1)−ψ(i) ≥ ψ(j+1)−ψ(j) and 2ψ(j+1) ≥ ψ(j)+ψ(j+2) gives ψ(i+1)−ψ(i) ≥
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ψ(j + 2) − ψ(j + 1).
iv) =⇒ i): For S, T ⊆ V , since f is size-defined and non-decreasing,

f(S) ≥ f(T ) ⇐⇒ ψ(|S|) ≥ ψ(|T |) ⇐⇒ |S| ≥ |T |

Applying iv) to j = |S| and i = |T | gives i).
v) =⇒ iii): Apply the concavity condition to c = i− 1 and d = i+ 1.

iii) =⇒ v): Take ψ̂ as the piecewise linear interpolation of f (for any x ∈ [0..|V |],

ψ̂(x) := λf(⌊x⌋) + (1 − λ)f(⌈x⌉) for λ := x − ⌊x⌋). One can check that the

subgradient of −ψ̂ is nondecreasing. 2

5 Partition into cliques in interval and circular arc

graphs

A graph G = (V,E) is an interval graph [13, 17] if there exists a set {φ(v) |
v ∈ V } of closed intervals on the real line, such that two vertices u and v are
adjacent in G if and only if the two corresponding intervals φ(u) and φ(v) have
nonempty intersection. Observe that any maximal clique K in G is of the form
{v ∈ V | t ∈ φ(v)} for some endpoint t of one of the intervals.

In [12, 9, 2], [PCliqW] is solved in polytime for interval graphs and max-batch
cost functions. These algorithms use the fact that there exists an optimal solution in
which a vertex of maximum cost is contained in a batch inducing a maximal clique.
Based on this fact, a dynamic program is proposed. This fact is no longer true
for value-polymatroidal costs as shown by the example in Figure 2. Nonetheless,
based on Lemma 5.2, we describe a generalization of the algorithm proposed in [12],
which provides an optimal solution for any value-polymatroidal cost function.

Theorem 5.1 For any interval graph G = (V,E) and any value-polymatroidal set
function f on V given by a value oracle, we can compute a partition into cliques of
G of cost χ(G, f) in time O(n3).

Proof Let {Ii = [ai, bi]}i=1,...,n be a set of intervals on the real line representing
graph G. We consider the set X of endpoints of the intervals:

X = {ai}i=1,...,n ∪ {bi}i=1,...,n = {1, . . . , q}.

Let the subproblem I(i, j) denote the set of all intervals completely con-
tained in the closed interval [i, j]. For every pair of values i ≤ j ∈ X , let
F (i, j) := χ(G[I(i, j)], f), be the optimum cost of a partition of the subgraph
induced by I(i, j) (by definition of χ(G, f), F (i, j) = 0 if I(i, j) = ∅). Our Dy-
namic Programming approach is based on Lemma 5.2 below, which implies that we
can separate the problem restricted to I(i, j) into two subproblems.

Lemma 5.2 For every i, j ∈ X there is an optimal partition into cliques of G[I(i, j)]
in which at least one batch induces a maximal clique of G[I(i, j)].
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Figure 2: Let f be the probabilist cost defined by p. Vertex d has maximum
cost f({d}) = 1 − q(d) = 5/8. However, in an optimal partition, vertex d
cannot be placed in a maximal clique since 25/16 = f({a, b}) + f({c, d}) >
χ(G, f) = f({a, b, c}) + f({d}) = 12/8.

Proof Directly from Proposition 2.2 2

Given i < z < j ∈ X , let Kz
i,j be the set of intervals of I[i, j] containing point z.

Notice that Kz
i,j is a clique for all i ≤ z ≤ j ∈ X .

Lemma 5.3 For arbitrary fixed i < j in X, the following recursion holds:

(12) F (i, j) = min
z∈[i,j]

{f(Kz
i,j) + (F (i, z − 1) + F (z + 1, j))}.

Proof By Lemma 5.2, there is an optimal partition of G[I(i, j)] in which a batch
is a maximal clique B∗. All maximal cliques of G[I(i, j)] are browsed while con-
sidering the minimum in (12). Hence B∗ = Kz∗

i,j for some z∗. Given such point z∗,
every interval in I[i, z∗ − 1] has its terminal endpoint before the initial endpoint of
every interval in I[z∗ + 1, j]. Hence, the graph G(I[i, j]\B∗) decomposes into two
disconnected subgraphs: G(I[xi, z

∗ − 1]) and G(I[z∗ + 1, j]). One can therefore
solve the problems on these two subgraphs independently. 2

The Dynamic Programming algorithm starts from the initial conditions

F (i, i) = f(I[i, i]) for all i = 1, . . . , q.

Applying the recursion (12) with increasing subproblem width xj −xi, it computes
an optimal schedule

S(xi, xj) =

{
∅ if I[i, j] = ∅ ;
S(i, z∗ − 1) ∪B∗ ∪ S(z∗ + 1, j) otherwise.

