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Abstract. We present in this paper a new multiobjective memetic
algorithm scheme called MEMOX. In current multiobjective memetic
algorithms, the parents used for recombination are randomly selected.
We improve this approach by using a dynamic hypergrid which allows
to select a parent located in a region of minimal density. The second
parent selected is a solution close, in the objective space, to the first
parent. A local search is then applied to the offspring. We experi-
ment this scheme with a new multiobjective tabu search called PRTS,
which leads to the memetic algorithm MEMOTS. We show on the mul-
tidimensional multiobjective knapsack problem that if the number of
objectives increase, it is preferable to have a diversified research rather
using an advanced local search. We compare the memetic algorithm
MEMOTS to other multiobjective memetic algorithms by using differ-
ent quality indicators and show that the performances of the method
are very interesting.
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4 THIBAUT LUST AND JACQUES TEGHEM
INTRODUCTION
A multiobjective combinatorial optimization problem (P) (or multiobjective
linear programming problem with binary variables), with K objectives, n variables

and ¢ constraints is defined in the following way:

({min)) 2(X) = kX k=1,...,.K

XeD
where D={X:XeLD X eB"}
LD ={X:AX <b,X >0}
with A=(gxn),c*=(1xn),X=mnx1),b=(gx1)
and B ={0,1}

Due to the contradictory features of the objectives, it does not exist a solution
simultaneously minimizing each objective (and for this reason the notation ((min))
is used), but a set of solutions called efficient solutions. A solution X* € D
is efficient for the problem (P) if there are no other solutions X € D such as:
z2k(X) < zk(X*),k = 1,..., K with at least a strict inequality. We will indicate
by E(P) the whole efficient solution set of the problem (P), which is represented
in the objective space by a Pareto front or a trade-off surface.

In this paper, only a minimal complete set will be sought, i.e. no equivalent
efficient solution (two solutions X; and X, are equivalent if z(X1) = zk(X2),
k = 1,...,K) will be retained, and each solution found will correspond to a
distinct non-dominated point in the objective space.

Metaheuristics showed their effectiveness to obtain a good approximation of the
solution of difficult optimization problems. So, they were adapted to multiobjec-
tive problems [3,8,10], and constitute a research field under full development, since
the multiobjective case requires a method which combines different properties at
the same time, i.e. able to find solutions located in all the zones of the objective
space, but also close to the efficient solutions. This is why it is relevant to hybrid
different metaheuristics in order to combine the advantages of each one of them.
If we refer to the taxonomy of hybrid metaheuristics of Talbi [30], the memetic al-
gorithms, employed in this paper and based on the cooperation between a genetic
algorithm and a local search method, belong to the LTH (Low-level Teamwork
Hybrid) class. The LTH class regroups the cooperations resulting from an opti-
mization method with population of solutions where the operator acting on the
solutions, in an individual or total way, is replaced by an optimization method (in
the memetic algorithms, the mutation operator of the genetic algorithm is replaced
by the local search).

This paper is organized as follows: after a short presentation of the existing
multiobjective memetic algorithms, we present the MEMOX scheme, a general
memetic algorithm scheme for multiobjective optimization. At Section 3, we
present the local search that will be used in the MEMOX scheme, the original mul-
tiobjective tabu search PRTS, what gives rise to the method called MEMOTS. We
expose then how the MEMOTS algorithm has been adapted to the multiobjective
multidimensional knapsack problem, how the MEMOTS parameters have been
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fixed and how the parameter values influence the algorithm performances. Vari-
ous indicators of quality of an approximation are presented. Finally, we compare
the MEMOTS performances with respect to MOGLS [19], a particularly power-
ful method for this problem, and two other multiobjective memetic algorithms:
PMA [18] and IMMOGLS [13].

1. BRIEF OVERVIEW OF MEMETIC ALGORITHMS
FOR MULTIOBJECTIVE OPTIMIZATION

A memetic algorithm (or genetic local search) is a genetic algorithm where
the mutation operator is replaced by a local search method applied to every new
offspring generated [26]. The memetic algorithms are particularly well adapted
to the resolution of multiobjective optimization problems since a set of diversified
solutions (from where the interest to use a population) but also close to the Pareto
front (what is ensured by the local search) is required.

In an interesting survey of memetic algorithms for multiobjective optimiza-
tion [23], Knowles and Corne distinguish three principal groups of authors who
developed memetic multiobjective algorithms: Ishibuchi and Murata with the
IMMOGLS  (Ishibuchi Murata MultiObjective Genetic Local Search)
method [13], Jaszkiewicz with two methods, MOGLS (MultiObjective Genetic
Local Search) [15,19] and PMA (Pareto Memetic Algorithm) [18] and finally,
Knowles and Corne with the M-PAES (Memetic Pareto Archived Evolution Strat-
egy) method [22].

The three methods IMMOGLS, MOGLS and PMA are all the three based on
the same principle: a scalarizing function is used, defined thanks to a weight
vector randomly drawn, to select probabilistically two parents being good on this
function. The two parents are then crossed, to generate an offspring. The local
search is applied to the offspring and finally, the improved offspring competes with
the population for survival to the next generation.

The only point on which the three algorithms differ is the choice of the parents
employed for recombination. In IMMOGLS, the parents are selected from the
current population using the roulette wheel selection scheme with a linear scaling.
The two parents in MOGLS are randomly selected from a temporary population
of small size composed of the best solutions on the current scalarizing function. In
PMA, the selection is based on a tournament, where the two solutions selected are
the winners of a tournament between solutions coming from a sample drawn at
random from the population. The selection procedure of PMA is faster than that
of MOGLS, but the determination of the sample size of PMA is quite difficult.

The M-PAES method is rather different from the three preceding ones, since
none scalarizing function is used, either in the local search or the parents selection.
The solution evaluation is instead based on a form of Pareto ranking. The local
search is the (141)-PAES method [21], which is a procedure for maintaining a
finite size archive of non-dominated solutions. In (141)-PAES, a new solution is
generated from the current solution, and, to check if this new solution is accepted,
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a comparison with the current solution and the population is realized. The rule of
acceptation is as follows:

e If the new solution is dominated by the current solution: not accepted;

e If the new solution dominates at least one solution of the population:
accepted;

e If the new solution is not dominated by at least one solution of the popula-
tion but does not dominate any solutions of the population: the solution is
accepted at the condition that the solution brings diversity. The diversity
is measured by a hypergrid created in the objective space.

