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FAST COMPUTATION OF THE LEASTCORE
AND PRENUCLEOLUS OF COOPERATIVE GAMES*

JOSEPH FREDERIC BONNANS! AND MATTHIEU ANDRE?2

Abstract. The computation of leastcore and prenucleolus is an effi-
cient way of allocating a common resource among n players. It has,
however, the drawback being a linear programming problem with 2" —2
constraints. In this paper we show how, in the case of convex produc-
tion games, generate constraints by solving small size linear program-
ming problems, with both continuous and integer variables. The ap-
proach is extended to games with symmetries (identical players), and
to games with partially continuous coalitions. We also study the com-
putation of prenucleolus, and display encouraging numerical results.

Résumé. Le calcul du leastcore et du prénucléole est une maniere ef-
ficace d’allouer une ressource entre n joueurs. L’inconvénient est qu’il
suppose la résolution d’un programme linéaire avec 2" — 2 contraintes.
Dans cet article nous montrons comment, dans le cas de jeux de pro-
duction convexes, générer des contraintes en résolvant des programmes
linéaires mixtes de petite taille. L’approche est étendue aux jeux avec
symétries (joueurs identiques) et aux jeux avec coalitions partiellement
continues. Nous étudions aussi le calcul du prénucléole, et donnons des
résultats numériques prometteurs.
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1. INTRODUCTION

In this paper we study the class of cooperative games, in which costs must be
allocated in a fair way among n players. This is an important subject for utility
networks, or more generally for all companies subject to regulation rules. The
analysis takes into account the possibility of coalitions among players. Note that a
new feature of our model is that not all coalitions are allowed, which makes sense
in real-world applications. We refer to Boyer et al. [1] for an overview of cost
allocation using the cooperative game theory.

Denote by S := {1,---,n} the set of players, which are to be interpreted
as customers, P(S) the set of coalitions (all possible subsets of S), Pi(S) :=
P(S)\{0, S} the set of non trivial coalitions, and Po(S) C P1(S) the set of possible
coalitions.

Given z € IR" and S € P(S), we denote x(S) := >, g 7. In the sequel z; will
be interpreted as the amount paid by player ¢, for i = 1,...,n, so that 2(S5) means
the amount paid by coalition S. With each coalition S € P(S) is associated a real
valued cost ¢(S). We say that « € IR" is an allocation if z(S) = ¢(S), and in this
case we call z(S) the allocation of coalition S, for all S € P(S). The excess of a
coalition S is the amount

e(S,z,¢) :==c(S) — z(9).

This is the difference between what the coalition would have to pay if it ignored the
other players, and the amount it has to pay using allocation z. A negative excess
for coalition S means that it would be advantageous for S to run its own business.
In order to avoid that, a possible way of allocating costs consists in maximizing
the minimal excess. This amounts in solving the following optimization problem:

maxe; x(S) =c¢(S); e+ x(S) < ¢(S), forall S e Pa(S). (LP)
e€ER
zeX

Here we take into account the set of possible coalitions Po(S) which is a subset of
P1(S), as well as the set X C IR" restricting the choice of allocations, as typically
will happen in practical situations. We say that the allocation z is feasible if
(in addition to the relation x(S) = ¢(S)) it belongs to X. We call the set of
solutions of (LP) the leastcore. The core is the set of feasible allocations for which
every excess of coalitions in Py(S) is nonnegative. If the core is non empty, then
it contains the leastcore. These two definitions of core and leastcore generalize
the usual ones for which X = IR" and P2(S) = P1(S), see Shapley [13] and the
historical references in [9]. If the leastcore is not reduced to one point, one can
minimize among its solutions the minimal excess (of coalitions whose excess is not
binded). By induction one obtain the prenucleolus, a concept due to Schmeidler
[12] (see also the axiomatization in Maschler et al. [8]).

In the sequel we assume that X is a polyhedron. Then (LP) is a linear program
with n+1 variables and as many as 2" — 2 explicit constraints (if P2(S) = P1(S)),
in addition to the “implicit” constraint x € X.



