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Abstract. In this paper we, firstly, present a recursive formula of the
empirical estimator of the semi-Markov kernel. Then a non-parametric
estimator of the expected cumulative operational time for semi-Markov
systems is proposed. The asymptotic properties of this estimator, as
the uniform strongly consistency and normality are given. As an illus-
tration example, we give a numerical application.
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1. Introduction

Semi-Markov models are common modelling tools in the analysis of machines
subject to stochastic failures (cf. Limnios and Oprishan [4]). In this paper we con-
sider systems with finite number of states and random holding times in each state.
This consideration relaxes the exponential assumption and provides a rich class
of models applicable in reliability, maintenance studies and survival analysis (cf.
Janssen and Limnios [16]). However, in practice, data analysis for semi-Markov
processes can be quite difficult. There are many competing models that relax the
exponential assumption in modelling complex multistate systems in both reliability
and survival analysis (see i.e., Huzurbazar [2]). In this paper, a recursive formula
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to estimate the semi-Markov kernel is proposed. The cumulative operational time
Co(t), t > 0 of semi-Markov systems is the total time spent by the process in the
set of up states during the time interval [0, t]. This indicator is of great interest in
maintenance studies because it can be used to minimize the expected cost of the
maintenance process by choosing the appropriate actions. The distribution of the
cumulative operational time has been the subject of many papers (Smith et al.
[12], Kulkarni et al. [3]). A closed form expression for the cumulative distribution
function of Co(t) in the semi-Markov case under the additional assumption that
the sequences of operational and unoperational periods are independent was given
by Rubino and Sericola [15]. Csenski [13], described a method for computing the
cumulative operational time for semi-Markov processes.

To our knowledge there is no work on the estimation of the expected cumulative
operational time of a semi-Markov system. In this paper we are concerned by
developing an algorithm to estimate the expected cumulative operational time
E[Co(t)], t > 0 of the semi-Markov systems. It is seen that this estimator is
uniformly strongly consistent and converges weakly to a zero mean normal random
variable.

This article begins by describing the model. In Section 3 we present a recursive
method to estimate the embedded Markov transition matrix and the distribution of
the holding time which in turns allow us to give an algorithm to estimate the semi-
Markov kernel. In Section 4, we give the expression of the expected cumulative
operational time E[Co(t)], t > 0 of the semi-Markov systems. Then we propose
an estimator of E[Co(t)], t > 0. This estimator is seen to be consistent and to
converge to a normal random variable as the time of observation becomes large.
Finally, Section 5, presents a numerical example of a three state semi-Markov
process.

2. Preliminaries

Consider a Markov renewal process (MRP) (J, S) = (Jn, Sn)n≥0 defined on
a probability complete space, where Jn is a Markov chain with values in E =
{1, ..., s}, the state space of the process and Sn the jump times process. The
random variables J0,J1, ...,Jn,... are the consecutive states to be visited by the
MRP and X1, X2, ... defined by X0 = 0 and Xn = Sn − Sn−1, for n ≥ 1, are the
sojourn times in these states taking values in [0,∞).
A MRP can be completely determined if we know its initial law and its transition
probabilities defined respectively by :P (J0 = k) = p(k) and

P [Jn+1 = k,Xn+1 ≤ x|J0, J1, ..., Jn, X1, X2, ..., Xn] = QJnk(x) (a.s.)

for all x ∈ [0,+∞) and 1 ≤ k ≤ s.
The probabilities pij = Qij(∞) (= lim

t→+∞Qij(t)) are the transition probabilities of

the embedded Markov chain Jn.
Let us, also consider the distribution function associated to sojourn time in state
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i before going to state j defined by:

Fij(.) =
{
p−1

ij ×Qij(.) if pij > 0
0 otherwise.

So, we have:
P [Jn = j/J0, J1, ....Jn−1 = i] = pij for all n > 0.

P [Xn ≤ x/J0, .....Jn−1 = i, Jn = j] = Fij(x) for all n ≥ 0 and x ≥ 0.