In addition, the M-PAES method employs periodically a crossover operator to
recombine the solutions found by the (1+1)-PAES procedure.

The M-PAES method is known as being parsimonious in term of number of eval-
uations because no non-dominated solution is discarded contrarily to algorithms
using scalarizing functions, since in these algorithms, solutions are rejected if they
are bad on the current scalarizing function. On the other hand, a Pareto ranking
evaluation takes more time than applying a scalar acceptance function.

As M-PAES, the algorithm developed in this paper does not use scalarizing
functions, which also avoids the necessity of specifying weights sets and normalizing
the objectives.

2. MEMOX: A NEW MEMETIC ALGORITHM SCHEME
FOR MULTIOBJECTIVE OPTIMIZATION

2.1. PRESENTATION OF THE SCHEME

We present in this section a new scheme of resolution of multiobjective op-
timization problems, called MEMOX, and based on a memetic algorithm. The
resolution scheme MEMOX combines elements of the algorithms presented at the
previous section, without using scalarizing functions for the parents selection.

Indeed, as illustrated at Figure 1, a negative point of this selection is that
the distribution of the solutions of the population in the objective space is not
taken into account; parents being located in a zone already well exploited could
thus be selected for the recombination because the weight set A used to build the
scalarizing function on which the selection is based is randomly generated.

The functioning of the MEMOX scheme, presented at Figure 2, is as follows.

In an initialization phase, an initial population of non-dominated solutions (or
potentially efficient), and ideally diversified, is generated by a heuristic or a local
search. At each new solution X generated, the set of potentially efficient solutions,
noted PE, is actualized by elimination of the potentially efficient solutions of PE
which could be found dominated following the addition of the new solution Xj.

Then, two solutions from the population are selected (the parents). The first
selected solution, called X7, is one of the solutions of the population having a
minimal density, defined by the number of solutions being in the same hypervolume
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FIGURE 1. Problem of the selection of MOGLS, IMMOGLS and PMA.

as the solution. The technique employed to realize this division is explained at
Section 2.2 (this is the main difference with respect to the other multiobjective
memetic algorithms).

The second one, called X, is one of the solutions of PE among the r closest [14]
solutions to the first solution according to the euclidean distance in the objective
space. It should be noted that if the number of potentially efficient solutions found
by the algorithm, noted |PE]|, is lower or equal to 7, the selection of the second
solution is realized among the |PE| — 1 closest solutions.

The both solutions X; and X, are then combined by a crossover operator
for thus obtaining a new solution called X3 (the offspring). The solution X3 is
added to the set | PE| of potentially efficient solutions, and this set is consequently
actualized to keep only the non-dominated solutions.

Finally, a local search method X (that can be the same than the one used
during the initialization phase) is applied from the offspring X3 until no more
improvement in the solution set happens during a certain iterations number sop.
Finally, this process is reiterated by again selecting the minimal density solution.

The role of the local search is to intensify the research by generating new solu-
tions close to the selected solution of minimal density X;. The diversification of
the method is ensured by the improvement of solutions of minimal density, which
makes it possible to generate new solutions in little or not exploited zones. An
important parameter of the MEMOX scheme is the it parameter, i.e. after how
many iterations without improvement we have to stop the local search, knowing
that the total number of iterations is limited. It can thus be preferable to start
again the local search from a solution of minimal density rather than to strongly
intensify in a precise zone.
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Parameters

itstop: iterations number of the local search without improvement

r: number of solutions taken into account for the selection of the closest solution
S : number of initial solutions

n: maximum number of iterations

Notations

1: current iterations number

nys : counter of the iterations number of the local search
PE : list of non-dominated solutions, potentially efficient
|PE|: number of potentially efficient solutions

D(X) : density of a potentially efficient solution X

Initialization

10
PE — 0
Generate S admissible solutions thanks to a local search method or a
construction heuristic
For each solution X, generated (s =1,...,5), do:
PE — PE + {X,}
Actualize PE

Iteration 1

For each solution of PE calculate the density D(X;) [ =1,...,|PE]|

Calculate D* = min D(X;)

Choose randomly a solution X; among the solutions which respect D(X;) = D
Choose a solution X among the min(r, |PE| — 1) solutions of PE closest to X
Cross the two solutions X; and X, for obtaining a new solution X3

PE «— PE + {X3}

Actualize PE

Apply a local search method X from X3 until no more improvement in PE while

*

itstop
1 — 1+ N

Stop Criterion

Iteration count i = n

FIGURE 2. MEMOX scheme.
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The algorithm has the advantage of being easily adapted to any type of multiob-
jective optimization problems, provided that a local search (and the corresponding
neighborhood), a crossover operator and a means of generating an initial popula-
tion are defined.

An important parameter of the MEMOX scheme is the itso, parameter, i.e. af-
ter how many iterations we have to stop the local search, knowing that the total
number of iterations is limited. It can thus be preferable to start again the local
search from a solution of minimal density rather than strongly intensifying in a
precise zone.

2.2. THE DYNAMIC HYPERGRID

An another important point not explained in this scheme is how to measure the
density of a potentially efficient solution.

Two authors have already used the concept of density within the framework of
multiobjective optimization:

e Deb with the concepts of hyperniche [28] and hypercube [6], introduced
into the genetic algorithms NSGA (Non dominated Sorting Genetic Algo-
rithm), for the selection of individuals through a population.

e Knowles and Corne with the hypergrid, introduced into the (1+1)-PAES
method [21], employed in the rule of acceptance of a new solution and
also used to limit the number of solutions generated.

An inconvenient of the hyperniche and hypercube measures is the high calculation
computational time, because each solution has to be compared to all the other
to obtain the density of all the solutions. Another argument in discredit of the
hyperniche measure is that this measure is extremely dependent on the size of the
niche [7].

Consequently, we use a hypergrid in MEMOX, created by a division of the
objective space in hypervolumes. The density of a solution is thus defined by
the number of solutions being in the same hypervolume as the solution. In this
way, it is quite easy to measure the density of a solution by always having in
memory the number of solutions in each hypervolume and the coordinates of the
solutions in the hypergrid. Thus, if we want to know the density of a solution, it
is enough to read the number of solutions present in the hypervolume identified
by the coordinates of the solution.