FAST COMPUTATION OF THE LEASTCORE AND PRENUCLEOLUS 301

Since the computation of the leastcore and prenucleolus needs to solve a linear
program with possibly 2™ — 2 contraints but only n + 1 variables, generation of
constraints is a natural approach. We show in this paper that, if the cost function
has a certain convexity property (the structure of convex production game), then
there exists a fast procedure for constraint generation. Then we show that sym-
metric games have symmetric solutions, and relate some continuous relaxations
to the desaggregation of classes of small players. We show that (in the case of
convex production games) one can extend the constraint generation to the case of
symmetric games or continuous relaxations.

Our hypothesis on the cost function is a generalization of linear production
games discussed in Owen [10]. Generation of constraints in this case was already
studied in Hallefjord, Helming and Jornstein [6]. However, for generating con-
straints they solve a (mixed integer continuous) problem in which the data of the
linear production game are involved, and that may be expensive (see details in
remark 4.1). By contrast, we solve a problem of much smaller size, and extend
the approach, as was already said, to the search of symmetric solutions and to the
case of continuous relaxations.

Let us mention also two references related to the subject of this paper, that
do not assume that cost functions result from a linear production game. Fromen
[2] gave a method for reducing the number of linear programs to be solved in
order to compute the prenucleolus; still, these linear programs remain of large
size. Preux et al. [11] gave a theoretical result about a column generation method
for computing the prenucleolus. They give no numerical results, and it is not easy
to figure out if their approach can be effective in practical situations.

The paper is organized as follows. Section 2 recalls the principle of constraint
generation. The variant based on lower estimates of the cost function is presented
in Section 3. How such lower estimates are obtained in the case of convex produc-
tion games is the subject of Section 4. Sections 5 and 6 deal with the extension
to problems with symmetries and to partial continuous relaxation, respectively.
Section 7 analyzes how to compute the prenucleolus and Section 8 adapts to this
problem the idea of constraint generation. Finally Section 9 presents some numer-
ical experiments.

Given an optimization problem say (P), by F(P) and S(P) we denote its set
of feasible points and set of solutions, respectively.

2. CONSTRAINTS GENERATION

Relaxing constraints of (LP) for some of the coalitions amount to solve the
following problem:

max e 2(S) = ¢(S); e+ x(5) <c(S), forall SeE, (LPg)

where E is a subset of P3(S). Let us formulate an algorithm for solving (LP),
based on generation of constraints:
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Algorithm GENERATION
Data: k:=0, Ey C Pa2(S).
LOOP
e Compute z¥, solution of (LPg, ).
e Find Sj € Pa(S) such that

c(Sy) — zF(Sy) < e(S) — 2*(S), for all S € Py(S).

o If ¢(S;) — 2%(Sk) = val(LPg,), stop.
o Ly :=E, U{Sk} k:=k+1.
END LOOP
EnD

At each iteration the most violated constraint of (LP) is added. Since the
number of constraints of (LP) is finite, the algorithm terminates. In addition we
have the estimate

¢(Sy) — z"(Sy) < val(LP) < val(LPg,). (2.1)

The first inequality expresses the fact that (z¥,c(Sk) — 2%(Sk)) € F(LP), while
the second is a consequence of the relaxation of constraints. Since Ej, is increasing
with k, val(LPg, ) is nonincreasing. Relation (2.1) may be used for designing a
stopping criterion.

This approach, however, will not be effective unless we have a fast way of finding
the most violated constraint of (LP). A first step consists in using, instead of the
cost function itself, a lower estimate. This is the subject of the next section.