P [Xn1 ≤ x1, Xn2 ≤ x2, ........Xnk
≤ xk/Jn, n ≥ 0] =

k∏
i=1

FJni−1Jni
(xi) (a.s.)

for 0 ≤ n1 ≤ n2 ≤ ... ≤ nk and xi ≥ 0 for i = 1, ..., k.
The Markov renewal matrix, ψ(t) is defined by

ψ(t) = E[N(t)] =
∞∑

l=0

Q(l)(t),

where N(t) is the counting process of transitions of the process up to time t and
Q

(1)
ij (t) = Qij(t) and for l > 1, Q(l)(t) is the lth convolution of Q(t) in the Stieltjes

sense and

Q
(0)
ij (.) =

{
1{i=j}(t) if t > 0
0 otherwise.

Let us recall that since the state space, E, is finite, ψ(t) is element wise finite for
every t ≥ 0, i.e. the MRP is normal see [8]

e semi-Markov transition matrix function of the semi-Markov process, (Zt)t≥0,
is defined by:

Pij(t) = P [Zt = j|Z0 = i] = P [JNt = j|J0 = i] i, j ∈ E,

It is known, cf. [11], that

Pij(t) = 1{i=j}(1 −
s∑

k=1

Qik(t)) +
∑
k∈E

∫ t

0

Pkj(t− s)Qik(ds).

By solving the above Markov renewal equation, cf. [4], it is seen that, in matrix
notation,

P (t) = (I −Q(t))(−1) ∗ (I − diag(Q(t)1)), (1)

where diag(·) is a diagonal matrix of ith entry
∑s

j=1Qij(t) and 1 = (1, 1, ..., 1)t.
The semi-Markov transition matrix is a very useful matrix function in studying

the semi-markov processes asymptotic properties and in their applications see [9].
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3. Non-parametric estimation of the semi-Markov kernel

In the following, we will perform the non-parametric estimator given by [7], by
giving a recursive formula which allows us to make estimation procedures easy in
computation.

Let us also define the process (N(t), t ∈ IR+), by N(t) := sup{n ≥ 0 : Sn ≤ t},
which counts the number of jumps of Z in the time interval (0, t]. Let Ni(t, t′)
be the number of visits of Z to state i ∈ E between time t and time t′ and let
Nij(t, t′) be the number of jumps from state i to state j between time t and time
t′. In the rest, we will denote Ni(t) = Ni(0, t) and Nij(t) = Nij(0, t). that is,

Ni(t) : =
N(t)∑
k=1

1{Jk=i} =
∞∑

k=1

1{Jk=i,Sk≤t},

Nij(t) : =
N(t)∑
k=1

1{Jk−1=i,Jk=j} =
∞∑

k=1

1{Jk−1=i,Jk=j,Sk≤t}.

Let us suppose that we have one observation in the time interval [0, T1], (Z(t), 0 ≤
t ≤ T1), that is {J0, X1, · · · , JN(T ), XN(T1), UT1}, where UT1 := T1 − SN(T1).
The main problem here is that, when we have observed the history of the process
until time T1, we can get the maximum likelihood estimator of the semi-Markov
kernel from [7], but what one can do to actualize the estimator if the data from T1

to T2, T1 < T2, is available? Of course, one can consider the history of the process
on [0, T2], and then do as in [7], but this increases the complexity of calculation.
In the sequel of this section we will present a recursive formula to answer this
problem.

Proposition 1. The non-parametric estimator of the transition matrix of the
embedded Markov chain and the non-parametric estimator of the distribution of
the sojourn time can be actualized in the following manner:

p̂ij(T + 1) = Ai(T + 1).p̂ij(T ) +Wij(T + 1),

F̂ij(t, T + 1) = Cij(T + 1).F̂ij(t, T ) +Dij(t, T + 1),

where,

Ai(T + 1) =
Ni(T )

Ni(T + 1)
and Wij(T + 1) =

Nij(T, T + 1)
Ni(T + 1)

and

Cij(T + 1) =
Nij(T )

Nij(T + 1)
and Dij(t, T + 1) =

∑Nij(T+1)

l=Nij(T )+1 1{Xijl≤t},

Nij(T + 1)
,

where Xijl is the lth sojourn time in state i before going to state j, Nij(T + 1) =
Nij(T ) +Nij(T, T + 1) and Ni(T + 1) = Ni(T ) +

∑s
j=1Nij(T, T + 1).
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Proof. From [7], the non-parametric estimator of the transition matrix of the em-
bedded Markov chain and the non-parametric estimator of the distribution of the
sojourn time are given respectively by:

p̂ij(T + 1) =
Nij(T + 1)
Ni(T + 1)

F̂ij(t, T + 1) =
1

Ni(T + 1)

Nij(T+1)∑
l=1

1{Xijl≤t}.