The hypergrid size has to be managed. Indeed, if the number of hypervolumes
that compose the hypergrid is to high, all the solutions will be on different hy-
pervolumes. On the other hand, if there are not enough hypervolumes, a lot of
solutions will be on the same hypervolumes (see Fig. 3).

In these two cases, it will be difficult to distinguish a solution of minimal density.
That is why the hypergrid size is dynamically updated. As the method starts from
a low number of solutions and this number is, for the majority of the cases, in
constant increase when a multiobjective problem is solved, the number of divisions
of the hypergrid is also constantly increased. The rule is as follows: if the average
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FiGURE 3. On the left: too many divisions, a high number of
solutions have a density equal to one. On the right: not enough
divisions, a solution of minimal density can not be distinguished.

density of the solutions becomes higher than a certain threshold, the number of
divisions of the hypergrid is increased by a certain step. In this way, a good
measure of density is guaranteed. It should be noted that the average density is
calculated by only considering the hypervolumes containing at least one solution.

The illustration of this technique is represented at Figure 4, where the evolution
of the number of divisions of the hypergrid according to the iterations number is
represented.

The hypergrid is also updated as soon as a new solution being outside of the
hypergrid is produced. Between each update, we keep in memory the hypergrid
and the coordinates of the solutions, which makes it possible to reduce the com-
putational time, but however, increases the necessary memory place, which could
appear critical for big size problems.

This way of managing the hypergrid implies to set the mean density threshold
from which the number of divisions of the hypergrid is increased. The influence of
this parameter is experimented at Section 6.2.2, and it is shown that the value of
this parameter remains relatively easy to set, since the sensitivity of the algorithm
with respect to the value taken by this parameter is not strong.

3. THE PARETO RANKING TABU SEARCH

We present in this section the PRTS method, the local search method that we
will use in the MEMOX scheme for the resolution of the knapsack problem. The
PRTS method follows the classical framework of tabu search [11]: at each iteration,
L neighbors non-tabu are generated starting from the current solution. The best
neighbor is then selected and becomes the next current solution. To evaluate the
neighbors in a multiobjective context, we employ an original evaluation function
of neighbors, based on a recent paper of Elaoud et al. [9]. In this paper, a genetic
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FI1GURE 4. Evolution of the number of division of the hypergrid.

algorithm (called PFGA for Pareto Fitness Genetic Algorithm) using a new fitness
function based on individuals rank and density, is developed. This approach giving
promising results, the fitness function of PFGA has been adapted within a tabu
search for the evaluation and the selection of the neighbors.

Two measures appear in the evaluation function of PFGA: a classification of
the individuals according to an original rank and a division of the objective space
in hypervolumes allowing to measure the individuals density. These two concepts
are then aggregate into a single evaluation function.

When the PRTS method is used as a local search in the MEMOX scheme, since
its role is to intensify the research, it is preferable to use only the rank for the
selection of the best neighbor. Indeed, the local search is already applied starting
from a solution of low density, and the integration of the density concept in the
selection of the neighbors would slow down the intensification of the research, and
thus the generation of good solutions in the minimal density zone.

However, if the tabu algorithm is used in an independent way, i.e. without
integrating it in a genetic algorithm, it is preferable to use the density measure in
the neighbors evaluation since diversification and intensification are seeking at the
same time. The addition of the density measure leads to the PRTS+D algorithm,
not presented in this paper but already showed in [24].

In PRTS, the evaluation of each neighbor generated from the current solution
is consequently only based on the Double Pareto Ranking (DPR) [9)].

The DPR rank of a neighbor 7 is determined in two times. Initially, the Pareto
Ranking (PR) is calculated by counting the number of individuals of the population
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FIGURE 5. Illustration of the DPR rank.

which dominate the neighbor:
PR(i) = |{jlj € P.i < j}|,

where P represents the population and the symbol < corresponds to the Pareto
dominance relation. In PRTS, the considered population includes the neighbors
and the potentially efficient solutions found by the algorithm.

The DPR rank of a neighbor ¢ is then defined by the sum between its PR(i)
rank and the PR(j) rank of its dominators j:

DPR(i) = PR(i)+ Y _ PR()).

JEP, j~1i

By way of example, the values of the PR and DPR ranks for a population of
13 individuals are presented at Figure 5. If we compare the individuals I; (of
PR and DPR ranks equal to 4 and 5) and Iy (of PR and DPR ranks equal to 4
and 9), we note that their PR ranks are equal since each one is dominated by four
individuals. However, the individual I; seems more interesting since it is enough
that it becomes better than only one of the individuals that dominate it to be
non-dominated whereas the individual Is must become better than at least three
individuals to be non-dominated.

Thus, by the use of the DPR, the individual I; will be preferred since the PR
ranks of the individuals that dominate it are lower, which is translated by a lower
DPR rank.

After the best neighbor selection, the set of potentially efficient solutions PE
is improved by adding the non-dominated neighbors, i.e. those presenting a zero
value for the DPR rank and different in the objective space from the solutions of
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Parameters

t: tabu tenure
L: number of neighbors generated at each iteration (neighborhood size)
n: maximum number of iterations

Notations

PE = list of non-dominated solutions, potentially efficient

T = tabu list of tabu tenure ¢

X = current solution

N(X) = neighborhood of X: set of solutions € D obtained by a movement
starting from X

DPR(Y') = Double Pareto Ranking of a neighbor Y’

Initialization

10

Choose randomly a feasible solution Xy € D
PE «— {X,}

X «— XQ

T—0Q

Iteration 1

Generate randomly L neighbors Y3,...,Y;, ..., Yz non-tabu in N(X)
For each neighbor Y; calculate f(Y;) = DPR(Y)
Calculate f* = min f(Y})
Choose randomly a neighbor Y* among the neighbors which respect f(Y;) = f*
X Y™
Give to the movement X — Y™ the tabu statute
For each neighbor V7, if DPR(Y;) = 0 and Y] is different in the objective space
from the solutions of PE then
PE — PE + {Y;}
Actualize PE
1—1+1

Stop criterion

Iteration count ¢ = n

FicUre 6. PRTS algorithm.
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PE. In addition, the set PE is actualized by elimination of the potentially efficient
solutions of PE which could be found dominated following the addition of the new
solutions.