3. LOWER ESTIMATES OF THE COST FUNCTION

Assume that we have at our disposal a lower estimate of ¢(-) over Pa(S), i.e., a
function ¥y, : P2(S) — IR such that

Ui(S) <e(S), forall SePyS). (3.2)

Then instead of searching the minimum over non trivial coalitions of ¢(S) — z(5),
we may search for the minimum in S of ¥ (S) — x(S) over P2(S). We obtain the
following algorithm (we write LB for lower bound) :
Algorithm GENERATION-LB
DATA: k=0, Ey C Pa(S).
LOOP

e Compute =¥, solution of (LPg, ).
e Find Sj € Pa(S) such that

Uy (Sk) — zF(Sk) < Ui(S) — 2*(S), for all S € Py(S).

o If ¢(Sy) — 2%(Sk) = val(LPg,), stop.
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° Ek—i—l = Ek @] {Sk}, k:=k+1.
END LOOP
END

We have the estimate, similar to (2.1):
W.(Sk) — 2%(Sk) < val(LP) < val(LPpg,). (3.3)

This approach via lower estimates of the cost function is of interest if the two fol-
lowing conditions are satisfied: (i) finding the coalition minimizing S — (U (S) —
2k (9)) over Pa(8) is cheap, and (ii) ¥y, is as close as possible to ¢(S). A natural
assumption is that the lower estimate ¥y is exact over Fj, in the sense that

Up(S) =¢(S), forall Se Ej. (3.4)

Then the above algorithm terminates, as the following Lemma shows.

Lemma 3.1. Assume that the exactness hypothesis (3.4) holds. Then the algo-
rithm stops after a finite number of iterations, and its output is an allocation of
the leastcore.

Proof. If the algorithm does not terminate, since the set P2(S) is finite, we have
that Sy € Ej for some k. By the exactness hypothesis (3.4), ¥;(Sk) = ¢(Sk), in
contradiction with the stopping criterium at iteration k. O

It remains to identify in which situations we are able to construct lower esti-
mates of the cost function, such that the problem of finding Sy is tractable. We
will see in the next section that these properties are, in a certain sense, satisfied
if the cost function has a property of inner convexity.

4. CONVEX PRODUCTION GAMES

Assume that each player 7 is a customer for whom must be provided an amount
b" € IRP of certain goods. The amount needed by coalition S is b(S) := >, ¢ b
Assume also that the cost of providing b is the value function of an optimization
program of the following type:

Mll’lf(Z), AZ:ba z >0, (Pb)

where f : IR™ — IR is a convex function. Then we speak of a convex production
game; when f is linear this reduces to the linear production game setting (see
Owen [10]). The Lagrangian function of problem (Fy) is (denoting by “” the
scalar product)

L(z, A\ 8,0):i=f(z)+ A (Az —b) — s 2,
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with here A € IRP and s € IR". Denote by v(b) the value of (P,), i.e., v(b) =
val(P,). Let Z be solution of (P;), and let (), 5) be an associated Lagrange multi-
plier, that is,

L(2,\,5,0) =min L(z,\,5,b); §>0; 5-2=0. (4.5)

z

Then for any z € F(P,), we have that

f(z)ZL(Zaj‘agab):L(Zvj‘agvl_))fj"(bil_)) EL(,Z;\’E,Z_))*)\'(bfb).

v(b) > v(b) — X - (b—1D). (4.6)

Therefore, solving (F;) provides an affine minorant of v(-), exact (equal to v(-)) at
b. Consequently, for all S € P;(S),

c(8) = v(b(5)) = v(b(Sk)) — Ak - (b(S) — b(Sk)), (4.7)

where Ay is a Lagrange multiplier computed when solving (Pyg,)). Coming back
to the definition of the cost function c(-), we get that

c(S) = e(Sk) = Ak - (b(S) — b(Sk))- (4.8)

Set ¢ := ¢(Sk) + Ak - b(Sk). At iteration K, we obtain a lower estimate W g (S) of
c(S), where

Uic(S) = max {é — M- b(S)} (4.9)

Given S € P3(S), denote by 1g its characteristic vector
(1g); =1 if ¢ € S; 0 otherwise. (4.10)

We identify y € P2(S) with the characteristic vector of an element of Py(S). It
follows that minimizing Ug (S) — z(S) over P2(S) (in order to generate the next
constraint) means solving a optimization problem with n variables in {0,1} and a
continuous variable

Min — w— >y é— M- [ Y b | <w, forall k< K. (Lg)
w € IR i—1 i=1
y € P2(S)

If the constraint y € Pa(S) are expressed as linear constraints over {0, 1}", then
(Lk) is in the format of a mixed linear program (with {0,1} and continuous
variables). This holds in particular in the “standard case”, when Pa(S) = P1(S),
since

i=1

Pl(S)z{ye{O,l}"; 1§zn:yi§n—1}. (4.11)
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In addition, two successive problems of type (Lg) differ only by the addition of
one cut. This structure may help for a fast resolution of (L) (this is the classical
situation in branch and cut algorithms, where hot start options allow to speed up
computations).

