
RAIRO-Oper. Res. 42 (2008) 229–258 RAIRO Operations Research

DOI: 10.1051/ro:2008006 www.rairo-ro.org

SOLUTION APPROACHES TO LARGE SHIFT
SCHEDULING PROBLEMS

Monia Rekik
1
, Jean-François Cordeau

2

and François Soumis
1

Abstract. This paper considers large shift scheduling problems with
different shift start times and lengths, fractionable breaks and work
stretch duration restrictions. Two solution approaches are proposed
to solve the problems over a multiple-day planning horizon. The first
approach is based on a local branching strategy and the second one
is based on a temporal decomposition of the problem. Local branch-
ing is very efficient in finding good feasible solutions when compared
to a classical branch-and-bound procedure. However, the decomposi-
tion approach has the advantage of yielding feasible solutions in short
computing times, even for difficult instances.

Keywords. Shift scheduling, flexibility, fractionable breaks, work
stretch restrictions, forward and backward constraints, local branch-
ing, heuristic.

Mathematics Subject Classification. 90C10, 90C11, 90C29.

1. Introduction

Shift scheduling problems have received a lot of attention in the last decades.
Constructing shifts typically consists of specifying the daily work start and finish
times as well as the number, the duration and the position of the breaks. It is well
known that incorporating flexibility alternatives into operating environments may

Received May 31, 2007. Accepted November 28, 2007.

1 École Polytechnique de Montréal and GERAD, C.P. 6079, succ. Centre-Ville Montréal,
H3C 3A7, Canada
2 HEC Montréal and GERAD, 3000, chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7,
Canada; jean-françois.cordeau@hec.ca

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2008

http://dx.doi.org/10.1051/ro:2008006
http://www.rairo-ro.org
http://www.edpsciences.org

230 M. REKIK ET AL.

considerably complicate the problem. However, considering some forms flexibility
has been proved to also yield important savings in labor costs.

In this paper, we consider a continuous shift scheduling problem that includes a
high degree of flexibility in terms of shift start time, shift length, break length and
break placement. Two types of breaks are considered: the standard (indivisible)
breaks and the fractionable breaks, recently introduced by Rekik et al. [18]. Stan-
dard breaks have a fixed length and are permitted to start within a time window,
generally referred to as a break window. Unlike a standard break, a fractionable
break is not restricted to be taken as a whole. It can be separated into several
subbreaks under some conditions. In other words, one needs only to specify the
total duration of the break to be attributed to a shift: the number, the length and
the position of the associated subbreaks are optimally determined by the schedul-
ing model. Some restrictions may however be imposed on the way a fractionable
break is divided. They may concern, for example, the number of subbreaks, sub-
break lengths, etc. The scheduling environment considered also incorporates work
stretch duration restrictions. These constraints fix minimal and maximal periods
of continuous work before and after each break. They ensure a convenient mix
of work and rest periods within a shift. Our objective is to minimize the total
workforce size over a multiple-day planning horizon given the flexible environment
described above.

Two solution approaches are proposed. The first one is based on the local
branching method initially introduced by Fischetti and Lodi [12] to solve general
integer programming problems. We particularly propose some local branching
cuts that are specific to shift scheduling problems. The second approach is based
on a temporal decomposition of the planning horizon into time windows. Each
restricted shift scheduling problem associated to a time window is solved to op-
timality by a classical branch-and-bound procedure. Some parts of the solution
obtained for a time window are re-optimized in order to consider overlapping shifts
arising in continuous operating environments. Both approaches are compared to
the branch-and-bound procedure of CPLEX 9.0. The computational experiments
show that the proposed local branching yields better solutions than the branch-
and-bound procedure of CPLEX 9.0 and the windowing approach for relatively
small problems. For larger problems, the windowing approach is superior and
yields good feasible solutions in relatively short times.

The remainder of the paper is organized as follows. In the next section we give
an overview of the shift scheduling literature by focusing on solution methods. In
Section 3, we define the operating environments and expose the implicit formula-
tions used to model the problem as proposed by Rekik et al. [18]. Local branching
and time windowing approaches are then described in Section 4. In Section 5, we
illustrate model characteristics for a set of real-life instances from an air-traffic
control agency as well as a set of generated instances. The computational per-
formance of the proposed models is finally assessed and compared for each of the
three solution approaches.

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 231

2. Literature review

Although scheduling flexibility adds a lot of complexity to the shift scheduling
problem, it has been shown to help reduce labor costs. For example, Bechtold
and Jacobs [6] evaluated the reduction in workforce size obtained by increasing
the number of possible shift starts, by varying shift lengths, and by considering
break windows. Brusco and Jacobs [8] demonstrated through a large experimental
study that just a small subset of shift start times is enough to provide a mini-
mal workforce size. However, the quality of the solution may rapidly deteriorate
when the adequate subset is not considered. Moreover, finding the suitable sub-
set is a difficult and time consuming task. Aykin [2] studied the impact of break
placement flexibility in a multiple break context. He concluded that using large
break windows for all breaks may considerably decrease the number of employees
required. Recently, Topaloglua and Ozkarahan [21] compared the workforce size
needed for a scheduling environment using only eight-hour shifts to that required
for an environment allowing three different shift lengths (eight-, ten- and twelve-
hour shifts). An average reduction of 20% was obtained for the environment
offering greater shift length variability. Furthermore, the large set of instances
considered by Topaloglua and Ozkarahan [21] confirm the positive impact of using
large break windows on the total workforce size. Finally, Rekik et al. [18] recently
introduced the concept of fractionable breaks. They reported that the use of such
“dividable” breaks may yield up to 8% savings in terms of the number of employees
needed when compared to a context where only standard breaks (i.e., that cannot
be divided) are used.

Two main approaches have been proposed to handle highly flexible and thus
complex shift scheduling problems: explicit approaches and implicit approaches.

The explicit approach uses the classical set covering formulation initially intro-
duced by Dantzig [11] and tries to handle the large size of the resulting models
by developing efficient heuristics. In fact, a typical set covering model defines a
separate integer variable for each explicit work shift (i.e., daily work start and
finish times with assigned rest periods). Clearly, a scheduling problem with a high
degree of flexibility yields a large number of shift alternatives and thus large set
covering models that are very difficult to solve with exact methods. For example,
Henderson and Berry [13] have modeled a shift scheduling problem including up
to 15 000 explicit work shifts. The problem is solved heuristically in two phases. A
subset of explicit shifts is first selected with the so-called maxdif heuristic. The re-
sulting shift scheduling problem with a restricted subset is then solved using some
heuristic procedures based on the solution of the LP relaxation of the problem.
The maxdif procedure adds shifts iteratively to the subset of selected shifts, one
shift at a time. At each iteration, all remaining (i.e., not yet selected) shifts are
compared to all shifts already selected. The shift that maximizes the number of
periods that are not covered by the selected shifts is chosen. Three heuristics are
proposed for the second phase to solve the restricted shift scheduling problems.
Each of these heuristics converts the fractional LP solution into an integer one and

232 M. REKIK ET AL.

then tries to improve it by local search. The local search consists in permuting em-
ployee shifts. In another context, Thompson [20] considered the explicit approach
for a shift scheduling problem where employees are not continuously available. A
simulated annealing procedure is used to solve the problem. Recently, Hochbaum
and Levin [14] studied the complexity of three shift scheduling problems modeled
as generalized set covering formulations with bounded variables. These problems
are classified according to the column structure in the constraint matrix: column
of consecutive ones, column of cyclical ones and column of k consecutive blocs of
ones. Hochbaum and Levin [14] proved that the k-bloc shift scheduling problem is
NP-hard for all k ≥ 2. They proposed a k-approximation algorithm that reduces
the k-bloc problem to a one-bloc problem, which is known to be polynomially
solvable. In the proposed algorithm, each column composed of ki blocs of ones in
the original problem is conveniently split into ki columns, each including a unique
bloc of consecutive ones. A feasible solution is then obtained by fixing the value
of each original variable (column) to the maximum value of the associated bloc
variables.

The implicit approach focuses more on the modeling aspect and tries to re-
duce the problem size by implicitly representing some forms of flexibility. Exact
branch-and-bound or branch-and-cut procedures are generally used to solve these
implicit models. Moondra [16] was the first to implicitly represent shift length.
His model considers shift start time and shift finish time variables, and uses a
set of constraints to impose limits on the shift duration. Bechtold and Jacobs [5]
implicitly model break placement flexibility for a discontinuous shift scheduling
problem in a single break context. They define separate shift and break variables
and ensure a correct match between them by using the so-called forward and back-
ward constraints. This set of constraints guarantees that an eligible break can be
assigned to each shift in its associated break window, without specifying its ac-
tual start time. Complete shift schedules with appropriate break assignments are
constructed a posteriori using a break allocation algorithm. The allocation pro-
cedure arranges shifts in a nondecreasing order with respect to the latest period
in which a break may occur and assigns shifts to the earliest available breaks. In
fact, using forward and backward constraints assumes the absence of extraordinary
overlap. Bechtold and Jacobs [5] define extraordinary overlap (E.O.) as the situa-
tion where there exists two shifts such that the break window for one shift begins
strictly earlier and ends strictly later than the break window for the other shift.
A branch-and-bound procedure is then used to solve the problem. Bechtold and
Jacobs [5] show, through computational experiments, that their model is superior
to the traditional set covering formulation with respect to computing time and
memory. Recently, Addou and Soumis [1] proved that extraordinary overlap may
be handled by an extension of the formulation of Bechtold and Jacobs [5] which
incorporates a small set of additional constraints. One constraint is in fact added
for each observed E.O.