The algorithm of the PRT'S method is given at Figure 6. The algorithm presents
three parameters, which depend on the problem and on the user requirements:
the tabu tenure ¢, the number L of neighbors generated at each iteration and the
maximum number of iterations 7.

4. QUALITY INDICATORS

In single optimization, it is quite easy to measure the quality of a solution or to
compare the solutions obtained by various methods. That is more difficult in the
multicriteria case [35], because the solutions are represented by a trade-off surface
composed of a solution set, and the problem of the quality measurement of such
a set is thus also and logically a multicriteria problem.

Consequently, we use several indicators to measure the quality of an approxi-
mation of a solution set:

e the hypervolume H (to be maximized) [34]: approximation of the volume
included under the curve formed by the evaluation of the solutions. This
indicator is only calculated for the two objective instances since it takes
high computational time if the number of objectives and solutions increase,
even if works are led to reduce this time [32];

e the spacing out metric SM (to be minimized) [27]: measure the uniformity
of the distribution of the solutions composing the trade-off surface. More
the value is close to zero, the best will be the distribution of the solutions
on the trade-off surface;

e the R measure (to be minimized) [17], correlated to the distance between
a reference point and the solutions of the approximation. The reference
point used can be found in [17];

o the average distance Dq and maximal distance Dy (to be minimized) [4,31]
between the solutions of the reference set and the solutions of the approx-
imation, by using the euclidean distance. Ideally, the reference set is the
Pareto front;

e the percentage of efficient solutions found, only calculated when the effi-
cient solutions are available, noted |EP|(%);

e the number of potentially efficient solutions found, noted |PE|.

An illustration of these indicators for a two objectives example is given at Figure 7.
The two distances D and D5 are rather good indicators, provided that the ref-
erence set is of good quality. The distance D; reflects the capacity of an algorithm
to reach solutions close to the reference set, so it can be interpreted as an indicator
to measure the intensification property of a multiobjective algorithm.
Being given that the solution set obtained by the algorithms are in general
uniform (no zones without solutions), the maximum distance between the solutions
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of the reference set and the solutions of the approximation appears generally in the
extreme zones. In this way, the distance Ds seems a good indicator to measure the
diversification property of an algorithm, interpreted here by the capacity to find
solutions in the extreme zones (which are important solutions since they optimize
one of the objectives).

5. THE KNAPSACK PROBLEM

We apply the MEMOX scheme to the knapsack problem. The local search
method used is the PRTS method. The integration of this tabu search to the
MEMOX scheme leads to a method called MEMOTS. We define in this section
the knapsack problem and how the MEMOTS method has been adapted to this
problem.

5.1. PROBLEM DEFINITION

The knapsack problem consists, in its unidimensional and unicriteria case, to
choose a set of objects to put in a bag. Each object having a weight and a profit,
the objects should be selected to maximize the total profit while not exceeding
the bag capacity. In the multiobjective case, K profits are associated at each
object and in the multidimensional case, ¢ bags are considered, which means that
q constraints are added. The multidimensional multiobjective knapsack problem
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is defined as follows:

max zk(X):Zcfxi k=1,....K
i=1

. —
s.t Zwﬁxigbl l=1,...,q
i=1
x; € {0,1} i=1,...,n

with n the number of objects available, X the decision vector, formed of the binary
variables z; (x; = 1 means that the object 4 is in the knapsack), cf the profit £ of
the object i, w! the weight [ of the object i, b; the capacity of the knapsack | and
zF the value taken by the objective k.

5.2. DATA SETS

We use the knapsack instances published by Zitzler [33]. The data sets in-
clude 250, 500 and 750 objects, with two objectives and two constraints or three
objectives and three constraints.

We have generated a minimal complete set of the efficient solutions of the two
objectives instances which is particularly useful to measure the quality of the ap-
proximations, by applying a lexicographic method [29] coupled with the commer-
cial CPLEX solver. We did not use the solutions published by Zitzler [33], because
we noted that they were some mistakes in these solutions (solutions are missing),
probably due to a bad parameterization of the solver employed by Zitzler.

For the three objectives instances, we approximate the efficient solutions by ap-
plying several times the MEMOTS and MOGLS methods during a great iterations
number. We then retain only the non-dominated solutions.

However, these sets are not optimal and a new non-dominated solution could be
found by one of the algorithms tested in this chapter, what can very often arrive
since the number of non-dominated solutions of the three objectives instances of
the knapsack problem tested in this paper is very high. The quality indicators of
the algorithm would be penalized because the distance between the new solution
and the reference set would be non-null. Thus, we improve in an artificial way these
reference sets by adding a certain value € to the evaluation of each solution of the
reference sets. The value is determined experimentally: the value must be small
but sufficiently large in order to avoid the problem of generation of non-dominated
solutions not being in the reference sets.

It should be noted that, thereafter, when we will speak about, for example, the
250-2 instance, it will mean the instance with 250 objects and two objectives.

5.3. ADAPTATION OF THE MEMOTS ALGORITHM TO THE KNAPSACK PROBLEM

To adapt the MEMOTS algorithm to the knapsack problem, we have to define
a crossover operator, the neighborhood and the tabu list management of the PRTS
method and also a means of generating an initial population.
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5.3.1. Crossover operator

We must define the crossover operator and also a repair procedure for a solution
that does not respect the constraints of the knapsack problem, what can arrive
after the recombination of the two solutions X; and Xs.

The crossing is carried out thanks to a one-point operator starting from the two
solutions X7 and Xs. As this operation can produce two solutions, we keep only
that which has the left part of X; and the right part of X5, which gives a new
solution called X3.

The solution X3 can then not respect the constraints problem. We thus apply
a repair procedure, inspired by the Michalewicz and Arabas procedure [25] for the
single objective knapsack problem, which consists in removing the objects 7 in the
increasing order of the following ratio:

K
3
k=1
Z (wé - max (O7 Z wﬁxi — bl))
i=1

=1

until satisfaction of the constraints.

For an object j, this ratio corresponds to the linear aggregation of the profits
generated by the object on the sum of the weights of the object in the different bags,
by only considering the bags that violate the capacity constraints and by giving
more importance to the bags whose constraints are strongly transgressed (mea-
sured by > | wix; —b;). This procedure is also used in the MOGLS method [19].