8



The optimum value is χ(G, f) = F (1, q), and S(1, q) is an optimal solution. Since
there are O(q2) = O(n2) subproblems and O(q) = O(n) candidate values for z in
each subproblem, the resulting Dynamic Programming algorithm solves the prob-
lem in O(n3) time. This completes the proof of Theorem 5.1. 2

Theorem 5.1 and the associated algorithm can be extended in the following way.
A graph G = (V,E) is a circular arc graph [13] if there exists a set {φ(v) | v ∈ V }
of closed arcs of the unit circle, such that two vertices u and v are adjacent in G if
and only if the two corresponding arcs φ(u) and φ(v) have nonempty intersection.
Call a clique K of G a Helly clique if ∩v∈Kφ(v) is nonempty.

Corollary 5.4 For any circular arc graph G, and any value-polymatroidal function
f on V (G) given by a value oracle, we can compute an optimum partition into Helly
cliques in time O(n3).

Proof Let X be the set of endpoints of the arcs φ(v), (as in Theorem 5.1). For
i, j ∈ X , let I[i, j] be the set of arcs contained in the portion of the circle in
clockwise order between i and j. Note that after removing any maximal Helly
clique, the remaining arcs are contained in some set I[i, j]. Compute all O(n2)
values as in Theorem 5.1. Compute the best maximal Helly clique afterwards. 2

On the other hand, we have the following negative result:

Theorem 5.5 [2] [PCliqW] is NP-hard even if G is an interval graphs and f is a
polymatroid cost (even if f is given by a rooted-TSP on a tree).

Rooted-TSP on trees Let T = (W,A) be a tree, l : A → N and r ∈ W
be the root of T . For U ⊆ W , let A(U) be the set of arcs spanning U + r and
f(U) := 2

∑
a∈A(U) l(a). The function f is called a rooted-TSP cost since it is the

cost of visiting all nodes in U ⊆ V , moving along edges of A, starting and finishing
the tour from node r (see Figure 3). Such a cost function can easily be shown
to be polymatroidal1. Complementing Theorem 5.5, [2] gave a 2-approximation
for [PCliqW] when G is an interval graphs and f is rooted-TSP on a tree. This
has applications in vehicle routing problems with time windows (where the length
l(a) represents a travel cost and we assume that the traveling times are negligible
compared to the size of the time windows [9]).

1In fact, several characterizations of the graphs for which rooted TSP costs are poly-
matroidal for all edge length can be found in [15]. Based on [15], Jost [16] characterized
these graphs as the graphs without K2,3 minors.
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Figure 3: A rooted tree with a length function l : A → R. The cost asso-
ciated with a subset U ⊆ V is the length of the arcs spanning U + r. For
example f({a}) = 4, f({a, b, f}) = 12 and f({c, d, e, f}) = 16.

6 Partition into cliques in split graphs

One may wonder if Proposition 2.2 could be applied in more general graphs than
interval graphs. A property of interval graphs which is used to prove polynomiality
in Theorem 5.1 is that they have a polynomial number of maximal cliques. In
this section, we illustrate that this property is not sufficient to ensure polytime
solvability of [PCliqW] restricted to value-polymatroidal costs.

A graph G = (V,E) is a split graph if V can be partitioned into two sets
S and K such that S is a stable set and K is a clique. Notice that split graphs
have a polynomial number of maximal cliques (at most |S| + 1). However, [max-
coloring] and [probabilist coloring] are (strongly) NP-hard in split graphs ([3, 8] and
[7] respectively). Since the class of split graphs is self-complementary, [PCliqW] is
also NP-hard if we restrict to maximum or probabilist cost functions. Moreover,
Yannakakis and Gavril [18] proved that the maximum q-chromatic subgraph prob-
lem is NP-hard for split graph. Unsurprisingly then, Greene-Kleitman’s relation
doesn’t hold for split graphs [5]. However, the “dual problem”, that is [PCliqW]
with f(U) := min{q, |U |} is trivial. If q = 1 this is equivalent to find a partition
of G into a minimum number of cliques. If q ≥ 2, we may assume ω(G) = |K| (in
general, the bipartition (S,K) of a split graph is not unique). Then the partition
consisting of all elements of S alone and all vertices of K together in a unique class
is optimal. This fact however, does not extend to size-defined cost functions.
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Theorem 6.1 [PCliqW] is strongly NP-hard even if we restrict G to be a split
graph and f to be size-defined and value-polymatroidal.

Proof We reduce the NP-complete problem [X3C] to [PCliqW].

[X3C] Exact three-set cover
INPUT : A finite set X of size 3m and a set T of triples of X .
OUTPUT : Does there exists a partition of X into m elements of T ?