For the first part of the proposition, see that :

p̂ij(T + 1) =
Nij(T + 1)
Ni(T + 1)

=
Nij(T ) +Nij(T, T + 1)
Ni(T ) +Ni(T, T + 1)

=
Ni(T )

Ni(T + 1)
.p̂ij(T ) +

Nij(T, T + 1)
Ni(T + 1)

, (2)

= Ai(T + 1).p̂ij(T ) +Wij(T + 1),

the Equation (2) was obtained by dividing the numerator and the denominator by
Na

i (T ). For the second part, we have that:

F̂ij(t, T + 1) =
1

Nij(T + 1)

Nij(T+1)∑
l=1

1{Xijl≤t},

=
Nij(T )

Nij(T + 1)
F̂ij(t, T + 1) +

1
Ni(T + 1)

Nij(T+1)∑
l=Nij(T )+1

1{Xijl≤t},

= Cij(T + 1).F̂ij(t, T ) +Dij(t, T + 1), (3)

which is the desired result. �
Remark 1.

(1) From (2) and (3) we get a recursive formula to estimate the semi-Markov
kernel

Q̂ij(t, T ) = p̂ij(T )F̂ij(t, T ).
(2) Since the process that we consider is recurrently positive, we have that

p̂ij(T ) −→ νj , the equilibrium measure of the embedded Markov chain,
and

max
i,j∈U

sup
t∈IR+

|F̂ij(t, T ) − Fij(t)| → 0 a.s.,

the estimation algorithm is convergent and we must stop the algorithm
when the needed degree of precision is reached.

(3) In Markov case, a similar result was obtained in Boudi [1].
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4. Non-parametric estimation of the expected

cumulative operational time

In reliability studies, the state space E is usually partitioned into two subsets.
The first one, say U , consists in the up states and the second one, say D, consists in
the down states. The entrance into a state might correspond to the occurrence of a
critical event such component failure due to some cause or repair achivement. We
assume here that the system is repairable and thus the process alternates between
U and D.

The cumulative operational time is defined by

Co(t) =
∫ t

0

1{Zu∈U}du. (4)

It is the total spent by the semi-Markov process Z in the set of up states U
during the time interval [0, t] (see for example [13], who described a method for
computing the cumulative operational time for semi-Markov processes). It is easy
to see that when the embedded Markov Chain, ((Jn)n≥0) is irreducible, recurrent,
and aperiodic with equilibrium measure ν, then

lim
t→+∞

Co(t)
t

=
∑

i∈U νimi

s∑
k=1

νk.mk

,

where mi is the mean sojourn time in state i. A mathematical proof of this result
can be found in [4] or in Ross [14]. However, one can reason heuristically that
since νi is the proportion of transitions that are into state i, since mi is the mean
sojourn time in state i, the average system availability, if stationary, should be

∑
i∈U

νimi

s∑
k=1

νk.mk

·

The problem of estimation of the stationary distribution of ergodic semi-Markov
processes, was considered by [5].
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The quantity that we want to study is the expected cumulative operational time
of a semi-Markov system which is given by

E[Co(t)] = E[
∫ t

0

1{Zu∈U}du]

=
∫ t

0

P (Zu ∈ U)du

=
∑
j∈U

∫ t

0

P (Zu = j)du

=
s∑

i=1

∑
j∈U

∫ t

0

αiPij(u)du, (5)

where Pij(u) is given in (1) and α is the initial probability of the process.
The expected cumulative operational time is an important indicator in the

maintenance studies since it allows us to derive the average system availability
given by

Ā(t) =
1
t

∑
j∈U

∫ t

0

Pj(u)du.