In MOGLS, the weight set A is the same weight set than the one employed to
build the scalarizing function used for the selection of X; and X5. In the MEMOX
scheme, a scalarizing function is not employed in the selection, and the use of a
random weight set could lead to a solution X3 being enough far from X; and Xs,
and thus not being located in a zone of minimal density.

So, the weight set is determined according to the efficient solution X selected,
in order to guarantee that the better the evaluation of the solution X; according
to an objective is, the more the value of the weight according to this objective will
be high. The computation formula of the weight set A is thus the following one:

)\k: R(k,Zk(Xl)) k:17,K

R(k, Zk(Xl))

11

where the function R(kz, 2z (X 1)) gives the number of potentially efficient solutions
whose evaluation according to the objective k is lower (or higher if the objective
must be minimized) than z;(X1). The value of this function is ranged between 0
and |PE| — 1, where |PE| represents the number of potentially efficient solutions.
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In this way, we obtain a weight set for the repair procedure which goes in the
direction of the minimal density solution X7j.

5.3.2. Neighborhood

The neighborhood N(X) used in the PRTS algorithm, which must allow to
generate several good solutions from only one, is defined in the following way:

e Generate a weight set A;
e Create a list containing the objects j present in the current solution X
(identified by x; = 1) sorting out it in the increasing order of the following

ratio:
K
2 : k
)\kcj
k=1

—_
Sl
=1
The objects placed at the beginning of the list are thus the objects of low
ratio profit/weight. The size of the list is limited at  percent of n,, with
ne equal to the number of objects present in the solution X.
e Generation of the neighbors:
— Remove a combination of m objects from the solution X by randomly
selecting them from the list.
— Fill to the maximum the bags with the objects j not in the solution
X (identified by x; = 0) taken in the decreasing order of the following

ratio:
K
2 : k
)\kc]-
k=1

q ol
j
; b=y why

This procedure is also used in MOGLS [19], and consists in filling the
bags with the objects of high profit and low weight, by giving higher
influence to the bags whose the load (measured by Y i, w'x;) is close
to the maximum capacity (b;).

So, roughly speaking, the neighbors are generated by removing the ‘worst’ objects
from the current solution and by adding the ‘best’ objects not in the current solu-
tion. We fix the number of neighbors generated at each iteration to the minimum
between 3-n, (size of the list) and CZ:™e (number of combinations of objects that
can be removed). If the number m of objects that have to be removed is higher
than 3 - n,, we only remove 3 - n, objects.

For the first iteration of the tabu search PRTS, the weight set \ used is the
weight set determined in the crossover operator (this weight set is thus determined
even if the solution X3 respects the constraints). The weight sets for the next
iterations are randomly generated.
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The neighborhood parameters are thus (3, the percentage of objects present in
the solution X appointed at being removed and m, the number of objects removed.
The influence of these two parameters are studied at Section 6.2.1.

The movement can thus be characterized by an array giving the objects removed
and by the weight set used to select the objects filling the bags. These two variables
are considered as the movement attribute.

5.3.3. Tabu list management

At each movement X « Y™, we record only a part of the movement attribute,
namely the array giving the objects removed. The choice of these objects to fill
the bags is then forbidden for the ¢ (tabu tenure) next iterations.

5.3.4. Initial population generation

The initial population is simply generated by application of the PRTS method
starting from a solution randomly generated, and by using for the neighborhood a
random weight set. The generation of the initial population is stopped when r+ 1
non-dominated solutions has been generated.

6. RESuULTS

Initially, we present the influence of the selection based on the density measure.
Then, a study of the influence of the parameter values on the performances of
the MEMOTS algorithm is carried out, which gives a very useful help to set the
parameters employed for the performances comparison, presented at the end of
this section.

To realize these experimentations, the basic values employed for the various
parameters are presented in table 1, where n corresponds to the iterations number,
B and m are the neighborhood parameters, density is the density threshold from
which the number of divisions of the hypergrid is increased by the value taken by
the step parameter (the starting number of divisions is fixed at 5), r is the number
of solutions taken into account for the selection of the closest solution to the first
parent and itsiop is the iterations number of the local search without improvement
after which the local search is stopped; itsiop equal to 0 means that only one
iteration of the tabu search is realized. The computer used for the experiments is
a 3 GHz Pentium IV and 20 runs of the algorithms are performed each time.

6.1. INFLUENCE OF THE SELECTION BASED ON THE DENSITY MEASURE

We compare in this section the performances of two ways of selection of the
first parent, an important point of the MEMOX scheme:

e random selection of the first parent;
e selection based on the density measure.
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TABLE 1. Parameter values of MEMOTS used for the study of
the parameters influence.

Instance n B | m | density | step | t | 1 | itstop
250-2 7500 | 10| 1 3 5 15120 0
500-2 | 10000 | 10| 1 3 5 15120 0
750-2 | 12500 | 10| 1 3 5 |5]20 0
250-3 | 10000 | 10| 1 5 5 |5]20 0
500-3 | 12500 | 5 | 2 5 5 |5]20 0
750-3 | 15000 | 5 | 3 5 5 15120 0

" Random —= " Min Density —=
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F1GURE 8. Influence of the selection based on the density measure
for the 250-3 instance. On the left: random selection. On the
right: selection based on the density measure.

We represent at Figure 8 the influence of the way to select the first parent on the
performances of the algorithm.

The graphs represent the evolution of the indicators D; and Ds according to
the iterations number n for the 250-3 instance, and for the two ways of selecting
the first parent. We chose to represent the data in the form of ‘Box-and-Whisker
Plot’, allowing to reproduce the distribution of the variable studied. The ends of
the box represent the first and third quartiles of the distribution and the horizontal
line in the box gives the median. We also added segments at the ends of the
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box up which go up to the extreme values of the distribution. We note that
if the selection of the first parent is carried out in a random way, the speed of
convergence of the indicator D; is slightly lower than if the first parent selected
is that of minimal density, although the end value is of the same quality. On the
other hand, for the D5y indicator, convergence is not only slower, but moreover,
the final distribution is of worse quality (higher value of the median and strong
variations in the distribution). The interest to select the parent of minimal density
is thus rather large, but essentially in order to reduce the D5 indicator.