Remark 4.1. The method presented here is related to the column generation
method by Hallefjord et al. [6]. The essential difference is that [6] uses the true
value of the cost function for generating the new column, i.e., the problem to be
solved at each iteration is (when, as in [6], we choose Pa(S) = P1(S)):

Min  f(z) = > s Az= biyi; 1<) gi<n—L (L)
=1 =1 =1

z>0
ye{0,1}"

If the dimension of z is large, or if f has a complex expression, this may be much
more expensive, especially during the first iterations where solving (L) is quite
cheap.

4.1. LINEAR PRODUCTION GAMES

For the purpose of comparison to our previous analysis, we recall in this section

a result of Owen [10] (generalized by Granot [5]), as well as its proof, since the

latter is short, for proving the existence and providing a fast computation of an
allocation in the core for specific linear production games of the following form:

Mine'z; Az >b, z>0. (P})

z

We denote the Lagrangian function of problem (P/) by
L(z,\b) :=c" 2=\ (Az —b)
where A € IRY.. The dual problem is

supb' \; c—ATA>0.
A>0

Theorem 4.2 (Owen [10]). Assume that b := b(S) is such that problem (P;) has
a finite value. Then the core is non empty, and any dual optimal solution X is
such that T : S +— b(S) T\ is an allocation with non negative excess, for all possible
coalitions.

Proof. The duality theory for linear programs implies ¢(S) = b'\, so that Z
is an allocation. Given any coalition S, since the feasible set of the dual does
not depend on b, we have that A is feasible for the corresponding dual problem
Maxy>0{b(S)"A; ¢ — ATA > 0}. By duality theory again, we have then that
c(S) = b(S)TA = x(9), i.e., ¢(S) —x(S) > 0, proving that # is an allocation in the
core. 0
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For linear production games in the format <PEI ), Owen’s theorem 4.2 proves non
emptyness of the core and provides a cheap way of computing a corresponding
allocation. Yet it does provide neither a set of active constraints nor an allocation
in the leastcore. Even if the core happens to be equal to the leastcore (but that is
not known a-priori), a constraint generation procedure is still useful for computing
the prenucleolus; see Section 7.

Note also that if we add to the formulation of (F;) at least one linear constraint
with constant right-hand-side, then the proof is not valid.

5. SYMMETRIES AND DISAGGREGATION

This section deals with the case when each (aggregated) player i is in fact the
aggregation of n; identical “elementary players”. In other words, coalitions with
only some of the n; elementary players are possible, and their cost is a function
of the number of elementary players in each class of aggregated players. The
disagregated formulation has therefore 7 := ) . n; players. We denote the cost
function of the disaggregated formulation again by ¢(+); this function depends
only on the fraction of players of each class belonging to the coalition (and not on
the elementary players themself). Let us show that the disagregated problem has
a symmetric solution:

Lemma 5.1. We assume that the set Po(S) of feasible coalitions of the disagre-
gated problem is symmetric (i.e., invariant by permutation between players of the
same class). Then the disagregated problem has a symmetric solution, i.e., one
for which the allocation is identical for all elementary players of the same class.

Proof. The problem of computing the leastcore being convex, its solution set is
convex. Taking the average value of a particular solution and of all those obtained
by permutation between players of the same class, we obtain a symmetric solution.