Given an instance of [X3C], build the split graph G = ((T,X), E) where G[T ] is a
stable set and G[X ] a clique and (t, x) ∈ E iff x ∈ t. Let ψ(0) := 0, ψ(1) := α =
m+1 and ψ(i) := β = m+2 for all i ≥ 2. We claim that there is a partition of cost
not exceeding mβ+ (|T |−m)α if and only if X has a partition into triples of T . A
partition into triples yields such a cost. Now, assume that X has no partition into
triples. Since T induces a stable set, any partition of V (G) into cliques contains at
least |T | classes. Those partitions which consist in exactly |T | cliques, are of cost
at least (m + 1)β + (|T | − (m + 1))α > mβ + (|T | −m)α. Those consisting in at
least |T | + 1 cliques are of cost at least (|T |+ 1)α > mβ + (|T | −m)α. 2

7 ILP formulation and min-max formula for [PCliqW]

Seen as a partition problem, [PCliqW] can be formulated as an integer linear pro-
gram, with variables y in R

C(G) (where C(G) is the set of cliques of G):

min fT y(13) (i)
∑

C∋v

yC = 1 for all v ∈ V(ii)

yC ∈ {0, 1} for all C ∈ C(G)(iii)

Clearly, if f is non-negative, there is no advantage in taking yC > 1. Therefore,
yC ∈ {0, 1} can be replaced by yC ≥ 0 and yC ∈ Z. Also, if f is non-decreasing,
(13) (ii) can be replaced by

∑
C∋v yC ≥ 1 (if yA = yB = 1, A,B ∈ C(G) and

A∩B 6= ∅ then B \A is still a clique of G and we can reset yB := 0 and yB\A := 1).
If f is non-negative and non-decreasing, the dual of the linear relaxation of (13)

can therefore be written as maximizing 1Tx subject to2:

∑

v∈C

xv ≤ f(C) for all C ∈ C(G)(14) (i)

xv ≥ 0 for all v ∈ V (G)(ii)

If G is perfect and f ≡ 1, (14) is TDI. Also if G is complete and f is submodu-
lar, (14) is box-TDI. So in both cases, (14) yields a min-max formula for [PCliqW].

2An interpretation of system (14) within the framework of cooperative game theory
with cooperation restricted to the cliques of a graph is described in [16].
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But there are other famous cases where (14) yields a min-max formula. Greene-
Kleitman’s theorems can be restated in the following terms: if G is a comparability
graph or the complement of such a graph and if f is the rank function of a uniform
matroid, system (14) is TDI. Alternatively, Greene-Kleitman’s theorems can stated
as the box-TDIness of (14) if G is (co)-comparability and f ≡ 1 [5]. Note that
cliques of the line-graph of a bipartite graph G correpond to subsets of δ(v) (the
set of edges incident with v), for some v ∈ V (G). Now, a common generalization
of the polymatroid intersection theorem, of Dilworth’s truncation and of min-max
relations for bipartite b-matching can be stated as box-TDIness of (14) if G is the
line-graph of a bipartite multigraph and f is submodular. More precisely we have
(see section 48.3 of [17] for an idea of the proof and Chapter 60 for extensions),

Theorem 7.1 (Submodular bipartite matchings polyhedron) [16]
Let G = ((A,B), E) be a bipartite multi-graph and for all v ∈ A ∪ B let fv be a
submodular function on δ(v), then the following system is box-TDI

(15)
∑

e∈F

xe ≤ fv(F ) for all v ∈ A ∪B and ∅ 6= F ⊆ δ(v)

In view of these results, it seems reasonable to expect system (14) to provide other
min-max relations for [PCliqW]. However, the linear relaxation of (13) does not
always have an integral optimal solution, even if G is an interval graph and f is a
value-polymatroidal set function as shown in Figure 4 (other examples for which
G is perfect, f is a submodular but the linear relaxation of (13) has no integral
optimal solution are provided in [16]).

b bb b bbb

bb bb

bb

bb

b

p(v) = 1 p(b) = 2 p(a) = 3

p(c) = 1 p(d) = 1

p(e) = 2 p(w) = 1

Figure 4: Let f be the max-batch cost defined by p. An optimal so-
lution to the linear relaxation of (13) is given by yC = 1/2 if C ∈
{{v},{b, v},{a, b, c},{a, d, e},{c, d},{e, w}, {w}} and yC = 0 otherwise. The
cost of this fractional partition is 13/2. Optimality can be checked using an x
maximizing 1Tx subject to (14), for instance x(a) := 3/2, x(c) = x(d) := 1/2
and x(b) = x(e) = x(v) = x(w) := 1.
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8 Conclusion and extension

Although we were able to compute an optimum solution for [PCliqW] when G is
an interval graph and f is value-polymatroidal, we were unable to complement
this result by a min-max formula. This issue could be linked with the following
extension: consider the problem of multi-partition into cliques, that is, generalize
the ILP (13) by replacing constraints (ii) by

∑
C∋v yC = dv, where dv ∈ N is the

covering demand associated to vertex v. The complexity of this problem is left open
and, to the best of our knowledge, is beyond the scope of our dynamic program. A
polytime algorithm for this last problem might shed new light on the structure of
interval graphs and therefore be useful to solve various problems on interval graphs.
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châıne logistique. Laboratoire GILCO - Grenoble, (2005).

13



[10] J. Edmonds, R. Giles: A min-max relation for submodular functions on graphs.
Ann. Discrete Math. 1, (1977) 185-204.

[11] B. Escoffier, J. Monnot, V. Th. Paschos: Weighted Coloring: Further Com-
plexity and Approximability Results. ICTCS, (2005) 205-214.

[12] G. Finke, V. Jost, M. Queyranne, and A. Sebő: Batch processing with interval
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