6.2. PARAMETERS TUNING

6.2.1. Neighborhood parameters

We have to set the [ parameter (related to the number of objects present in
the current solution that can be removed from the current solution) and the m
parameter (number of objects removed to generate a neighbor). We can see at
Figures 9 and 10 the influences of the § and m parameters on the D; and D,
indicators for all the instances treated in this paper. To ensure the visibility of the
graphs, we only indicate the average value obtained by the Dy and D5 indicators.

For the § parameter, a value equal to 10 seems good, since there are no more
significant improvements after 10. For the m parameter, it appears that to mini-
mize the D; indicator, it is preferable to remove only one object (m = 1), except
for the 750-3 instance. We can explain that by the fact that removing only one
object improves the intensification property of the algorithm, although, for the
750-3 instance, removing only one object is not sufficient. On the other hand, for
instances with more than 250 objects, to minimize D>, it is better to remove more
than one object (m > 1). But removing one object in the place of removing more
than one object has only large influence on the D5 indicator for the instances with
more than 2 objectives and more than 250 objects (500-3 and 750-3).

So, it is more difficult to set parameters of multiobjective metaheuristics, be-
cause various contradictory criteria occur in the performance measure. Conse-
quently, we will use for the parameter values, a compromise between intensification
(D1 minimization) and diversification (D2 minimization).

6.2.2. Influence of the density threshold

We study in this section the influence of the mean density threshold from which
the number of division of the hypergrid is increased. We can see at Figure 11 the
influence of this threshold on the D; and D, indicators for the 750-2 and 250-3
instances.

We note that a value equal to 3 seems the best value for both instances and
using a value upper to 4 for the two objectives instance and upper to 10 for the
three objectives instance strongly degrades the performances. We also studied
the influence of the threshold on the other instances and we obtained the same
conclusion.
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FicURE 9. Neighborhood - 2 objectives instances. O : m = 1,
X:m=2*:m=3.

So as mention at Section 2.2, it’s quite easy to set this parameter, since a value
around 3 gives good performances for all the instances.

6.2.3. Influence of itsiop

The influence of the iteration count itsop without improvement after which
the local search is stopped is represented at Figure 12 for the 500-2 and 500-3
instances.

For the 500-2 instance, a value of it equal to 1 seems to be an optimal value
since this value makes it possible to minimize at the same time the Dy and D
indicators.
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FicURE 10. Neighborhood — 3 objectives instances. O : m = 1,
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On the other hand, for the 500-3 instance, to take itsop equal to 1 in the place
of zero (only one iteration for the tabu search) degrades the Do indicator, but
itstop €qual to 1 remains the optimal value for the D, indicator.

We can interpret this difference between the two and three objectives instances
by the fact that for the 3 objectives instances, the number of non-dominated
solutions is more important, and that it is preferable to have a diversified research
rather using intensively the local search. By consequence, for the 2 objectives
instances, itsiop Will be fixed at one and for the 3 objectives instances, only one
iteration of the tabu search will be carried out.
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FIGURE 11. Influence of the density threshold.

6.2.4. Influence of r

We can see at Figure 13 the influence of the r parameter, i.e. the number of
solutions taken into account for the selection of the closest solution to the first par-
ent. For the 750-2 instance, the results show that if  is higher than approximately
30, the D5 indicator is degraded, which joined the conclusions of Hishibuchi on
the fact that it is preferable to combine similar parents in multiobjective opti-
mization [14]. For the 250-3 instance, the r value from which the D, indicator is
degraded is higher, since the number of potentially efficient solutions obtained by
the algorithm is more important.

On the other hand, there is a clear improvement of the D; indicator if the r
value increases, but this improvement stops when the r value reaches the value
from which D5 is degraded.

6.3. PERFORMANCES COMPARISON

We compare the performances of the MEMOTS algorithm to three other multi-
objective memetic algorithms: the MOGLS algorithm [19], the PMA algorithm [18]
and the IMMOGLS algorithm [13]. The MOMHLib++ library, developed by
Jaszkiewicz [16], and making it possible to launch various existing multiobjec-
tive metaheuristics on the multidimensional multiobjective knapsack problem, has
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been used to generate the results of these three algorithms (but has not been
employed to generate the MEMOTS results). The values used for the various
parameters of these algorithms correspond to the default values defined in the
library.

We do not employ for the comparison the memetic algorithm M-PAES [22],
because it has been shown by Ishibuchi [12] that the performances of MOGLS
were better than M-PAES on the knapsack problem. Also, we do not use the clas-
sic multiobjective genetic algorithms SPEA [36] and NSGA-II [6] because several
studies [1,2,17,19] have shown than MOGLS outperforms these methods.

It should be noted that we do not employ the solutions of MOGLS published
on the web site of Jaszkiewicz [16] because the specific procedures to the knap-
sack problem integrated in the MOGLS algorithm which made it possible to
generate these solutions [15] do not correspond to the last procedures used by
Jaszkiewicz [20] (and also employed in the MEMOTS method). Thus, we use
the library of Jaszkiewicz (where the last MOGLS adaptation is implemented) to
generate better solutions that those published.

The values of the parameters used by MEMOTS for the comparison are given
at Table 2. The iterations number has been fixed to the same number employed
by the other memetic algorithms used for the comparison. The values of the other
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TABLE 2. Parameter values of MEMOTS used for the perfor-
mances comparison.

Instance n B | m|density | step | t | r | itstop
250-2 7500 [ 10| 1 3 5 (3] 30 1
500-2 | 10000 | 10| 1 3 5 5] 30 1
750-2 | 12500 | 10| 1 3 5 |71 30 1
250-3 | 10000 | 10| 1 3 5 | /1200 0
500-3 | 12500 | 5 | 2 3 5 | /1300 0
750-3 | 15000 | 5 | 3 3 5 | /400 0

parameters were fixed by considering the results of the preceding section presenting
the influence of the parameter values on the MEMOTS performances.

We represent at Tables 3 and 4 the average value for the various indicators of
quality obtained by the four memetic algorithms on all the knapsack instances
studied in this paper (for each instance, the results correspond to the four first
lines).