Thompson [19] later combined the work of Moondra [16] to implicitly repre-
sent shifts and the work of Bechtold and Jacobs [5] to implicitly represent break

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 233

placement. Each shift is assumed to receive at most one break with some re-
strictions on pre- and post-break work stretch durations. A branch-and-bound
procedure followed by a post-processor are used to generate actual schedules. The
post-processor constructs explicit shifts and assigns breaks to them by using a first-
in-first-out (FIFO) procedure. Thompson [19] reported that the FIFO matching
can alleviate the E.O. problem.

Aykin [2] proposed another implicit approach to model break placement flexibil-
ity for a shift scheduling problem with multiple breaks and multiple break windows.
He defines a break variable for each shift and each possible start time within the
associated break window. Contrarily to Bechtold and Jacobs [5], Aykin [2] does
not impose any restriction on the definition of break windows. Moreover, Aykin [2]
considered a continuous operating environment where shifts are permitted to over-
lap from one day to the next. Aykin [2] use the demand constraints to compute
upper bounds for shift variables. These upper bounds are included in the pro-
posed formulation and are proved to be helpful in reducing the solution time in
the branch-and-bound process. In a subsequent paper, Aykin [3] proposed a more
elaborate branch-and-cut algorithm that uses objective value cuts and dynamically
computed upper bounds on shift variables. The linear relaxation of the implicit
formulation proposed in [2] is first solved to obtain a lower bound. A round-
ing heuristic is then applied to the fractional solution to get a feasible schedule
and thus an upper bound. Cuts are added and iteratively updated while using
the rounding heuristic and a limited branch-and-bound search to find an optimal
schedule. Good results are obtained for large instances. An optimal solution was
found in several cases; in the remaining ones, the “best non-optimal” solution (i.e.,
superior by one to the lower bound) was identified.

Recently, Rekik et al. [18] introduced the concept of fractionable breaks and fo-
cused on the modeling aspect of the problem. Two implicit models were proposed.
The first model extends the approach of Aykin [2] and the second one extends
that of Bechtold and Jacobs [5]. Adapted forward and backward constraints are
used in both formulations to model the work stretch duration restrictions. We also
proposed a reformulation of general forward and backward constraints and showed
that it considerably reduces model density and solution times. The computational
results reported in [18] were for a single-day planning horizon and use the CPLEX
solver with most of its parameters set to default values. In this paper, we focus
on solution methods for longer planning horizons including one or several weeks.
The solution approaches we present are in fact inspired by classical decomposition
methods and local search concepts recently proposed for difficult MIP problems.

In this field, Fischetti and Lodi [12] introduced a local branching strategy that
integrates both local search and metaheuristics with MIP. It constructs MIP sub-
problems that consider only a small neighborhood of a current incumbent solution.
Neighborhoods are obtained through the introduction in the MIP of the so-called
local branching constraints (the local branching strategy is explained in more de-
tails in Sect. 4.1). More recently, Danna et al. [10] proposed two approaches for
exploring interesting, domain-independent neighborhoods for the MIP problems:
the so-called Relaxation Induced Neighborhood Search (RINS) and guided dives. In

234 M. REKIK ET AL.

RINS, a neighborhood is defined by using the information contained in the contin-
uous relaxation of the MIP model. More specifically, variables that have the same
values in the incumbent and in the linear relaxation of the current node of the
branch-and-bound tree are fixed. Neighborhood exploration is then formulated
as a restricted MIP model and solved recursively. The guided dives approach is
a simple modification of the default MIP tree traversal strategy. The choice of
the child node to be explored first in the branch-and-bound process is made with
regard to the value of the branching variable in the current incumbent solution.
That is, for the MIP including binary variables, for example, the first child node
to be explored is the one in which the binary branching variable is fixed to the
value that it takes in the incumbent. Danna et al. [10] reported that their ap-
proaches outperform a slightly different implementation they propose for the local
branching strategy of Fischetti and Lodi [12] and default CPLEX 8.1., in terms of
the quality of the solution obtained within a specified time limit, of the ability to
improve a given integer solution, and of the time required to diversify the search
in order to find a new solution.

3. Mathematical models

This section extends to a continuous w-day planning horizon the two formula-
tions we previously proposed [18] for the shift scheduling problem with fractionable
breaks, standard breaks, break windows and work stretch duration restrictions. In
both formulations generalized forward and backward constraints are used to model
either work stretch duration restrictions (for the first formulation) or both work
stretch duration and break window constraints (for the second formulation). The
concept of forward and backward constraints was in fact introduced by Bechtold
and Jacobs [5] to model break placement flexibility. It was recently generalized
by Çezik and Günlük [9] and Rekik et al. [17] who proved that the feasibility
of some transportation problems can be ensured by the use of adequate forward
and backward constraints. In this context, Rekik et al. [18] proved that satisfying
work stretch duration restrictions also corresponds to ensuring the feasibility of
some transportation problems, and that these transportation problems possess the
structure required to apply the generalized forward and backward constraints.

We first introduce the parameters and the sets needed to describe generalized
forward and backward constraints.

3.1. Generalized forward and backward constraints

Consider a transportation problem, T (N1, N2), represented by a bipartite net-
work G = (N1∪N2, A) where N1 and N2 are the sets of supply and demand nodes,
respectively. The supply of each node i ∈ N1 is denoted by Oi and the demand
of each node j ∈ N2 is denoted by Dj . Assume that the structure of T (N1, N2) is
such that a total order relation ≺ can be defined on set N2. Assume also that each
supply node i ∈ N1 is connected to a set of consecutive demand nodes j ∈ N2,

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 235

denoted by Pi. Finally, there exist no supply nodes i1 and i2 in N1 such that
min(Pi1) ≺ min(Pi2) and max(Pi2) ≺ max(Pi1).

To describe forward and backward constraints, we define the following sets:

Ns
2 = ∪i∈N1{min(Pi)}

Ne
2 = ∪i∈N1{max(Pi)}

NB
2 (j) = {j′ ∈ N2|j � j′} ∀j ∈ Ns

2

NF
2 (j) = {j′ ∈ N2|j′ � j} ∀j ∈ Ne

2

NB
1 (j) = {i ∈ N1|Pi ⊆ NB

2 (j)} ∀j ∈ Ns
2

NF
1 (j) = {i ∈ N1|Pi ⊆ NF

2 (j)} ∀j ∈ Ne
2 .

Finally, let ns
2 = min(N2) and ne

2 = max(N2). Forward and backward constraints
are then given, respectively, by:

∑

j′∈NF
2 (j)

Dj′ ≥
∑

i∈NF
1 (j)

Oi ∀ j ∈ Ne
2 \ {ne

2}

and
∑

j′∈NB
2 (j)

Dj′ ≥
∑

i∈NB
1 (j)

Oi ∀ j ∈ Ns
2 \ {ns

2}.

Under the assumptions made at the beginning of this section, the feasibility of
T (N1, N2) is ensured by the use of forward and backward constraints and an
equality constraint between the total supply and total demand (see [9]; or [17]):

∑

i∈N1

Oi −
∑

j∈N2

Dj = 0.

Figure 1 illustrates an example of a transportation problem having the appropriate
structure. In this example, N1 = {1, 2, 3, 4}, N2 = {5, 6, 7, 8, 9, 10, 11}, P1 =
{5, 6, 7}, P2 = {7, 8, 9, 10}, P3 = {8, 9, 10}, P4 = {10, 11, 12}, Ne

2 = {7, 10, 12},
and Ns

2 = {5, 7, 8, 10}. Relying on the results stated above, the feasibility of
this transportation problem is ensured by three sets of constraints. The first set
includes an equality constraint between the total supply and the total demand.
The second set includes two forward constraints (for j = 7 and j = 10). The third
set incorporates three backward constraints (for j = 7, j = 8 and j = 10). We
give hereafter the forward constraint corresponding to node j = 10 (Inequality
(1)) and the backward constraint corresponding to node j = 7 (Inequality (2)).

D5 + D6 + D7 + D8 + D9 + D10 ≥ O1 + O2 (1)
D7 + D8 + D9 + D10 + D11 + D12 ≥ O2 + O3 + O4. (2)

236 M. REKIK ET AL.

3

61

5

7

8

9

10

11

12

4

2

N1

N2

O1

O2

O3

O4

D5

D6

D7

D8

D9

D10

D11

D12

Figure 1. Example of a transportation problem with the re-
quired structure.

In fact, Rekik et al. [18] proposed a reformulation of forward and backward con-
straints that uses additional slack variables without increasing the total number of
constraints. They prove that such a reformulation considerably reduces the den-
sity of the constraint matrix and solution times. A non-negative slack variable Zje

(respectively, Zjs) is defined for each forward (respectively, backward) constraint
corresponding to node je ∈ Ne

2 \ {ne
2} (respectively, js ∈ Ns

2 \ {ns
2}). Given the

total order relation ≺ defined on set N2, forward and backward constraints can be

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 237

rewritten as follows:
∑

j′∈NF
2 (je

1)

Dj′ −
∑

i∈NF
1 (je

1)

Oi = Zje
1

∑

j′∈NF
2 (je

(l+1))\NF
2 (je

l)

Dj′ −
∑

i∈NF
1 (je

(l+1))\NF
1 (je

l)

Oi + Zje
l

= Zje
(l+1)

∀je
l ∈ Ne

2 \ {ne
2}

∑

j′∈NB
2 (js

1)

Dj′ −
∑

i∈NB
2 (js

1)

Oi = Zjs
1

∑

j′∈NB
2 (js

(l+1))\NB
2 (js

l)

Dj′ −
∑

i∈NB
1 (js

(l+1))\NB
1 (js

l)

Oi + Zjs
l

= Zjs
(l+1)

∀js
l ∈ Ns

2 \ {ns
2},

where je
1 = min(Ne

2), js
1 = max(Ns

2), je
(l+1) is the successor of je

l in Ne
2 , and js

(l+1)

is the predecessor of js
l in Ns

2 . Hereafter, we illustrate the reformulation of forward
constraints through the example of Figure 1 (we refer the reader to [18], for the
proof in more general contexts). Recall that two forward constraints are needed
for the example of Figure 1. These constraints are given by:

D5 + D6 + D7 ≥ O1 (3)
D5 + D6 + D7 + D8 + D9 + D10 ≥ O1 + O2. (4)

Let Ze
1 ≥ 0 be the slack variable associated with forward constraint (3) and Ze

2 ≥ 0
be the one associated with forward constraint (4). These constraints can thus be
rewritten as:

D5 + D6 + D7 − O1 = Ze
1 (5)

D5 + D6 + D7 + D8 + D9 + D10 − O1 − O2 = Ze
2 . (6)

Constraint (6) can thus be reformulated as:

D8 + D9 + D10 − O2 + Ze
1 = Ze

2 .