O

Since these symmetric solutions are socially fair (they allocate the same amount
to identical players) it is of interest to obtain them through a dedicated formu-
lation. Denote by y; € {0,1/n;,2/n;,...,1} the fraction of elementary players
of class i in coalition y € IR™; the set of feasible coalitions of the disagregated
problem (again assumed to be polyhedral) is still denoted X C IR™. Then the
resource allocated to coalition y, where y; € {0,1/n;,2/n;,...,1} is still of the
form x(y) := >, z;y;. The computation of symmetric elements of the leastcore
may be written as

maxe; a(S) = () ¢ +a(y) < cly),
sexX (DNLP)
for all y; € {0,1/n;,2/n;,...,1}, i=1,...,n.

Problem (DNLP) has (II;(1 + n;) — 2) constraints, which is much less than the
(221 i — 2) constraints of the naive formulation of the disagregated problem. If a
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lower bound ¥ of ¢(+) is available (in particular in the case of a convex production
game) then the constraint generation problem may be written as

Min Vi (y) —2(y); y; €{0,1/n;,2/n;,...,1}, i=1,...,n. (DNL)
y

This is an integer (with in addition a continuous variable) linear programming
problem. For convex production games we can use the minorant discussed in the
previous section, and have therefore an effective procedure.

6. PARTIAL CONTINUOUS RELAXATION

If a player i € {1,...,n} is the aggregation of a very large number of players,
then we might think of approximating the disagregated problem by allowing y; to
be in [0, 1]. This process will be called the continuous relazation of class i.

Let {1,...,n1} be the set of players for which a continuous relaxation is per-
formed. A relazed coalition is an element of PF(S) := [0,1]"* x {0,1}"2, where
ng :=n — ni. The set of nontrivial coalitions is PF(S) := PE(S) \ {0,S}. The
(symmetric) allocation for a relaxed coalition y € PT(S) is z(y) = z - y. Given
PL(S) C PE(S), the leastcore is now a solution of the following problem:

maxe; 2(S) = ¢(S); e+x(y) <cly), forall ye PI(S). (RNLP)
ce€eR
reX

Since this problem has infinitely many constraints, the idea of generation of con-
straints appears to be quite natural. Given an allocation x € IR™, the problem of
finding the most active constraint may be formulated as follows: find y € S such
that

c(y) — z(y) < cly’) — z(y’), forall y € PE(S). (6.12)

This is not an easy problem. However, in the case of a convex production game,
with a relaxed coalition is associated the amount of goods b(y) := > y;b;, the
associated cost is ¢(y) := v(b(y)), and the computation of v and its subdifferential
at points by, := b(yk), k < K, provides a convex lower bound that we denote again
Wy . The problem of generating a constraint reads then as

Min_ Wg(y) — z(y). RNL
i K(y) — z(y) (RNL)

It may be interpreted as a partially (for the first nq variables) continuous relaxation
of problem (L ). Therefore again in the case of convex production games we have
an effective constraint generation procedure. This constraint will not of course
find the solution after a finite number of iterations but rather converge to the
optimal value, following standard results on cutting planes methods for minimizing
a convex function due to Kelley [7].
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7. COMPUTATION OF THE PRENUCLEOLUS

This section is devoted to a detailed discussion of the number of steps needed for
computing the prenucleolus. After the presentation of the method we introduce the
notion of essential steps. Our main result (proposition 7.5) is that the computation
needs at most n essential steps.

In this section we assume for the sake of simplicity that X = IR™. Let 5
be a Lagrange multiplier associated with the inequality constraints of the linear
program (LP) (n has dimension 2" — 2). Denote

L :={S € Pi(S)ins >0} J1:=Pi(S)\ 1. (7.13)

From the duality theory of linear programs, we know that (z,e1) € S(LP) iff it is
feasible and satisfies complementarity relations with a Lagrange multiplier:

z(S) =¢(S); e1+x(S)=¢(S), S€ (7.14)
g1+ x(5) <¢(S), S e . ’
Let vy := val(LP). Relation (7.14) implies in particular £; = v;. It is important,
however, to keep €1 as a variable in practical computations in order to avoid
instabilities (see Rem. 7.1 below).

One may try to maximise, over solutions of (LP), the minimal excess for coali-
tions in Ji; this means solving the following problem:

max eg; x(S) =¢(S); e1+x(S)=¢(9), S€l;
T,€1,E2 (LPI)
ea+x(S) <¢(9), S € Ji.