Theorem 1. The expected cumulative operational time (5) can be written as:

E[Co(t)] =
s∑

i=1

∑
j∈U

∫ t

0

αiMj(t− x)dψij(x),

where Mj(x) =
∫ x

0 H̄j(u)du,

Proof. Of course, this quantity exists because the process which we consider is
finite positive (ψij(t) <∞ cf. [6]) and Mj(t) < t.

From (5), we have that

E[Co(t)] =
s∑

i=1

∑
j∈U

∫ t

0

αiPij(u)du,

=
s∑

i=1

∑
j∈U

∫ t

0

αi

∫ u

0

H̄j(u− x)dψij(x)du,

=
s∑

i=1

∑
j∈U

∫ t

0

αi(
∫ t−x

0

H̄j(u)du)dψij(x),

=
s∑

i=1

∑
j∈U

∫ t

0

αiMj(t− x)dψij(x), . (6)

which is the desired result.



406 B. OUHBI, A. BOUDI AND M. TKIOUAT

In the sequel, we are concerned with the non-parametric estimation of the ex-
pected cumulative operational time of a semi-Markov system.

From P̂ (t), we propose to estimate E[Co(t)] by:

ˆE[Co(t)] =
s∑

i=1

∑
j∈U

αi(M̂j ∗ ψ̂ij)(t) (7)

where M̂j(t, T ) = 1
Nj(T )

∑Nj(T )
l=1 (Xjl ∧ t).

In the sequel we will prove that the proposed estimator is unifomly strongly
consistent and converges in law to a normal random variable. �

Theorem 2. The estimator of the expected operational time, ˆE[Co(t)] is uniformly
strongly consistent in the sense that

max
i,j

sup
t∈[0,L]

| ˆE[Co(t, T )] − E[Co(t)]| −→ 0 a.s., as T → ∞.

Proof. From (7), we have

max
i,j

sup
t∈[0,L]

| ˆE[Co(t, T )]−E[Co(t)]| ≤ max
i,j

sup
t∈[0,L]

s∑
i=1

∑
j∈U

αi|(M̂j∗ψ̂ij)(t)−(Mj∗ψij)(t)|

≤ max
i,j

sup
t∈[0,L]

s∑
i=1

∑
j∈U

αi|(M̂j −Mj)(t)|.ψij(t)

+ |M̂j(t)|.|ψ̂ij(t) − ψij(t)|.

From [6], we have that,

max
j

sup
t∈IR+

|Ĥj(t, T ) −Hj(t)| −→ 0 a.s. when T −→ ∞,

which implies that

max
j

sup
t∈[0,L]

s∑
i=1

∑
j∈U

αi|(M̂j −Mj)(t)| −→ 0 a.s. when T −→ ∞.

For any L ∈ IR+, we have

max
i,j

sup
t∈[0,L]

|ψ̂ij(t, T ) − ψij(t)| −→ 0 a.s. when T −→ ∞,

and the fact that ψij(t) <∞ and M̂j(t) < t, we get the desired result. �
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Theorem 3. For any fixed t, t ∈ [0,∞), T 1/2( ˆE[Co(t, T )] − E[Co(t)]) converges
in law to a zero mean normal random variable with variance

σ2(t) =
s∑

i=1

s∑
j=1

µii · {(φij)2 ∗Qij − (φij ∗Qij)2

+1{j∈U}

∫ ∞

0

[∫ ∞

0

(x ∧ (t− u) −Mi)dAi(u)
]2

dQij(x)

−
[
1{j∈U}

∫ ∞

0

∫ ∞

0

(x ∧ (t− u) −Mi)dAi(u)dQij(x)
]2

+2.1{j∈U}

∫ ∞

0

φij .(t− x)
∫ ∞

0

(x ∧ (t− u) −Mi)dAi(u)dQij(x)

−2.1{j∈U}(φij ∗Qij)(t).(Ai ∗ ((x ∧ .−Mi))(t)}

where Ai(t) =
∑s

k=1 αkψki(t) and φkl(t) =
∑s

i=1

∑
j∈U αi(ψik ∗ ψlj ∗Mj)(t).