To simplify the presentation, we illustrate the models with a classical formulation
of forward and backward constraints. However, in the computational experiments,
we use the models with reformulated forward and backward constraints.

3.2. Problem definition

We consider a continuous planning horizon of w days and 24 h work days. As
is common in shift scheduling models, the planning horizon is divided into periods
of equal lengths. The set of all periods is denoted by I. The number of employees
required in each period i ∈ I is assumed to be known in advance and is denoted
by di.

Rekik et al. [18] circumvented the complexity resulting from the fractionable
break concept by using an enumerative pre-processor that generates the so-called

238 M. REKIK ET AL.

break profiles. A break profile represents a sequence of break lengths that must
be attributed to a given shift. Thus, if a shift must receive a fractionable break,
all feasible sequences of subbreak lengths associated with a fractionable break are
enumerated. If the shift must also receive some standard breaks (i.e., breaks that
cannot be divided), all admissible permutations of subbreak and standard breaks
are enumerated. The pre-processor also generates the so-called window profile
for each shift. A window profile includes the break windows associated with the
breaks of the break profile of the given shift. These break windows are determined
by considering the pre- and post-break work stretch duration restrictions and the
pre-existing break windows of standard breaks. The models proposed by Rekik
et al. [18] handle the case where work stretch duration parameters (i.e., minimum
and maximum pre- and post-break work stretch durations) depend on the time
interval (the so-called day-part) of the day. The minimum and maximum number
of consecutive work periods associated with a day-part dp are denoted respectively
by αdp and µdp. The set of all day-parts is denoted by TDP (generally, there are
three day-parts: day, evening and night). The work stretch parameters that apply
to a given shift are those associated with the day-part covering the most periods
in the shift.

A set J of all possible shifts is then generated by the pre-processor. A shift
j ∈ J is defined for each combination of start time, length, break profile and
window profile. The break profile, respectively the window profile, associated
with shift j is denoted by BPj , respectively WPj . The total number of breaks
that must be attributed to a shift j is denoted by qj (qj is thus the number of
elements in BPj or WPj). Parameter BPj(p) is used to denote the length of
the break that must be attributed to shift j in the pth position whereas WPj(p)
denotes the break window associated with it. The set of all break profiles, i.e.,
∪j∈JBPj , is denoted by TBP . Finally, the day-part that maximizes the number
of periods covered by shift j is denoted by dpj .

To determine the set K of all breaks, the break profiles and the window profiles
of all shifts j ∈ J are considered. A break k is defined for each break profile
bp ∈ TBP , each position p of a break in bp, each possible start time t (with respect
to the window profiles associated with break profile bp), and each admissible day-
part dp of the operating day. A day-part dp is admissible for break k if break k
can be matched with a shift j associated with dp (i.e., such that dpj = dp).

Extending the models proposed by Rekik et al. [18] from a one-work-day plan-
ning horizon to a w-work-day horizon consists in enlarging the set of periods I,
the set of shifts J , and the set of breaks K (K is actually derived from J).

3.3. Implicit formulation (P1)

Rekik et al. [18] defined a network flow variable Xjk for each shift j and each
break k that can be matched with shift j. This variable represents the number of
breaks k attributed to shift j. A break k is eligible for shift j if its break profile
corresponds to the same break profile BPj of shift j, if it has a position pk and a
start time tk such that tk ∈ WPj(pk), and, finally, if it is associated with the same

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 239

day-part as shift j. In the following, the set of breaks k that can be matched with
shift j in the position p, p ∈ Qj , Qj = {1, . . . , qj}, is denoted by Kj(p). Similarly,
Jk will denote the set of shifts j that can receive a break k in position pk.

The minimum and maximum number of periods that can be worked consecu-
tively within shift j ∈ J are denoted respectively by αj and µj . The work stretch
duration restrictions imply that two consecutive breaks attributed to shift j must
be separated by at least αj and at most µj periods. Rekik et al. [18] showed that
these constraints can be modeled with adapted forward and backward constraints
derived from a particular transportation problem T (Kj(p), Kj(p+1)) (as defined
in Sect. 3.1) where p ∈ Q−

j , Q−
j = {1, . . . , qj − 1} and Xjk represents the sup-

ply/demand associated with nodes in Kj(p) and Kj(p+1). An arc exists between
a node k1 ∈ Kj(p) and a node k2 ∈ Kj(p+1) if break k2 starts at least αj periods
and at most µj periods after break k1 ends.

To describe the model, the following parameters are introduced:
δij: = 1 if shift j ∈ J covers period i ∈ I; 0 otherwise;
ρik: = 1 if break k covers period i ∈ I; 0 otherwise.

Model (P1) is given by :

(P1) minimize
∑

j∈J

Sj (7)

subject to
∑

j∈J

δijSj −
∑

k∈K

ρik

∑

j∈Jk

Xjk ≥ di∀i ∈ I (8)

∑

k∈Kj(p)

Xjk − Sj = 0∀j ∈ J, p ∈ Qj (9)

∑

k′∈KF
j(p+1)(k)

Xjk′ −
∑

k′∈KF
j(p)(k)

Xjk′ ≥ 0 ∀j ∈ J, p ∈ Q−
j , k ∈ Ke

j(p+1) \ {ke
j(p+1)}

(10)
∑

k′∈KB
j(p+1)(k)

Xjk′ −
∑

k′∈KB
j(p)(k)

Xjk′ ≥ 0∀j ∈ J, p ∈ Q−
j , k ∈ Ks

j(p+1) \ {ks
j(p+1)}

(11)
∑

k∈Kj(p+1)

Xjk −
∑

k∈Kj(p)

Xjk = 0∀j ∈ J, p ∈ Q−
j (12)

Sj ≥ 0 and integer ∀ j ∈ J (13)
Xjk ≥ 0 and integer ∀ j ∈ J, k ∈ ∪p∈Qj Kj(p).

(14)

The objective function (7) minimizes the total number of employees over the
planning horizon. Demand constraints (8) ensure that the number of employ-
ees working in a certain period, i.e., those who are present and not on break,

240 M. REKIK ET AL.

is at least equal to the demand for that period. Break window constraints (9)
ensure that each shift j receives qj breaks, one in each position p ∈ Qj , such
that the break in position p has a length compatible with the break profile of
shift j and starts within WPj(p). Work stretch duration constraints (10)–(12)
are forward, backward and equality constraints corresponding to transportation
problems T (Kj(p), Kj(p+1)), j ∈ J, p = 1, . . . , qj−1. It can be verified that equality
constraints (12) are redundant in the presence of constraints (9) and can thus be
removed.

3.4. Implicit formulation (P2)

Model (P2) uses shift variables Sj as defined for model (P1). A break variable
Bk is defined for each break k ∈ K and represents the number of employees
receiving break k.

Rekik et al. [18] proved that each shift will receive its breaks within the associ-
ated break windows if the feasibility of some transportation problems is ensured. In
fact, they defined a transportation problems T

(
J(bp,dp), K(bp,dp,p)

)
for each break

profile bp ∈ TBP , each day-part dp ∈ TDP , and each possible position p of a
break in bp, p ∈ Nbp, where Nbp = {1, . . . , nbp} and nbp denotes the total number
of breaks in bp. The set of supply nodes J(bp,dp) contains all shifts j associated with
break profile bp and day-part dp, i.e., J(bp,dp) = {j ∈ J |BPj = bp and dpj = dp}.
The supply associated with node j is Sj . The set of demand nodes K(bp,dp,p) con-
tains all breaks k associated with day-part dp and occupying the pth position in
break profile bp, i.e., K(bp,dp,p) = {k ∈ K|BPk = bp and dpk = dp and pk = p}.
The demand for node k is Bk. An arc (j, k) exists between a shift j ∈ J(bp,dp) and
a break k ∈ K(bp,dp,p) if break k starts within the break window associated with
the pth position of the window profile WPj of shift j. Breaks in K(bp,dp,p) are
sorted in ascending order with respect to their start time, which defines a total
order relation on set K(bp,dp,p). The authors assume that there is no extraordinary
overlap between breaks in K(bp,dp,p). Hence, for a given break profile bp, a given
day-part dp and a given position p of a break in bp, the transportation problem
T

(
J(bp,dp), K(bp,dp,p)

)
can be replaced by a set of forward, backward and equality

constraints as described in Section 3.1.
To model pre- and post-break work stretch duration restrictions, Rekik et al. [18]

consider a transportation problem T
(
K(bp,dp,p), K(bp,dp,p+1)

)
for each break profile

bp ∈ TBP , each day-part dp ∈ TDP and each position p of a break in bp, p ∈ Nbp−

where N−
bp = {1, . . . , nbp − 1}. The supply/demand of a node k is Bk. An arc

(k1, k2) exists between a break k1 ∈ K(bp,dp,p) and a break k2 ∈ K(bp,dp,p+1) if
break k2 starts at least αdp and at most µdp periods after break k1 ends. Breaks
in K(bp,dp,p+1) are sorted in ascending order with respect to their start time. It can
be verified that the condition of no extraordinary overlap, as defined in Section 3.1,
is satisfied. Thus, problems T

(
K(bp,dp,p), K(bp,dp,p+1)

)
, bp ∈ TBP, dp ∈ TDP, p ∈

N−
bp, can be replaced by adapted forward, backward and equality constraints.