We did not repeat the last constraints of (7.14), which are automatically satisfied
at any solution of (LP;).

Remark 7.1. Problem (LP) is feasible, and also qualified in the sense that there
exists a feasible point for which all inequality constraints are strictly satisfied:
take (z,e1) solution of (LP), and €2 < 1. In order to obtain a numerically stable

formulation, however, one has to eliminate possibly redundant equality constraints
n (LP 1).

Once (LP) is solved, we may continue solving a sequence of problems of the
form

max  epy1; 2(S) = ¢(S); e1+xz(S) = cS), Sel;
T,E1,.0 €41
(LEx)
ep+x(S) = ¢(S), Sely
€k+1 T x(S) < C(S), S e J.

Sets I, and Ji are defined inductively for k > 2:

Iy :={S € Jp—1; 1§ >0} Ji = J—1 \ I,
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where n¥ is a Lagrange multiplier associated with the inequality constraints of
program (LPy_1). The sequence stops when I} is empty.

Denote vy, := val(LP;). Since the solution (z,e1,...,e) of (LPr_1), with
Ek+1 = €k, is a feasible point of (LPy), the sequence vy is nondecreasing. If
v = vk_1 and I # 0, then I}, is a set of constraints that are always active at any
solution of (LPj_1), and at the same time 1%+ = 0, for all S € I_;.

By the Goldman-Tucker Theorem [4], we know that a linear program satisfies
the hypothesis of strict complementarity. In other words, if a linear program
has a finite value, then its dual has at least one solution such that its nonzero
components coincide with the set of active inequality constraints at all primal
solutions. Such strictly complementarity multipliers coincide with the relative
interior of the solution set of the dual program. We denote the dual of (LPy) by
(DLPy), and the relative interior of the solution set for the dual as ri S(DLPy).

Lemma 7.2. The inequality vy > vi_1 holds iff n*~' € ri S(DLPj,_1).

Proof. If n*~1 & 1iS(DLP;_1), this means that strict complementarity with
one primal solution does not hold: there exists a coalition S € Ji_1 such that
xz(S) = ¢(S) — ¢eg for all (x,e1,...,65) € S(LPy_1). Since any feasible point
(x,€1,...,ek41) of (LPy) is such that (z,e1,...,e5) € S(LP;—-1), we deduce that
Uk = €rp+1 < € = vUp—1 Since the converse inequality always holds, this proves
that v, = vp_1.

If on the contrary n*~! € riS(DLP;_1), with each S € J_; is associated
some (xg,€1,...,65) € S(LP,_1) (values of €; are identical over S(LP;_1)) such
that 25(S) < ¢(S) — ;. Denote by jr—1 the cardinal of Jy_1, and set & :=
(Jk-1)"" Y ges,_, Ts- Since S(LP,_1) is a convex set, we have that (&s,¢e1,...,ck)
belongs toS(LP;_1), and also £5(S) < ¢(S) — e, for all S € Ji_1, which implies
that there exists some & > e such that (&g,e1,...,6x,€) is a feasible point of
Ji—1. Therefore val(LPy) > € > e. O

Remark 7.3. An interior-point solver provides a Lagrange multiplier in the rela-
tive interior of S(DLPj;_1), unless a purification procedure is performed. On the
contrary, simplicial algorithms compute in general a Lagrange multiplier on the
relative boundary of S(DLPj_1).

In order to estimate the number of steps in the computation of prenucleolus,
we need the following definition.

Definition 7.4. (i) Let I C P;(S) and S € P;(S). We say that S depends on
I if the value of z(S) is determined by the values {z(S),S € I}. We say that
J C P1(8S) depends on I if any S € J depends on I.

(ii) Step k in the computation of prenucleolus is said to be essential if at least one

element of Ij, does not depend on S U (U{Iy; ¢ < k}).

If S depends on I, then the linear program

Minz(S); «(S")=0; S el
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has value 0; by duality, we deduce easily that S depends on I iff 1g is a linear
combination of vectors {1g/, 5" € I}.