For the two objectives instances, MEMOTS outperforms the other algorithms
for the D1 indicator, the percentage of efficient solutions found, the spacing metric,
the number of potentially efficient solutions found and the R measure. The Do
indicator of the other memetic algorithms is slightly better than MEMOTS on the
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TABLE 3. Comparison of the MEMOTS, MOGLS, IMMOGLS
and PMA indicators for the 2 objectives instances.

Instance | Algorithm | H(107)|SM |R D, |Dy ||EP| ||PE] Time
(%) (S)
MEMOTS |9.87 3.00|246.56/0.083(1.91|21.51|399.25 |4
950-2 MOGLS 9.86 4.22 |1248.97 10.23 ]2.69 [3.96 |202.35 |7
IMMOGLS {9.86 7.03 |253.44 |0.55 [3.88 [0.84 |82.80 6
PMA 9.86 4.59 |1249.69 [0.28 |2.51 |2.80 |169.30 |5
GREEDY |9.85 9.69 |256.78 |0.72 |3.88 |0.75 |42.50 |2
MEMOTS+|9.87 3.07 |246.49 |0.073 |1.08 |25.01 |393.20 |6
MEMOTS |40.77 |2.62(432.53|0.10 [3.12|2.72 |828.30 |15
500-2 MOGLS 40.76  |4.48 |435.88 |0.25 |2.41|0.32 |281.85 |22
IMMOGLS |40.74 |7.79 |441.06 |0.51 [2.29]0.067 |96.40 23
PMA 40.76  |4.68 |436.41 |0.27 |2.86|0.30 |260.35 |20
GREEDY |40.74 |8.88 [442.24 |0.58 |2.49 |0.081 |73.75 13
MEMOTS+(40.78 |2.61 |431.89 |0.074 |2.24 [6.19 |844.30 |28
MEMOTS (89.30 |2.57|744.63|0.11 [3.83 |0.16 |1455.80|40
75022 MOGLS 89.33 [5.41 |750.01 {0.29 |1.49|0.081 |329.25 |53
IMMOGLS (89.31 |8.73 |755.82 |0.52 |2.13 |0.066 |121.60 |57
PMA 89.33 |5.44|750.13 |0.30 |1.51 [0.094 |323.45 |50
GREEDY [89.31 |9.03 |756.84 {0.57 |2.52 0.076 |109.90 |37
MEMOTS+(89.35 |2.53 [743.47 |0.070 |1.52 |1.15 |1557.85 |77

500-2 and 750-2 instances. The hypervolume of MEMOTS is better than the other
algorithms, except for the 750-2 instance.

For the 250-3 instance, MEMOTS is better than the other algorithms on all the
quality indicators. For the 500-3 and 750-3 instances, MEMOTS is better than
MOGLS and PMA only for the SM and |PE| indicators, but remains better than
IMMOGLS for the 500-3 instance.

To take into account the variations in the results of the algorithms, we also
carried out the non-parametric statistical test of Mann-Whitney [5], allowing to
compare the MEMOTS distributions to the distributions of the other algorithms.

The results of the comparison of MEMOTS with the three other memetic algo-
rithms are given to the Tables 5 and 6. We used only the D; and D5 indicators,
particularly revealing. We test the following assumption: ‘an algorithm is better
than an other’ for the Dy or Dy indicator on a given instance. When the assump-
tion is checked, the result ‘>’ (MEMOTS is better) or ‘<’ (MEMOTS is worse) is
given as well as the value of the corresponding risk (the ‘p-value’, given between
brackets). When the assumption is not checked, the sign ‘=" is indicated.
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TABLE 4. Comparison of the MEMOTS, MOGLS, IMMOGLS
and PMA indicators for the 3 objectives instances.

Instance | Algorithm | SM | R Dy | Dy |PE| Time(S)
MEMOTS |4.84 |311.41|4.20|5.86 | 10829.85| 155
950-3 MOGLS 7.29 |315.64 [4.38 |6.14 |1928.95 16
IMMOGLS |10.34 | 324.90 |4.84 | 7.41 |483.65 11
PMA 7.51 |316.62 [4.43 |6.46 |1635.75 11
GREEDY 13.22 1 327.41 |4.94 |8.26 |172.00 4
MEMOTS+ | 4.75 |309.64 |4.08 |5.20 |12070.20 | 157
MEMOTS |5.80 | 602.18 |5.23 | 7.36 |19717.45 | 595
500-3 MOGLS 9.37 |599.21(4.94 | 7.36 |2827.20 49
IMMOGLS |15.11|613.90 |5.53 | 9.57 |450.45 40
PMA 9.38 |599.33 [4.93 | 7.20 | 2755.95 38
GREEDY |[16.89|615.46 |5.56 |10.12 |240.15 23
MEMOTS+ | 5.65 |589.09 [4.57 |5.97 |24489.55 | 559
MEMOTS |6.09 |878.31 |6.22 |10.70|29921.65 | 1921
750-3 MOGLS 10.92 | 868.80 |5.61 |8.19 |2930.15 104
IMMOGLS |17.61 | 884.60 |6.03 | 10.04 | 465.30 98
PMA 10.93 | 868.53 | 5.60 | 8.10 | 2900.95 95
GREEDY 18.86 | 886.11 |6.10 |11.32|291.25 63
MEMOTS+ | 5.86 |855.62 |5.24 |7.12 |39489.65 | 1623
TABLE 5. Results of the Mann-Whitney test for the D; indicator.
Instance] MOGLS |[IMMOGLS| PMA
250-2 [>(6.3e-08)|>(6.3e-08) |>(6.3e-08)
500-2 |>(6.3e-08)| >(6.3e-08) |>(6.3e-08)
750-2 |>(6.3e-08)| >(6.3e-08) |>(6.3e-08)
MEMOTS 250-3 [>(6.3e-08)|>(6.3e-08) |>(6.3e-08)
500-3 [<(6.3e-08)|>(6.3e-08)|<(6.3e-08)
750-3 |<(6.3e-08)| <(6.3e-08) |<(6.3e-08)

TABLE 6. Results of the Mann-Whitney test for

Instance| MOGLS [IMMOGLS| PMA
250-2 [>(5.4e-03)|>(1.7¢-07) |>(1.8e-02)
500-2 [<(1.2e-02)|<(5.1e-04) =
750-2 |<(7.3e-09)| <(8.5e-07)|<(2.3e-08)
MEMOTS 250-3 [>(2.0e-02)|>(8.5¢-07)|>(9.7e-04)
500-3 >(3.7e-07) =
750-3 <(4.3e-06) = <(6.5e-07)

the Do indicator.
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We can thus affirm with a very low risk (equal to 6.3e-08) that, for the D;
indicator, MEMOTS is better than the three other algorithms for the 250-2, 500-2,
750-2 and 250-3 instances. For the 500-3 instance, MEMOTS is of less quality than
PMA and MOGLS but remains better than IMMOGLS. For the 750-3 instance,
MEMOTS is worse than the three other algorithms.