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 241

Model (P2) is thus written as follows:

(P2) minimize
∑

j∈J

Sj (15)

subject to
∑

j∈J

δijSj −
∑

k∈K

ρikBk ≥ di ∀ i ∈ I (16)

∑

k′∈KF
(bp,dp,p)(k)

Bk′ −
∑

j∈JF
(bp,dp)(k)

Sj ≥ 0 ∀ bp ∈ TBP, dp ∈ TDP, p ∈ Nbp

∀ k ∈ Ke
(bp,dp,p) \ {ke

(bp,dp,p)} (17)

∑

k′∈KB
(bp,dp,p)(k)

Bk′ −
∑

j∈JB
(bp,dp)(k)

Sj ≥ 0 ∀ bp ∈ TBP, dp ∈ TDP, p ∈ Nbp

∀ k ∈ Ks
(bp,dp,p) \ {ks

(bp,dp,p)} (18)

∑

k∈K(bp,dp,p)

Bk −
∑

j∈J(bp,dp)

Sj = 0 ∀ dp ∈ TDP, bp ∈ TBP, p ∈ Nbp (19)

∑

k′∈KF
(bp,dp,p+1)(k)

Bk′ −
∑

k′∈KF
(bp,dp,p)(k)

Bk′ ≥ 0 ∀ bp ∈ TBP, dp ∈ TDP, p ∈ N−
bp

∀ k ∈ Ke
(bp,dp,p+1) \ {ke

(bp,dp,p+1)}
(20)

∑

k′∈KB
(bp,dp,p+1)(k)

Bk′ −
∑

k′∈KB
(bp,dp,p)(k)

Bk′ ≥ 0 ∀ bp ∈ TBP, dp ∈ TDP, p ∈ N−
bp

∀ k ∈ Ks
(bp,dp,p+1) \ {ks

(bp,dp,p+1)}
(21)

∑

k∈K(bp,dp,p+1)

Bk −
∑

k∈K(bp,dp,p)

Bk = 0 ∀ bp ∈ TBP, dp ∈ TDP, p ∈ N−
bp

(22)

Sj ≥ 0 and integer ∀ j ∈ J (23)

Bk ≥ 0 and integer ∀ k ∈ K. (24)

Model (P2) considers the same objective function (15) and the same demand
constraints (16) as model (P1). Constraints (17), (18) are forward, backward and
equality constraints corresponding to transportation problems T (J(bp,dp),

242 M. REKIK ET AL.

K(bp,dp,p)), bp ∈ TBP, dp ∈ TDP, p = 1, . . . , nbp. They ensure that each shift
receives the associated number of breaks and each attributed break is eligible with
respect to break length (i.e., its position in the break profile) and break start time
(with respect to the associated break window). Pre- and post-break work stretch
durations are modeled by forward, backward and equality constraints (20)–(22)
corresponding to transportation problems T (K(bp,dp,p), K(bp,dp,p+1)), bp ∈ TBP,
dp ∈ TDP, p = 1, . . . , nbp − 1. One can verify that equality constraints (22) are
redundant in the presence of equality constraints (19) and can thus be removed.

The shift scheduling problem addressed in this paper considers a multiple-break
context and restrictions on the minimum and maximum work stretch duration
before and after each break. The solution obtained by formulation (P1) yields ex-
plicit shifts with specified start and finish times and break assignments. However,
formulation (P2) does not use such an explicit assignment variable to link shifts
with associated breaks. In fact, it incorporates separate shift and break variables
Sj, j ∈ J and Bk, k ∈ K. The correct match between shifts and breaks is ensured
by the forward and backward constraints. The optimal implicit solution, (S∗, B∗)
determined by (P2) guarantees that an explicit schedule with break assignments
can always be obtained from it. In fact, the optimal non-null breaks B∗

k, k ∈ K∗,
determined by (P2) can be assigned to the optimal non-null shifts S∗

j , j ∈ J∗, in
different ways depending on the scheduling problem. For a single break context,
this can be done using a simple allocation procedure as that described in Bechtold
and Jacobs [5], for example. In a multiple break context, although such a proce-
dure assigns a break to a shift within the associated break window, it does not
guarantee that these breaks are conveniently placed one with respect to another
when work stretch duration restrictions must be satisfied. To handle the com-
plexity of work stretch duration constraints, the assignment of optimal breaks to
optimal shifts is done by solving an integer programming model denoted hereafter
by (P3). Model (P3) incorporates integer variables Xjk, similar to those of model
(P1), for each shift j of a non-null optimal variable S∗

j , j ∈ J∗, and each break k
of a non-null optimal variable B∗

k, k ∈ K∗, that is admissible for j. Xjk represents
the number of breaks k ∈ K∗ attributed to shift j ∈ J∗. The objective function of
model (P3) has a constant value since the only purpose of considering this model
is to determine a feasible solution to the break assignment problem. Model (P3)
incorporates the same set of constraints (9)–(14) of model (P1) but only for shifts
j ∈ J∗ and breaks in k ∈ K∗; they will also consider only the break and shifts
variables of these sets. Furthermore, shift variables Sj of constraints (9) will have
a constant value equal to S∗

j . Finally, the following set of constraints is added to
(P1) to ensure that the number of assignments of a break k does not exceed the
total number of available breaks k:

∑

j∈Jk∪J∗
Xjk = B∗

k ∀k ∈ K∗.

Model (P3) is thus given by:

(P3) minimize 0

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 243

subject to

∑

k∈Kj(p)∩K∗
Xjk = S∗

j ∀j ∈ J∗, p ∈ Qj

∑

j∈Jk∩J∗
Xjk = B∗

k ∀k ∈ K∗

∑

k′∈KF
j(p+1)(k)∩K∗

Xjk′ −
∑

k′∈KF
j(p)(k)∩K∗

Xjk′ ≥ 0 ∀j ∈ J∗, p ∈ Q−
j ,

k ∈ (Ke
j(p+1) \ {ke

j(p+1)}) ∩ K∗
∑

k′∈KB
j(p+1)(k)∩K∗

Xjk′ −
∑

k′∈KB
j(p)(k)∩K∗

Xjk′ ≥ 0 ∀j ∈ J∗, p ∈ Q−
j ,

k ∈ (Ks
j(p+1) \ {ks

j(p+1)}) ∩ K∗
∑

k∈Kj(p+1)∩K∗
Xjk −

∑

k∈Kj(p)∩K∗
Xjk = 0 ∀j ∈ J, p ∈ Q−

j

Xjk ≥ 0 and integer ∀ j ∈ J∗,

k ∈ (∪p∈Qj Kj(p)) ∩ K∗.

4. Solution approaches

This section presents two approaches for solving complex shift scheduling prob-
lems over long planning horizons. The first approach is based on the local branch-
ing strategy initially introduced by Fischetti and Lodi [12] to solve difficult MIP
problems. The local branching strategy presented here uses local branching cuts
that are adapted for shift scheduling problems. The second approach uses a tem-
poral decomposition of the problem into different sub-problems, one for each time
window of the planning horizon. This latter approach is referred to as time win-
dowing.

4.1. Adapted local branching strategy

The local branching strategy aims to improve the heuristic behavior of Mixed
Integer Programming solvers. It provides good feasible solutions at early stages of
the solution process and updates incumbent solutions frequently, thus accelerating
the solution process.

Local branching strategies use two branching criteria. The first branching cri-
terion is external and tends to direct the search into a promising search sub-space.
The second branching criterion corresponds to the branching performed within the
MIP solver. It is used to explore the sub-space resulting from the first branching.
As noticed by Fischetti and Lodi [12], local branching is inspired by local neigh-
borhood search methods (see, e.g., [15]) in the sense that the search sub-space

244 M. REKIK ET AL.

represents in fact a neighborhood of a given feasible solution to the problem. This
neighborhood is defined through the so-called local branching constraints.

More specifically, consider a MIP problem and let B denote the set of binary
variable indices. For a given solution x̄ of the problem, let B̄ denote the binary
support of x̄, i.e., B̄ = {j ∈ B : x̄j = 1}. For a given positive integer parameter
k, Fischetti and Lodi [12] define the k − OPT neighborhood N (x̄, k) of x̄ as the
set of feasible solutions of the problem satisfying the following local branching
constraints:

∆(x, x̄) � k,

where ∆(x, x̄) =
∑

j∈B̄
(1 − xj) +

∑

j∈B\B̄
xj .

As observed by Fischetti and Lodi [12], for a given neighbor x of x̄, the distance
function ∆(x, x̄) represents the number of binary variables xj flipping their value,
with respect to x̄, either from 1 to 0 or from 0 to 1.