Lemma 7.5. The computation of prenucleolus has at most n essential steps.

Proof. Each essential step adds a linear constraint, linearly independant from the
linear constraints already active. Since x € IR™, this may occur at most n times.
|

Remark 7.6. (i) In order to understand the nature of non essential steps, consider
the case when the leastcore has a unique element. Then the computation of the
prenucleolus reduces to an ordering of the non saturated constraints following
their value at the leastcore. Obviously the number of non essential steps may be
extremely large.

(ii) One could check uniqueness of the solution of problem (LPj) in order to
stop the procedure.

(iii) After having solved problem (LPy), one could try to compute and elimi-
nate all inequality constraints that depend on the equality constraints of
(LPy). However, we do not know any fast algorithm for doing it.

(iv) It is useful, in order to have stable computations, to check the linear
independance of the equality constraints of (LPy). This can be done by
e.g. a QR type orthogonal factorization, see [3].

8. GENERATION OF CONSTRAINTS AND PRENUCLEOLUS

8.1. GENERAL CASE

The idea of constraint generation can be extended to the computation of prenu-
cleolus. Without entering into all details, let us specify the essential step, which
is the formulation of the problem of generating a constraint after solving (LPy):

Compute 5’ € Ji such that (8.15)
c(S) —x(S) < ¢(S) —x(S5), forall S e Jg. ‘

Here k, Jj, and x are given. If we have only a lower boud ¥ of the cost function ¢(-),
the problem to be solved reads as:

Compute 5’_ € Ji such that (8.16)
U(S) —x(S) < U(S) —x(S), forall S e Jy. ‘

In the case of a convex production game (Sect. 4), the lower bound has an expres-
sion of type
U(S):= max {¢r— M- b(9)}, (8.17)

where L is a finite set. The problem to be solved has an expression similar to the
one of problem (L) of Section 4, but with the additional constraint y € Ji. It is
useful to rewrite it as a mixed (discrete and continuous variables) linear program
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in order to be able to solve it effectively. This can be done in the following way.
Given z and y in {0,1}"™, denote

cly) = > v+ >, (1—u) (8.18)

{i;2,=0} {i;2,=1}

This sum on nonnegative amounts is equal to 0 iff y = z, and otherwise has value
at least 1. The constraint a®(y) > 1 is therefore equivalent to the constraint
y # z. Hallefjord et al. [6] already used this formulation for the computation of
the prenucleolus.

Denote by Jj, := P1(S)\ Ji the set of coalitions for which an equality constraint
already holds. The problem of constraint generation for convex production games
can be written as

éo— Mo - (Z yb) <w, forall e L;
n i=1 _
Min w — Z YiTi; (LL,k)

n
yelf{’Sflf}vL i=1 1< Zyz <n-1
1

i=

a*(y) > 1, forall z € Jj.

Excluding redundant equality constraints, we always have |Jk] < n. Problem
(Lp,k) seems therefore of acceptable complexity.

8.2. CASE OF SYMMETRIC GAMES

In the case of symmetric games, described in Section 5, the approach is similar.
The main difference is that since now n;y; is an integer in {0, n; } rather than {0, 1}
(see problem (DNLP)), the exclusion constraint has a different expression. We
need some notations. Let

Y:={yeR"; nwy €{0,...,n;}} (8.19)

be the set of such fractions y. Given z € Y, we look for an expression of the
exclusion constraint {y € Y;y # z}. For that we split y as a sum y = y* + y*,
where for each component 4, y¢ = min(y;, z;) and y* = max(y; — 2;,0). Then
y € Y is such that

n
a*(y) = > (2 —yl +u}") (8.20)
i=1
is nonnegative, and has value 0 iff y = z. We obtain the following set of conditions,
fory e Y:
Y eYiyt eY;ac {01}
a*(y) =0 y=y"+y" (8.21)
iz <yl <zip 0<yr <ap(l—z).
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Again, excluding redundant equality constraints, we always have no more that

n sets of relations of type (8.21). The corresponding problem of generating a
constraint, of the type stated below, is therefore again of acceptable complexity:

n
o — Mg - (Z yibi> <w, forall {€L;
i=1

Minw — Yili; n (Lrs.k)
vey ; 0#> yi #m;

1

(8.21) holds, for all z € Jj.