For the D indicator, MEMOTS is better than the three other memetic algo-
rithms for the 250-2 and 250-3 instances. For the 500-3 instance, MEMOTS is
incomparable with MOGLS and PMA but is better than MOGLS. For the the
other instances, MEMOTS is either worse, or incomparable with the other algo-
rithms.

We can explain that MEMOTS does not reach the performances of the other
memetic algorithms on certain instances and for certain indicators by the following
fact. The other memetic algorithms need two initialization phases. The aim
of the first one is to provide an approximation of an ideal point, necessary to
the evaluation functions used in the various procedures of the algorithms. The
second one is employed to generate an initial population of solutions. A greedy
algorithm, particularly effective for the knapsack problem, is used. The MEMOTS
algorithm does not use this initialization phase, and starts from a simple solution
randomly generated, to show that there is not a too great dependence between the
performances of the algorithm and the quality of the initialization phase.

To prove the importance of the initialization phase in the MOGLS, IMMOGLS
and PMA algorithms, we add in Tables 3 and 4, the indicators values of the
solution set obtained after the initialization phase (called GREEDY) of the three
other memetic algorithms (which use the same initialization phase). We can see
that these results are already quite good, which means that the main iterations
of MOGLS, IMMOGLS and PMA do not bring so many improvements in the
solution set.

Moreover, we also add in the Tables 3 and 4 the results of MEMOTS, which
uses as initial solutions, the non-dominated solutions generated by the initialization
phase of MOGLS, IMMOGLS and PMA (the GREEDY algorithm). These results
are given under the name of MEMOTS+. In this way, although the execution time
of the algorithm increases for the 2 objectives instances, the application of this
initialization phase makes it possible to improve the MEMOTS performances and
to make MEMOTS+ better than the other algorithms on all the instances and for
all the quality indicators used, except for the D5 indicator of the 750-2 instance.
Thus, when for a given problem, an effective algorithm allowing to generate good
initial solutions is available, it is interesting to use it in order to improve the
MEMOTS performances, but it’s not essential since the MEMOTS performances
starting from a simple solution randomly generated remain very good.

For the execution time, we can see that MEMOTS is faster for the 2 objectives
instances but for the 3 objectives instances, the MEMOTS time is higher than
the others algorithms. It is simply because the number of solutions generated by
MEMOTS is very high in comparison to the other algorithms, and the updating
of the potentially efficient solution set as well as the calculation of the DPR ranks
take more time in this case. On the other hand, the number of evaluations of the
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FIGURE 14. Comparison between the efficient solution set E(P),
and the solutions of MEMOTS, MOGLS and PMA in the objec-
tive space for the 750-2 instance.

other algorithms is more important that MEMOTS, since the parents selection
is based on the evaluation of the individuals according to a scalarizing function,
which is a technique not used in MEMOTS.

The comparison, in the objective space, between the efficient solution set E(P)
and the solutions of MEMOTS, MOGLS and PMA for the 750-2 instance is rep-
resented at Figure 14. The solution sets of the three memetic algorithms are very
close to the efficient solution set, and are practically similar, apart that MEMOTS
generates more solutions than the other metaheuristics.

It comes out from these comparisons that the resolution scheme MEMOX, which
made it possible to develop the MEMOTS algorithm for the resolution of the
knapsack problem, seems really competitive and essentially for the 2 objectives
instances, since MEMOTS manages to benefit from the tabu search for these
instances. Also, MEMOTS, at least on basis of this knapsack problem, seems
well adapted to problems where the evaluation of a solution could take time,
since MEMOTS never rejects a solution if the evaluation of the solution is not
satisfactory according to the scalarizing function considered.

7. CONCLUSIONS AND PERSPECTIVES

We have presented in this paper MEMOX, a new memetic algorithm scheme
for multiobjective optimization, employed with an original multiobjective tabu
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search PRTS, what gave rise to the memetic algorithm MEMOTS. However, the
MEMOX scheme can be used with any local search.

The experiments carried out on this algorithm made it possible to highlight the
following points:

e The problem of the parameters determination is even less obvious in mul-
tiobjective optimization since various properties in the solution set are
required.

e The neighborhood must be adapted according to the instance. A question
arises then: why not use several neighborhoods, and using that which is
best adapted to the zone of the objective space where the current solution
is located. For example, if the solution is in a zone of low density, small
neighborhood step, and if the solution is in a zone of high density, great
neighborhood step.

e The first parent selection based on the density measure improves the di-
versity of the solutions and the convergence speed.

e The conclusions of Ishibuchi were confirmed: it is better to select two
parents quite close in the objective space.

e The parameters of the dynamic hypergrid, making it possible to measure
the density of the individuals, are relatively easy to set, and this technique
could be easily integrated in other multiobjective algorithms.

e The use of tabu search did not appear necessary for the 3 objectives in-
stances, where it is preferable to use a diversified exploration of the re-
search space.

Also, the comparisons of the MEMOTS performances with other multiobjective
memetic algorithms showed the excellent properties of the algorithm. To reduce
the computational time of MEMOTS on the instances with more than two ob-
jectives, one point of view would be to reduce the number of solutions generated
(if only a small set of diversified solutions is required), while being based on the
(141)-PAES method [21], where new solutions are rejected if they do not bring
diversity, measured by the hypergrid.

The diversity in the solution sets obtained could also be improved by using a
more diversified population of solutions, i.e. which is not only composed of non-
dominated solutions.

Lastly, the adaptation of MEMOTS to other multiobjective combinatorial opti-
mization problems will be interesting, to see if the performances of MEMOTS are
confirmed and if the facility of determination of the parameters of the hypergrid
is always present.
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