A basic local branching scheme is illustrated in Figure 2 (we use a figure similar
to that presented by Fischetti and Lodi [12]). In this figure, a triangle marked
by the word “solver” corresponds to the branching subtrees to be explored with
the standard branching criterion of the exact MIP solver at hand. As one can see
from Figure 2, the local branching method starts with an initial incumbent solu-
tion x̄1 at the root node. This solution can be obtained heuristically or by the MIP
solver. Two branches are then created to partition the initial feasible region, N ,
into two disjoint sub-regions. The left branch corresponds to the local branching
constraints and defines a neighborhood of x̄1, N (x̄1, k). The right branch defines
all feasible solutions except those belonging to N (x̄1, k). The left branch node
is explored with the MIP solver until an optimal solution, x̄2, is obtained (with
respect to the neighborhood). The same scheme is then re-applied on the smallest
feasible region N \ N (x̄1, k) with the new incumbent solution x̄2. Obviously, up-
dating the incumbent solution assumes that the optimal solution found in a given
neighborhood improves the current incumbent one. In the case where no improved
solution is obtained (such as for node 6), the right branch node (corresponding
in the figure to sub-tree N \ (N (x̄1, k) ∪ N (x̄2, k) ∪ N (x̄3, k))) is totally explored
with the MIP solver.

Fischetti and Lodi [12] reported that the local branching method they propose
may be used either as an exact solution method or as a heuristic method that yields
good feasible solutions that are not necessarily optimal. With the basic scheme
described above, local branching explores all the branching tree while giving the
priority to some promising search sub-spaces. It acts then as an exact solution
method. For the heuristic aspect, Fischetti and Lodi [12] impose a time limit for
the left branch computation to handle the cases where exploring all the left subtree
is very time consuming. If the time limit is reached with no improved solution
(with respect to the incumbent), a backtrack to the father node is done and a new
left branch node is created by reducing the size of the neighborhood (i.e., reducing
the right hand side of the local branching cut). If an improved solution is obtained,

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 245

1

2 3

4 5

6 7

solver

solver

solver solver

∆(x, x̄1) � k ∆(x, x̄1) � k + 1

∆(x, x̄2) � k ∆(x, x̄2) � k + 1

∆(x, x̄3) � k ∆(x, x̄3) � k + 1

improved solution x̄2

improved solution x̄3

no improved solution

Figure 2. Basic local branching strategy.

it becomes the new incumbent, a backtrack to the father node is done, and a new
left branch node associated with the new incumbent solution is created.

Furthermore, Fischetti and Lodi [12] used some diversification mechanisms to
handle the case where the exploration of the left branch node terminates with no
improved solution. Two types of diversifications are applied: the so-called soft
and strong diversifications. A soft diversification consists in enlarging the current
neighborhood. A strong diversification not only considers larger neighborhoods
but also accepts solutions that are worse than the incumbent. This worse solution
is then used as the new reference solution and the method is re-applied in an
attempt to improve it and eventually improve the incumbent.

It is worth mentioning that local branching constraints were initially defined
with respect to binary variables only. This was done intentionally since, according
to [12], the difficulty of MIP problems comes essentially from these variables. The
authors however suggest, as an extension of their paper, some local branching

246 M. REKIK ET AL.

constraints including general variables that can be used for MIPs that incorporate
only general integer variables.

The shift scheduling problem discussed in this paper is in fact a MIP with only
general integer variables. Inspired by the suggestions of Fischetti and Lodi [12],
we propose hereafter some local branching constraints that are specific to shift
scheduling problems.

Let (S̄, X̄) (respectively (S̄, B̄)), denote a feasible reference solution of a shift
scheduling problem modeled with model (P1) (respectively model (P2)). The
distance function of the local branching cut we propose here is defined with respect
only to the shift variables of the reference solution. Moreover, only non zero
variables are considered. Let J̄(S̄) denotes the set of these variable indices. Thus
J̄(S̄) = {j ∈ J : S̄j 	= 0}.

To describe the local branching constraints, one has to introduce two additional
integer variables, S+

j and S−
j for each j ∈ J̄(S̄). The value of these variables

measures the distance between the value of a current shift variable Sj and the
corresponding reference value S̄j . Thus:

Sj = S̄j + S+
j − S−

j ∀j ∈ J̄(S̄).

Thus, for a given reference solution (S̄, X̄) of (P1) or (S̄, B̄) of (P2), the local
branching cut is defined as:

∑

j∈J̄(S̄)

(S+
j + S−

j) � k,

where k is a fixed integer parameter.
Except for the definition of the local branching constraints, the local branching

strategy scheme used is the same as that presented by Fischetti and Lodi [12] with
the enhanced heuristic solution scheme described above.

4.2. Time windowing approach

As its name suggests, the time windowing approach is based on a temporal
decomposition of the shift scheduling problem into several sub-problems, one for
each time window of the planning horizon. Each shift scheduling sub-problem is
then solved to optimality over the associated time window. The final solution for
the overall planning horizon is obtained by combining all the partial solutions of
the sub-problems. Thus, time windowing appears as a pure heuristic approach
since there is no guarantee that the final solution is optimal.

The definition of the time windows has a major impact on the performance of
the time windowing approach in terms of solution quality and computing times.
In fact, time windows must be sufficiently small to yield shift scheduling subprob-
lems that are easy to solve within reasonable times, but also still large enough
to yield a global solution that is not too far from the optimal one. Furthermore,
one can decompose the planning horizon into disjoint time windows so that each

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 247

period belongs to only one time window. However such a decomposition does not
consider overlapping shifts that arise in continuous scheduling problems. In fact,
it assumes a discontinuous formulation of the problem, i.e., a formulation where
each shift is entirely contained in a single time window. As mentioned by several
researchers (see, e.g., [7]), this assumption may result in considerable labor losses
when compared to a continuous formulation of the problem.

The windowing procedure proposed in this paper considers overlapping time
windows thus addressing a continuous formulation of the shift scheduling prob-
lem. A shift scheduling subproblem associated with a given time window thus
incorporates all shifts that start within the time window and the corresponding
breaks. The demand constraints considered are those associated with the periods
belonging to the corresponding time window.

Let T denote the set of time windows resulting from a temporal decomposition
of the planning horizon. One can easily define a total order relation ≺ on set T .
In this order a time window tl is smaller than a time window tm if tl starts before
tm. One can easily index the elements of T with respect to this total order relation
so that T = {t1, t2, . . . , tn} and t1 ≺ t2 ≺ · · · ≺ tn, where n denotes the number of
generated time windows. It is worth mentioning that t1 ∪ t2 · · · ∪ tn = I, the set of
all periods of the planning horizon. In order to consider overlapping shifts present
in continuous scheduling problems, time window tl+1 overlaps with its predecessor
tl (if this predecessor exists, i.e., for l � 2) on all the periods that are covered
by all shifts that overlap from tl to tl+1. All these overlapping shifts are then re-
considered in the shift scheduling sub-problem associated with time window tl+1.
Obviously, the demand constraints associated with periods in tl∩tl+1 were satisfied
when solving the shift scheduling problem over time window tl. Since these periods
are reconsidered in the shift scheduling sub-problem associated with tl+1, one must
update the right hand side of the corresponding demand constraints. Indeed, this
update consists in subtracting from the original value of each of these demands the
sum of all shifts that start and finish within tl and for which the demand period is
a work period (not a break). For cyclic problems, the last time window tn not only
overlaps with its predecessor but also with the first time window t1. The periods
covered in common by time windows tn and t1 are those covered by all shifts
that overlap from tn to t1. Thus, for the shift scheduling subproblem associated
with time window tn, the right hand sides of demand constraints associated with
periods in tn ∩ t1 also need to be updated. This update consists in subtracting
from the original value of each of these demands the sum of the all shifts that
begin and end within t1 and for which the demand period is a work period.

The final solution is obtained by combining all shift and break variable values
yielded by the solution of all sub-problems. In fact, each shift and each break
variable associated with shifts overlapping from one time window, tl, to the next
(tl+1) will have two values. The value considered in the final solution is that
obtained for time window tl+1. In a cyclic case, the values considered for the
variables associated with shifts that overlap from tn to t1 are those obtained for tn.

The time windowing method presented above is general enough to be applied
to any shift scheduling problem. The shift scheduling subproblems involve the

248 M. REKIK ET AL.

same types of variables and constraints as the original one, but on a smaller plan-
ning horizon. The only pre-processing needed for a given subproblem consists in
updating the right-hand side of some demand constraints when overlapping time
windows are considered. Such a pre-processing assumes that explicit shifts are
obtained after the solution of the previous sub-problem. Hence, the difficulty of
the pre-processing task depends on the formulation used to model the schedul-
ing problem. In the case where only implicit solutions are yielded, one needs to
define some procedures to obtain explicit solutions. Hence, for the formulations
we propose in this paper and as explained in Section 3, formulation (P1) yields
explicit shifts Sj , j ∈ J with explicit break assignments Xjk, j ∈ J, k ∈ K. Thus
the update of demand constraints is straightforward with formulation (P1). For
formulation (P2) a particular assignment problem (P3) must be considered to
derive explicit shifts from the implicit optimal solution obtained with model (P2).

5. Computational experiments

The purpose of this section is to first compare different solution approaches for
real-life shift scheduling problems arising from an air-traffic control agency. Three
solution approaches are considered: the adapted local branching method described
in Section 4.1, the windowing heuristic described in Section 4.2, and the branch-
and-bound procedure of CPLEX 9.0. A second set of instances is then considered
to show the performance of each of these procedures for generated shift scheduling
problems traditionally considered in the shift scheduling literature.

5.1. Scheduling environments and problem size

The scheduling environments considered in the analysis operate 24 h a day
and seven days a week. The operating day is divided into 96 periods of 15 min.
Demand profiles are cyclic with a cycle length equal to one week. Thus, one need
only determine the schedules on a one-week period.