Proof. From (7), we see that

T 1/2( ˆE[Co(t, T )] − E[Co(t)]) =
s∑

i=1

∑
j∈U

αiT
1/2(M̂j ∗ ψ̂ij)(t) − (Mj ∗ ψij)(t)

=
s∑

i=1

∑
j∈U

αiT
1/2[(M̂j −Mj) ∗ (ψ̂ij − ψij)(t)

+ (M̂j −Mj) ∗ ψij)(t) +Mj ∗ (ψ̂ij − ψij)(t)] (8)

From [6], the first term of (8) converges to zero. Then T 1/2( ˆE[Co(t, T )]−E[Co(t)])
has the same limit as

s∑
i=1

∑
j∈U

αiT
1/2
[
(M̂j −Mj) ∗ ψij)(t) +Mj ∗ (ψ̂ij − ψij)(t)

]
.

From [6], has the same limit as

s∑
i=1

∑
j∈U

αiT
1/2

⎡
⎣ 1
Nj(T )

Nj(T )∑
r=1

(Xjl ∧ t−Mj) ∗ ψij)(t)+

(
s∑

k=1

s∑
l=1

Mj ∗ ψik ∗ ψlj

)
∗ (Q̂kl −Qkl)(t)

]
,
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which is equal to

s∑
i=1

∑
j∈U

αiT
1/2

⎡
⎣ 1
Nj(T )

Nj(T )∑
r=1

(Xjl ∧ t−Mj) ∗ ψij)(t)

+

(
s∑

k=1

s∑
l=1

Mj ∗ ψik ∗ ψlj

)
∗
⎛
⎝ 1
Nk(T )

Nk(T )∑
r=1

(1{Jr+1=l,Xr≤.} −Qkl)(t)

⎞
⎠ 1{Jr=k}

⎤
⎦ ,

which can be written as

s∑
k=1

s∑
l=1

T 1/2

Nk(T )

Nk(T )∑
r=1

[1{Jr=k,k∈U,Jr+1=l}(Xr ∧ t−Mk) ∗Ak)(t)

+ (Bkl ∗ (1{Jr+1=l,Xr≤.} −Qkl)(t))1{Jr=k}],

where Ak(t) =
∑s

i=1 αiψik(t) and φkl(t) =
∑s

i=1

∑
j∈U αi(ψik ∗ψlj ∗Mj)(t). Since

T
Nk(T ) → µkk, we can consider the function

f(Jr, Jr+1, Xn) = µkkAk ∗ (Xn ∧ t−Mk)1{Jr=k,k∈U,Jr+1=l}
+ µkkφkl ∗ (1{Jr+1=l,Xr≤.} −Qkl)(t)1{Jr=k}.

By the central limit theorem of semi-Markov process (see [10]) or as in [6] for this
function we get the desired result. �

5. Numerical application

Let us consider a three state semi-Markov system as illustrated in Figure 1,
where F12(x) = 1−exp(−λ1x), F21(x) = 1−exp[−( x

α1
)β1 ], F23(x) = 1−exp[−( x

α2
)β2 ],

and F31(x) = 1 − exp(−λ2x), for x ≥ 0. λ1 = 0.1, λ2 = 0.2, α1 = 0.3, β1 = 2,
α2 = 0.1 and β2 = 2.

The transition probability matrix of the embedded Markov chain (Jn) is:

P =

⎛
⎝ 0 1 0

p 0 1 − p
1 0 0

⎞
⎠ ,

where p is given by

p =
∫ ∞

0

[1 − F23(x)]dF21(x).

In Figure 2, we present the estimation of the cumulative operational time for
the three state semi-Markov system given in Figure 1. As an appliccation to
maintenance studies, we give in Figure 3 the estimation of the average system
availability for this system.
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Figure 1. A three state semi-Markov system.

Figure 2. The estimation of the cumulative operational time for
the three state semi-Markov system.

6. Concluding remarks

The main impediment to the semi-Markov use in practice is computational
complexity. In this paper, we have developed a recursive formula of the empir-
ical estimator of the semi-Markov kernel. By making use of this estimator, we
have proposed an estimator for the expected cumulative operational time of semi-
Markov systems and we have proved its asymptotic properties. This indicator is of
great interest in maintenance studies. Finally, it should be mentioned that there
is a need for applications of this quantity to minimize the expected cost of the
maintenance process by choosing the appropriate actions.
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Figure 3. The estimation of the average system availability.
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