9. NUMERICAL EXPERIMENTS

We tested the constraint generation algorithms of the following family of test
problems. Consider the problem of allocating costs for a water network connecting
n different cities. Each city ¢ requires a quantity @;: of water over two different
time periods t € T. All these city exploit a unique spring s, with no supply
restrictions. For each period ¢, the supply is denoted Y.

A site numbered n (spring or city) has coordinates (z,,, ¥, ); the cost of building a
pipe between two cities n1, ns of capacity C,,, », is proportional to the (Euclidean)
distance d,,, », between the two sites, the unit price being p. The total cost (for
a given coalition) includes also a fixed cost IC; the expression of the total cost is
therefore

F(C):=IC+p Y dn n,Coyns (9.22)
nip<nz
The flow F,,, n,+ must satisfy the capacity constraints, as well as Kirchhoff’s law
at each site n; for all times:

0<Fu nst <Cpyny, forall teT V(ngng), (9.23)
> Frimot+Quui = Fryps forall teT, ny #s, (9.24)
n2 na
> Femi= Foor+ VY, forall teT. (9.25)
no na

The minimum cost design problem for a coalition S is therefore
Min f(C), subject to (9.23)—(9.25).

Note that cooperation is clearly profitable between cities, since (i) the investment
cost is shared between cities, and (ii) the two periods structure needs a nontrivial
use of available capacities (flows are not necessarily equal to capacities as would
be the case for only one time period).

Also note that by increasing the number of steps of time, one would increase
the complexity of optimization, without adding a significant new dimension of
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TABLE 1. (Average, standard deviation) of computational time

(in ds).

Cities, data Classical Hallefjord NCGM
(4, 100) (17.6, 2.3) (10.8, 5.9) (10.2, 5.2)
(5, 100) (33.2, 2.3) (145, 15.2) | (13.2, 12.8)
(6, 100) (70.2, 7.5) (19.7, 21.7) (18.0, 16.6)
(7, 100) (178.5, 31.0) (91.5, 172.3) | (70.4, 121.8)
(8, 100) (488.3, 174.5) | (177.3,512.9) | (121.7, 330.6)
(9, 100) (1365.9, 403.0) | (273.7, 1194.4) | (191.1, 765.9)
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TABLE 2. Rounded (average, standard deviation) of used coalitions.

Cities, data | Classical | Hallefjord | NCGM
(4,100) | (16,0) | (41 | &1
(5, 100) (32, 0) (6, 2) (6, 2)
(6,100) | (64,00 | (7.2) | (7,2)
(7, 100) (128, 0) (11, 8) (11, 9)
(8, 100) (256, 0) | (12, 11) | (12, 11)
(9, 100) (512, 0) | (12,13) | (13, 14)

cooperation. I thus suppose that the structure of the numerical results should be
comparable.

The commercial software AIMMS 3.5, and its uniform random number gener-
ator, has been used for generating the data of problems. Sites (cities or spring)
coordinates, just like pipe capacities, and cities demand @), ; are real and random,
all in the range [-10; 10]. Unit price p is equal to 1/unit of water, and fixed cost
IC is equal to 10.

We compared three different methods to compute the prenucleolus: the classical
algorithm (no constraint generation), the constraint generation approach in [6],
and our new constraint generation method (called NCGM).

Tables 1 and 2 display the results for different problem sizes!.

According to these results, NCGM seems to be the best among the three meth-
ods. Large values of standard deviation also tend to show an important depen-
dency of the performance of constraint generation methods to the data of the
problem, whereas classical method is more stable. We also noticed that constraint
generation tends to be less efficient when the number of iterations needed to find
the prenucleolus increases: it may be explained by the increasing number of cuts
of the constraint generation algorithm, which are really time consuming.

Acknowledgements. The authors thank two anonymous refereees for their useful remarks.
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