The first set of instances includes three different operating environments, de-
noted hereafter by ENV 1, ENV 2 and ENV 3, respectively. Each environment is
characterized by a list of admissible shift types and work stretch parameters. A
shift type is specified by a start time, a length and the fractionable and/or unfrac-
tionable breaks it must receive. Instances provided by the company involve up to
21 shift types and almost all shift types include a unique fractionable break. For
ENV 1, all shift types include only fractionable breaks. For ENV 2 and ENV 3,
only one shift type incorporates a fixed break. In terms of work stretch parame-
ters, all the instances consider three day-parts and thus three different values of
minimum and maximum work stretch parameters during the day. Six demand
patterns are specified for the first and third environments and two are specified
for the second environment, resulting in 14 real-life instances.

The second set of generated instances includes two operating environments,
denoted hereafter by ENV 4 and ENV 5, respectively. Environment ENV 4 con-
siders nine-hour shifts starting every hour. Each shift must receive two 15 min

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 249

relief breaks and a 90 min meal break. A break window is defined for each break
and the minimum and maximum work stretch duration restriction parameters are
set to 60 min and 180 min, respectively. Except the pre- and post-break work
stretch duration constraints, the first hypothetical environment is a typical shift
scheduling environment with multiple standard breaks and is often considered in
the literature on shift scheduling problems (e.g., [4]). The second hypothetical en-
vironment, ENV 5, offers more flexibility in the definition of shifts and breaks. It
considers nine-hour shifts starting every 30 min. Each shift must receive a 90 min
fractionable break with a minimum and a maximum subbreak length of 15 min and
60 min, respectively. In order to ensure realistic operating conditions, the break
profiles associated with shifts are restricted to those having exactly three sub-
breaks such that the length of the subbreak in the middle is strictly greater than
the first and last ones, thus resulting in three different break profiles (15, 60, 15),
(30, 45, 15) and (15, 45, 30). Finally, the minimum and maximum work stretch du-
ration restrictions are set to 60 min and 180 min, respectively. For each of these
operating environments, the six demand patterns of the air-traffic control agency
are considered.

It is worth recalling that the implicit models used in this experimental analysis
correspond to models (P1) and (P2) described in Sections 3.3 and 3.4 for which
all forward and backward constraints are reformulated with slack variables as pro-
posed by Rekik et al. [18]. Table 1 reports the number of variables and constraints
as well as the density of the constraint matrix of models (P1) and (P2) for the
real-life scheduling environments of SET1 and SET2.

Table 1. Model size for SET1 and SET2.

Number of Number of Matrix
variables constraints density (%)

ENV (P1) (P2) (P1) (P2) (P1) (P2)
1 22,274 21,481 12,558 14,486 0.04 0.04
2 16,996 15,624 9,065 10,100 0.05 0.06
3 9,639 7,943 5,670 5,801 0.09 0.10
4 9,408 5,901 5,208 4,373 0.09 0.12
5 62,496 21,291 31,920 14,835 0.01 0.04

As one can see from Table 1, the experimental study proposed here includes
small (environment 3 and 4), medium (environment 2) as well as large scheduling
problems (environments 1 and 5). Except for environment 5, models (P1) and (P2)
are almost equivalent in terms of the number of variables and constraints, and the
matrix density. It is worth noticing that the density of both models is very low
(no more than 0.12%). For environment 5, model (P1) has up to 62 496 variables
and 31 920 constraints compared to only 21 291 variables and 14 835 constraints
for model (P2).

250 M. REKIK ET AL.

T
a
b
l
e

2
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
m

od
el

(P
1)

.

D
em

an
d

L
oc

al
B

ra
nc

hi
ng

C
P

L
E

X
9.

0
W

in
do

w
in

g
E

N
V

pa
tt

er
n

L
P

L
B

V
al

ue
T

im
e

(s
)

G
ap

(%
)

V
al

ue
T

im
e

(s
)

G
ap

(%
)

V
al

ue
T

im
e

(s
)

G
ap

(%
)

1
19

2.
5

19
3

19
6

17
3.

47
1.

55
19

7
56

.4
1

2.
07

19
9

27
01

.7
0

3.
11

2
19

2.
5

19
3

19
6

11
.7

1
1.

55
19

6
41

.3
7

1.
55

19
9

18
07

.9
0

3.
11

1
3

14
1.

61
14

7
14

7
12

4.
02

0.
00

14
7∗

40
.6

6
0.

00
15

3
36

.8
0

4.
08

4
12

5.
25

13
2

13
3

63
5.

01
0.

76
13

3
17

8.
69

0.
76

13
9

19
8.

90
5.

3
5

18
3.

38
18

6
18

9
21

.4
7

1.
61

19
0

36
8.

47
2.

15
19

2
27

02
.2

0
3.

23
6

19
9.

91
20

2
20

4
21

41
.5

9
0.

99
20

6
52

.8
8

1.
98

20
7

94
5.

40
2.

48
2

3
13

6.
25

13
9

14
0

37
2.

38
0.

72
14

1
23

.1
2

1.
44

14
3

90
6.

10
2.

88
4

11
9.

00
12

2
12

6
4.

84
3.

28
12

6
65

.0
5

3.
28

13
1

27
00

.6
0

7.
38

1
18

5.
50

18
6

18
9

1.
61

3.
28

19
0

2.
15

3.
28

18
9

18
03

.0
0

1.
61

2
18

6.
50

18
8

18
9

19
73

.2
4

0.
53

19
0

15
.6

2
1.

06
18

9
3.

30
0.

53
3

3
14

1.
25

14
6

14
6

3.
12

0.
00

14
6∗

10
.8

8
0.

00
14

6
3.

30
0.

00
4

12
4.

25
13

3
13

3
2.

57
0.

00
13

3∗
1.

51
0.

00
13

3
2.

60
0.

00
5

18
5.

50
18

9
18

9
4.

00
0.

00
19

0
2.

11
0.

53
18

9
2.

00
0.

00
6

20
0.

57
20

3
20

3
8.

24
0.

00
20

3∗
8.

88
0.

00
20

3
4.

00
0.

00
1

15
1.

95
15

2
16

1
61

4.
21

5.
92

16
6

19
7.

55
9.

21
16

4
25

53
.0

0
7.

89
2

15
3.

92
15

4
16

3
23

21
.7

2
5.

84
16

7
44

6.
25

8.
44

16
2

16
14

.2
0

5.
19

4
3

11
7.

32
11

8
12

4
42

.0
0

5.
08

12
9

10
5.

83
9.

32
12

4
36

.2
0

5.
08

4
10

2.
31

10
3

10
5

17
75

.7
2

1.
94

11
4

26
.8

3
10

.6
8

10
9

11
39

.0
0

5.
83

5
16

3.
66

16
4

17
0

55
1.

86
3.

66
16

8
14

80
.9

7
2.

44
16

9
19

11
.1

0
3.

05
6

17
7.

85
17

8
18

3
12

1.
49

2.
81

19
3

54
.7

2
8.

43
18

5
27

00
.8

0
3.

93
1

14
4.

84
14

5
15

4
60

4.
17

6.
21

15
8

21
01

.2
8

8.
97

14
9

20
3.

20
2.

76
2

14
5.

48
14

6
15

3
31

06
.5

3
4.

79
16

0
31

07
.7

9
9.

59
14

8
12

02
.7

0
1.

37
5

3
11

2.
00

11
2

-
-

-
-

-
-

11
5

14
03

.7
6

2.
68

4
98

.0
0

98
-

-
-

-
-

-
10

8
33

91
.5

0
10

.2
0

5
14

8.
40

14
9

-
-

-
-

-
-

15
6

36
00

.0
0

4.
70

6
16

1.
66

16
2

-
-

-
-

-
-

17
1

36
00

.0
0

5.
56

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 251

T
a
b
l
e

3
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
m

od
el

(P
2)

.

D
em

an
d

L
oc

al
B

ra
nc

hi
ng

C
P

L
E

X
9.

0
W

in
do

w
in

g
E

N
V

pa
tt

er
n

L
P

L
B

V
al

ue
T

im
e

(s
)

G
ap

(%
)

V
al

ue
T

im
e

(s
)

G
ap

(%
)

V
al

ue
T

im
e

(s
)

G
ap

(%
)

1
19

2.
50

19
3

19
7

11
64

.9
0

2.
07

19
9

37
4.

77
3.

11
19

6
27

04
.4

0
1.

55
2

19
2.

50
19

3
19

8
73

5.
45

2.
59

19
9

54
1.

58
3.

11
20

0
27

05
.0

0
3.

63
1

3
14

1.
61

14
7

15
0

34
31

.2
8

2.
04

14
7

19
63

.8
7

0.
00

15
1

22
4.

90
2.

72
4

12
5.

25
13

2
13

5
21

03
.4

1
2.

27
13

5
63

9.
36

2.
27

13
4

28
7.

10
1.

52
5

18
3.

36
18

6
19

0
13

58
.9

9
2.

15
18

9
19

78
.7

7
1.

61
18

9
27

04
.5

0
1.

61
6

19
9.

91
20

2
20

5
11

31
.1

3
1.

49
20

9
75

7.
97

3.
47

20
4

96
3.

60
0.

99
2

3
13

6.
25

13
9

14
0

22
7.

45
0.

72
14

0
45

7.
97

0.
72

14
0

27
48

.5
0

0.
72

4
11

9.
00

12
2

12
6

31
8.

97
3.

28
12

6
26

5.
10

3.
28

12
8

27
01

.6
0

4.
92

1
18

5.
50

18
6

18
9

96
.5

0
1.

61
19

0
10

4.
25

2.
15

19
6

17
.1

0
5.

38
2

18
6.

50
18

8
18

9
96

.5
0

0.
53

19
1

35
.1

4
1.

60
19

9
13

.1
0

5.
85

3
3

14
1.

25
14

6
14

6
10

92
.4

6
0.

00
14

6
39

.8
2

0.
00

14
6

3.
30

0.
00

4
12

4.
25

13
3

13
3

15
5.

53
0.

00
13

3
53

.2
9

0.
00

13
5

18
04

.0
0

1.
50

5
18

5.
50

18
9

18
9

24
1.

99
0.

00
18

9∗
11

6.
39

0.
00

18
9

17
.9

0
0.

00
6

20
0.

57
20

3
20

3
11

5.
99

0.
00

20
4

11
6.

39
0.

49
20

4
14

.0
0

0.
49

1
15

1.
95

15
2

15
9

15
27

.2
6

4.
61

16
6

12
3.

43
9.

21
16

7
20

95
.9

0
9.

87
2

15
3.

92
15

4
16

2
19

95
.7

9
5.

19
16

5
31

3.
30

7.
14

16
8

18
22

.6
0

9.
09

4
3

11
7.

32
11

8
12

4
13

21
.7

0
5.

08
13

1
17

8.
08

11
.0

2
12

9
92

.3
9.

32
4

10
2.

31
10

3
10

7
32

65
.7

8
3.

88
11

1
77

7.
79

7.
77

11
2

10
4.

00
8.

74
5

16
3.

66
16

4
16

8
14

80
.9

7
2.

44
17

5
17

5.
55

6.
71

17
7

36
00

.0
0

7.
93

6
17

7.
85

17
8

18
4

15
10

.9
3

3.
37

18
8

14
6.

28
5.

62
19

4
11

08
.6

0
8.

99
1

14
4.

84
14

5
-

-
-

-
-

-
15

4
11

71
.3

0
6.

21
2

14
5.

48
14

6
-

-
-

-
-

-
15

6
25

41
.8

0
6.

85
5

3
11

2.
00

11
2

-
-

-
-

-
-

11
5

17
70

.3
0

2.
68

4
98

.0
0

98
-

-
-

-
-

-
10

4
15

86
.6

0
6.

12
5

14
8.

40
14

9
-

-
-

-
-

-
16

2
27

14
.4

0
8.

72
6

16
1.

65
8

16
2

-
-

-
-

-
-

17
7

27
14

.7
0

9.
26

252 M. REKIK ET AL.

5.2. Comparison of the solution approaches

The three solution approaches were applied to both formulations (P1) and (P2)
on a 2.66 GHz Xeon PC with a time limit of 3600 s. The local branching strategy
and the windowing approach use CPLEX 9.0 with most parameters set at their
default values. A branching strategy giving higher priority to shift variables Sj

was considered for the three approaches. After a series of tests, we concluded
that, on average, better solutions were obtained, for the three methods, with the
“emphasis” parameter of CPLEX 9.0 set to “feasibility” (i.e., when the search
concentrates on finding feasible solutions rather than optimal ones).

For the local branching strategy, the size of the neighborhood (k) is set to
10. As illustrated at the end of the section, this value was found to be the most
effective, on average. The time allowed to explore a local branching node is set to
300 s (this parameter corresponds in fact to the node time limit parameter defined
by Fischetti and Lodi [12]). Finally, no more than five strong diversifications are
permitted (this parameter corresponds to the dv-max parameter described in [12]).
Recall that a strong diversification consists in restarting the local branching process
from a new reference solution. The initial reference solution corresponds to the
first feasible one given by CPLEX 9.0.

For the windowing approach, the seven-day planning horizon was divided into
three time windows of two days each and a time window of one day. In fact,
depending on the solution obtained for its predecessor, the current time window
was enlarged as described in Section 4.2 to consider overlapping shifts. Each of
these subproblems was solved within a time limit of 900 s.

The results obtained with the three approaches are reported in Tables 2 and 3.
These tables display the LP and IP solutions obtained with each formulation for
each instance as well as the time (in seconds) needed to find the IP solutions.
In fact, Rekik et al. [18] proved that the LP relaxation of models (P1) and (P2)
are equivalent. However, to clarify the presentation, we choose to report the LP
column for each formulation.

It is worth recalling that the local branching method and the branch-and-bound
procedure of CPLEX 9.0 are applied for the whole shift scheduling problem over
the week. An optimal solution was thus very difficult to obtain in 3600 s. Hence, we
report in the Value column the best feasible solution obtained (which represents an
upper bound on the optimal integer solution) and mark it with an asterisk when it
is proved to be optimal. The Time columns of the local branching strategy and the
branch-and-bound procedure of CPLEX 9.0 display the time (in seconds) needed
to find the best feasible solution during the search process. A dash (′−′) in a
column indicates that no feasible solution was identified within the time limit. For
the windowing approach, the reported solution values and times are those obtained
at the end of the whole process. If no optimal solution was found over a given
time window, a solution time equal to 900 s, i.e., the time limit, is considered for
the corresponding sub-problem. We also add in Tables 2 and 3 a column, denoted
by “LB”, which displays the best lower bound deduced from the classical branch-
and-bound search of CPLEX (i.e., by rounding up the “best node” value) as well

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 253

as a column denoted by “Gap” that illustrates the relative gap between the lower
and upper bounds obtained for each approach and each formulation.

When compared to the branch-and-bound procedure of CPLEX, the local branch-
ing strategy applied to model (P1) yielded a better feasible solution for 15 in-
stances over the 22 (68.18%) for which an initial feasible solution was obtained
within the time limit. This ratio reached 60% for model (P2) (12 instances over
20). The difference between objective values reached 8.57% (see demand pattern
4 for ENV4) for model (P1) and 5.65% for model (P2) (see demand pattern 3
for ENV4). For the seven remaining instances formulated with model (P1), both
procedures resulted in the same objective value. The branch-and-bound procedure
of CPLEX was, however, computationally superior since it consumes an average
time of 49.58 s to find these solutions compared to 112.78 s on average for the local
branching method. Moreover, the branch-and-bound procedure was able to prove
the optimality of four of the seven equal solutions. When considering model (P2),
the proposed local branching procedure yielded the same solution as the branch-
and-bound of CPLEX 9.0 for six instances (over 20) and worse solutions only for
two instances; 2.04% worse for demand pattern 3 of ENV1, and 0.5% worse for
demand pattern 5 of ENV1. The branch-and-bound procedure of CPLEX 9.0 is
also computationally superior to the local branching strategy. In fact, it needed
261.98 s on average to find the six equal solutions compared to 689.96 s for the
local branching strategy.

The results obtained with the windowing approach show, once again, that de-
composing a continuous shift scheduling problem may considerably deteriorate
the quality of the solution. This heuristic may appear inefficient for some easy
instances that can easily be solved by local branching or traditional branch-and-
bound procedures. However, as reported in Tables 2 and 3, except some instances
(four in total for (P1) and five for (P2)), the windowing method results in feasible
solutions that are comparable to those obtained with the first two solution meth-
ods. For more complex instances, for which a first feasible solution is hard to find,
the windowing approach is able to yield better solutions. For example, for de-
mand pattern 2 of ENV 5 formulated with (P1), the windowing approach yielded
a solution with 148 employees compared to 153 employees for the local branch-
ing method and to 157 employees for the branch-and-bound procedure of CPLEX.
Moreover, the local branching and the classical branch-and-bound procedures were
not able to find any feasible solution for four instances modeled with (P1) and for
six instances formulated with (P2). On those instances, the windowing approach
gave relatively good feasible solutions.

It is worth mentioning that a recent release of CPLEX (version 9.1) imple-
ments a local branching scheme. A new parameter controls whether this scheme
is invoked by CPLEX or not. This parameter is off by default. We considered
the branch-and-bound procedure of CPLEX 9.1 with this parameter turned on
and found that the solutions obtained were either as good as or worse than those
obtained with our own local branching procedure.

254 M. REKIK ET AL.

Moreover, one should notice that for the local branching strategy, the “best”
value of parameter k (the neighborhood size) closely depends on the problem struc-
ture. We considered different values of parameter k (all other parameters were kept
at their initial values, i.e., a total time limit of 3600 s, a node time limit of 300 s
and dvmax = 5) and found that a neighborhood size of 10 is the most effective on
average. Tables 4 and 5 display the IP solutions and the corresponding best solu-
tion times obtained with models (P1) and (P2) for the instances of environment
four with different values of k. Recall that the best solution time corresponds to
the time needed to find the best feasible solution for the first time within the total
time limit.

We also studied the impact of varying computing time parameters, i.e., the
total time limit and the node time limit, on solutions quality (while keeping other
parameters at their initial values, i.e., k = 10 and dvmax = 5). Tables 6 and 7
report the IP solutions and the corresponding best solution times obtained with
models (P1) and (P2) for the instances of environment four with different values
of the total time limit (denoted by TTL) and the node time limit (denoted by
NTL). In fact, time parameters are varied in a way that keeps the ratio of the
total time limit and the node time limit constant (TTL

NTL = 12). As one can see from
these tables, on average, the best solutions (in terms of either the solution value
or the computing time) are obtained for TTL = 3600 s and NTL = 300 s. This
can be explained by the fact that 300 s are sufficient to identify improved feasible
solutions while exploring a local branching node. In other words, considering a
node time limit of 450 s or 600 s does not improve, in most cases, the solution
found in 300 s.

6. Conclusions

This paper considers a continuous shift scheduling problem that includes a high
degree of flexibility in defining shifts and breaks. It extends the shift scheduling
problem studied by Rekik et al. [18] from one operating day to a w-day planning
horizon. It thus incorporates the concepts of fractionable (or dividable) breaks
and the pre- and post-break work stretch duration restrictions.

Two implicit formulations are presented. These formulations extend those pro-
posed by Rekik et al. [18]. They incorporate generalized forward and backward
constraints reformulated with slack variables to reduce the matrix density.

The complexity of the continuous scheduling problem studied was essentially
due to the presence of shifts that overlap from one day to the next. Two solution
approaches are proposed: a local branching and a windowing approach. The local
branching method considers the problem as a whole over all the planning horizon.
It is based on the local branching strategy initially introduced by Fischetti and
Lodi [12] to solve complex MIP problems. We proposed particular local branch-
ing cuts that are specific to shift scheduling problems and used the same solution
scheme as proposed by Fischetti and Lodi [12]. The windowing approach decom-
poses the problem into subproblems, one for each time window of the planning

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 255

T
a
b
l
e

4
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
th

e
lo

ca
lb

ra
nc

hi
ng

ap
pr

oa
ch

fo
r

m
od

el
(P

1)
w

it
h

di
ffe

re
nt

va
lu

es
of

k
.

D
em

an
d

k
=

2
k

=
5

k
=

10
k

=
15

k
=

20
P
at

te
rn

V
al

ue
T

im
e

(s
)

V
al

ue
T

im
e

(s
)

V
al

ue
T

im
e

(s
)

V
al

ue
T

im
e

(s
)

V
al

ue
T

im
e

(s
)

1
16

1
36

04
.4

7
16

3
90

9.
88

16
1

61
4.

21
16

1
88

5.
24

16
0

13
27

.2
4

2
16

5
36

04
.9

0
16

5
12

42
.2

7
16

3
23

21
.7

2
16

3
19

52
.2

8
16

3
10

78
.2

0
3

12
5

68
.5

6
12

4
75

.6
0

12
4

42
.0

0
12

4
85

9.
03

12
4

59
6.

68
4

11
0

12
4.

07
10

8
21

26
.6

2
10

5
17

75
.7

2
10

9
21

43
.2

8
10

9
89

6.
41

5
17

0
61

7.
92

17
0

20
08

.8
7

17
0

55
1.

86
17

0
27

72
.7

4
17

1
18

5.
31

6
18

4
29

4.
41

18
4

15
1.

54
18

3
12

1.
49

18
3

28
88

.9
0

18
3

10
26

.0
6

256 M. REKIK ET AL.

Table 5. Computational results for the local branching approach
for model (P2) with different values of k.

Demand k = 2 k = 5 k = 10 k = 15 k = 20
Pattern Value Time (s) Value Time (s) Value Time (s) Value Time (s) Value Time (s)

1 162 3605.51 160 3565.70 159 1527.26 159 1033.83 160 2419.46
2 166 3606.21 164 1991.32 162 1995.79 162 2586.36 165 2083.07
3 127 3607.01 123 3616.16 124 1321.70 124 3740.63 126 1997.24
4 112 936.06 111 3600.17 107 3265.78 109 699.64 110 3457.69
5 171 544.43 172 2072.82 168 1480.97 169 1208.37 170 1029.91
6 184 1229.66 185 3602.50 184 1510.93 185 1165.56 185 623.65

Table 6. Computational Results for the local branching strategy
for model (P1) with different values of the Time (s) limit param-
eters.

TTL=1800 TTL=3600 TTL=5400 TTL=7200
Demand NTL=150 NTL=300 NTL=450 NTL=600
Pattern Value Time (s) Value Time (s) Value Time (s) Value Time (s)

1 161 686.39 161 614.21 160 2222.05 160 2375.80
2 164 1001.16 163 2321.72 162 3256.21 162 3911.00
3 123 257.50 124 42.00 123 557.49 123 709.80
4 108 1138.47 105 1775.72 108 2644.91 108 3258.51
5 171 178.17 170 551.86 170 1029.12 170 1178.84
6 183 118.06 183 121.49 183 116.29 183 118.92

Table 7. Computational Results for the local branching strategy
for model (P2) with different values of the time limit parameters.

TTL=1800 TTL=3600 TTL=5400 TTL=7200
Demand NTL=150 NTL=300 NTL=450 NTL=600
Pattern Value Time (s) Value Time (s) Value Time (s) Value Time (s)

1 160 974.67 159 1527.26 160 1432.88 160 2197.81
2 164 1709.52 162 1995.79 164 2614.92 162 6230.06
3 126 771.81 124 1321.70 125 2723.93 124 6976.66
4 111 1021.17 107 3265.78 109 3745.51 108 7136.36
5 173 1801.00 168 1480.97 169 3275.79 168 3364.10
6 186 548.66 184 1510.93 184 1532.97 184 1856.74

horizon. These time windows are enlarged during the process to handle the over-
lapping shifts from one time window to the next. In fact, when comparing the two
proposed solution approaches, the local branching approach has the advantage of
considering the overall problem and may thus yield better objective values than
the windowing approach. Moreover, it may act as an exact solution method and

SOLUTION APPROACHES TO LARGE SHIFT SCHEDULING PROBLEMS 257

yield optimal solutions for some easy instances. However, a local branching strat-
egy starts from an initial feasible solution that may be very difficult to obtain for
some instances. The windowing approach has the advantage of always yielding
feasible solutions in reasonable time, even for complex shift scheduling problems.
The solution quality and computing time needed will depend on the way time
windows are defined.

We compared the proposed approaches to the classical branch-and-bound pro-
cedure of CPLEX 9.0 for real-life instances obtained from an air-traffic control
agency requirements and for some generated instances. Both local branching and
windowing methods used CPLEX 9.0 to solve corresponding MIP sub-problems.
The local branching method proposed yielded, on average, better objective values
than the two other approaches. The results obtained with the windowing approach
are a little worse especially for relatively easy instances. This was predictable since
decomposing a continuous problem is likely to deteriorate the quality of the solu-
tion. However, on average, the solutions obtained with the windowing approach
remain comparable to those obtained with the branch-and-bound procedure of
CPLEX 9.0. For more difficult instances, whereas the branch-and-bound proce-
dure of CPLEX 9.0 were not able to identify any feasible solution, the windowing
approach yielded good feasible solutions.

Acknowledgements. This work was supported by the Natural Sciences and Engineering
Research Council of Canada under grant CRDPJ228083-99 and by AD OPT Technologies
Inc. This support is gratefully acknowledged. We are grateful to two anonymous referees
for their valuable comments.

References

[1] I. Addou and F. Soumis. Bechtold-Jacobs generalized model for shift scheduling with extra-

ordinary overlap. Technical report, GERAD, HEC Montréal, (2004).
[2] T. Aykin. Optimal shift scheduling with multiple break windows. Manage. Sci. 42 (1996)

591–602.
[3] T. Aykin. A composite branch and cut algorithm for optimal shift scheduling with multiple

breaks and break windows. J. Oper. Res. Soc. 49 (1998) 603–615.
[4] T. Aykin. A comparative evaluation of modeling approaches to the labor shift scheduling

problem. Eur. J. Oper. Res. 125 (2000) 381–397.
[5] S.E. Bechtold and L.W. Jacobs. Implicit modeling of flexible break assignments in optimal

shift scheduling. Manage. Sci. 36 (1990) 1339–1351.
[6] S.E. Bechtold and L.W. Jacobs. Labor utilization effects of labor scheduling flexibility al-

ternatives in a tour scheduling environment. Decision Sciences 24 (1993) 148–166.
[7] M.J. Brusco and L.W. Jacobs. Cost analysis of alternative formulations for personnel sched-

uling in continuously operating organisations. Eur. J. Oper. Res. 86 (1995) 249–261.
[8] M.J. Brusco and L.W. Jacobs. Starting-time decisions in labor tour scheduling: an experi-

mental analysis and case study. Eur. J. Oper. Res. 131 (2001) 459–475.
[9] T. Çezik and O. Günlük. Reformulating linear programs with transportation constraints-

with applications to workforce scheduling. Naval Research Logistics 51 (2004) 275–296.
[10] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods to

improve MIP solutions. Math. Program. 102 (2005) 71–90.

258 M. REKIK ET AL.

[11] G.B. Dantzig. A comment on Edie’s traffic delays at toll booths. Oper. Res. 2 (1954) 339–
341.

[12] M. Fischetti and A. Lodi. Local branching. Math. Program. B 98 (2003) 23–47.
[13] W.B. Henderson and W.L. Berry. Heuristic methods for telephone operator shift scheduling:

an experimental analysis. Manage. Sci. 22 (1976) 1372–1380.
[14] D.S. Hochbaum and A. Levin. Cyclical scheduling and multi-shift scheduling: Complexity

and approximation algorithms. Discrete Optimization 3(4) (2006) 327–340.
[15] N. Mladenovic and P. Hansen. Variable neighborhood search. Comput. Oper. Res. 24 (1997)

1097–1100.
[16] S.L. Moondra. An L.P. model for workforce scheduling in banks. J. Bank Res. 6 (1976)

299–301.
[17] M. Rekik, J.-F. Cordeau, and F. Soumis. Using Benders decomposition to implicitly model

tour scheduling. Ann. Oper. Res. 128 (2004) 111–133.
[18] M. Rekik, J-F. Cordeau, and F. Soumis. Implicit shift scheduling with multiple breaks and

work stretch duration restrictions. Technical report, GERAD-2005-15, (2005).
[19] G.M. Thompson. Improved implicit optimal modeling of the labor shift scheduling problem.

Manage. Sci. 41 (1995) 595–607.
[20] G.M. Thompson. A simulated annealing heuristic for shift scheduling using non-continuously

available employees. Comput. Oper. Res. 32 (1996) 275–288.
[21] S. Topaloglua and I. Ozkarahan. Implicit optimal tour scheduling with flexible break assign-

ments. Computers & Industrial Engineering 44 (2002) 75–89.

	Introduction
	Literature review
	Mathematical models
	Generalized forward and backward constraints
	Problem definition
	Implicit formulation (P1)
	Implicit formulation (P2)

	Solution approaches
	Adapted local branching strategy
	Time windowing approach

	Computational experiments
	Scheduling environments and problem size
	Comparison of the solution approaches

	Conclusions
	References

